snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class VotingRegressor(BaseTransformer):
|
57
58
|
r"""Prediction voting regressor for unfitted estimators
|
58
59
|
For more details on this class, see [sklearn.ensemble.VotingRegressor]
|
@@ -60,6 +61,51 @@ class VotingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimators: list of (str, estimator) tuples
|
64
110
|
Invoking the ``fit`` method on the ``VotingRegressor`` will fit clones
|
65
111
|
of those original estimators that will be stored in the class attribute
|
@@ -79,35 +125,6 @@ class VotingRegressor(BaseTransformer):
|
|
79
125
|
verbose: bool, default=False
|
80
126
|
If True, the time elapsed while fitting will be printed as it
|
81
127
|
is completed.
|
82
|
-
|
83
|
-
input_cols: Optional[Union[str, List[str]]]
|
84
|
-
A string or list of strings representing column names that contain features.
|
85
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
86
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
87
|
-
considered input columns.
|
88
|
-
|
89
|
-
label_cols: Optional[Union[str, List[str]]]
|
90
|
-
A string or list of strings representing column names that contain labels.
|
91
|
-
This is a required param for estimators, as there is no way to infer these
|
92
|
-
columns. If this parameter is not specified, then object is fitted without
|
93
|
-
labels (like a transformer).
|
94
|
-
|
95
|
-
output_cols: Optional[Union[str, List[str]]]
|
96
|
-
A string or list of strings representing column names that will store the
|
97
|
-
output of predict and transform operations. The length of output_cols must
|
98
|
-
match the expected number of output columns from the specific estimator or
|
99
|
-
transformer class used.
|
100
|
-
If this parameter is not specified, output column names are derived by
|
101
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
102
|
-
column names work for estimator's predict() method, but output_cols must
|
103
|
-
be set explicitly for transformers.
|
104
|
-
|
105
|
-
sample_weight_col: Optional[str]
|
106
|
-
A string representing the column name containing the sample weights.
|
107
|
-
This argument is only required when working with weighted datasets.
|
108
|
-
|
109
|
-
drop_input_cols: Optional[bool], default=False
|
110
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
111
128
|
"""
|
112
129
|
|
113
130
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -120,6 +137,7 @@ class VotingRegressor(BaseTransformer):
|
|
120
137
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
121
138
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
122
139
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
140
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
123
141
|
drop_input_cols: Optional[bool] = False,
|
124
142
|
sample_weight_col: Optional[str] = None,
|
125
143
|
) -> None:
|
@@ -128,9 +146,10 @@ class VotingRegressor(BaseTransformer):
|
|
128
146
|
self.set_input_cols(input_cols)
|
129
147
|
self.set_output_cols(output_cols)
|
130
148
|
self.set_label_cols(label_cols)
|
149
|
+
self.set_passthrough_cols(passthrough_cols)
|
131
150
|
self.set_drop_input_cols(drop_input_cols)
|
132
151
|
self.set_sample_weight_col(sample_weight_col)
|
133
|
-
deps = set(
|
152
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
134
153
|
deps = deps | gather_dependencies(estimators)
|
135
154
|
self._deps = list(deps)
|
136
155
|
estimators = transform_snowml_obj_to_sklearn_obj(estimators)
|
@@ -142,13 +161,14 @@ class VotingRegressor(BaseTransformer):
|
|
142
161
|
args=init_args,
|
143
162
|
klass=sklearn.ensemble.VotingRegressor
|
144
163
|
)
|
145
|
-
self._sklearn_object = sklearn.ensemble.VotingRegressor(
|
164
|
+
self._sklearn_object: Any = sklearn.ensemble.VotingRegressor(
|
146
165
|
**cleaned_up_init_args,
|
147
166
|
)
|
148
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
149
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
150
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
151
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
170
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
|
+
self._autogenerated = True
|
152
172
|
|
153
173
|
def _get_rand_id(self) -> str:
|
154
174
|
"""
|
@@ -159,24 +179,6 @@ class VotingRegressor(BaseTransformer):
|
|
159
179
|
"""
|
160
180
|
return str(uuid4()).replace("-", "_").upper()
|
161
181
|
|
162
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
163
|
-
"""
|
164
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
165
|
-
|
166
|
-
Args:
|
167
|
-
dataset: Input dataset.
|
168
|
-
"""
|
169
|
-
if not self.input_cols:
|
170
|
-
cols = [
|
171
|
-
c for c in dataset.columns
|
172
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
173
|
-
]
|
174
|
-
self.set_input_cols(input_cols=cols)
|
175
|
-
|
176
|
-
if not self.output_cols:
|
177
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
178
|
-
self.set_output_cols(output_cols=cols)
|
179
|
-
|
180
182
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "VotingRegressor":
|
181
183
|
"""
|
182
184
|
Input columns setter.
|
@@ -222,54 +224,48 @@ class VotingRegressor(BaseTransformer):
|
|
222
224
|
self
|
223
225
|
"""
|
224
226
|
self._infer_input_output_cols(dataset)
|
225
|
-
if isinstance(dataset,
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
self.
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
227
|
+
if isinstance(dataset, DataFrame):
|
228
|
+
session = dataset._session
|
229
|
+
assert session is not None # keep mypy happy
|
230
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
231
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
232
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
233
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
234
|
+
|
235
|
+
# Specify input columns so column pruning will be enforced
|
236
|
+
selected_cols = self._get_active_columns()
|
237
|
+
if len(selected_cols) > 0:
|
238
|
+
dataset = dataset.select(selected_cols)
|
239
|
+
|
240
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
241
|
+
|
242
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
243
|
+
if SNOWML_SPROC_ENV in os.environ:
|
244
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
245
|
+
project=_PROJECT,
|
246
|
+
subproject=_SUBPROJECT,
|
247
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VotingRegressor.__class__.__name__),
|
248
|
+
api_calls=[Session.call],
|
249
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
250
|
+
)
|
251
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
252
|
+
pd_df.columns = dataset.columns
|
253
|
+
dataset = pd_df
|
254
|
+
|
255
|
+
model_trainer = ModelTrainerBuilder.build(
|
256
|
+
estimator=self._sklearn_object,
|
257
|
+
dataset=dataset,
|
258
|
+
input_cols=self.input_cols,
|
259
|
+
label_cols=self.label_cols,
|
260
|
+
sample_weight_col=self.sample_weight_col,
|
261
|
+
autogenerated=self._autogenerated,
|
262
|
+
subproject=_SUBPROJECT
|
263
|
+
)
|
264
|
+
self._sklearn_object = model_trainer.train()
|
241
265
|
self._is_fitted = True
|
242
266
|
self._get_model_signatures(dataset)
|
243
267
|
return self
|
244
268
|
|
245
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
246
|
-
session = dataset._session
|
247
|
-
assert session is not None # keep mypy happy
|
248
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
249
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
250
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
251
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
252
|
-
|
253
|
-
# Specify input columns so column pruning will be enforced
|
254
|
-
selected_cols = self._get_active_columns()
|
255
|
-
if len(selected_cols) > 0:
|
256
|
-
dataset = dataset.select(selected_cols)
|
257
|
-
|
258
|
-
estimator = self._sklearn_object
|
259
|
-
assert estimator is not None # Keep mypy happy
|
260
|
-
|
261
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
262
|
-
|
263
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
264
|
-
dataset,
|
265
|
-
session,
|
266
|
-
estimator,
|
267
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
268
|
-
self.input_cols,
|
269
|
-
self.label_cols,
|
270
|
-
self.sample_weight_col,
|
271
|
-
)
|
272
|
-
|
273
269
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
274
270
|
if self._drop_input_cols:
|
275
271
|
return []
|
@@ -457,11 +453,6 @@ class VotingRegressor(BaseTransformer):
|
|
457
453
|
subproject=_SUBPROJECT,
|
458
454
|
custom_tags=dict([("autogen", True)]),
|
459
455
|
)
|
460
|
-
@telemetry.add_stmt_params_to_df(
|
461
|
-
project=_PROJECT,
|
462
|
-
subproject=_SUBPROJECT,
|
463
|
-
custom_tags=dict([("autogen", True)]),
|
464
|
-
)
|
465
456
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
466
457
|
"""Predict regression target for X
|
467
458
|
For more details on this function, see [sklearn.ensemble.VotingRegressor.predict]
|
@@ -515,11 +506,6 @@ class VotingRegressor(BaseTransformer):
|
|
515
506
|
subproject=_SUBPROJECT,
|
516
507
|
custom_tags=dict([("autogen", True)]),
|
517
508
|
)
|
518
|
-
@telemetry.add_stmt_params_to_df(
|
519
|
-
project=_PROJECT,
|
520
|
-
subproject=_SUBPROJECT,
|
521
|
-
custom_tags=dict([("autogen", True)]),
|
522
|
-
)
|
523
509
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
524
510
|
"""Return predictions for X for each estimator
|
525
511
|
For more details on this function, see [sklearn.ensemble.VotingRegressor.transform]
|
@@ -578,7 +564,8 @@ class VotingRegressor(BaseTransformer):
|
|
578
564
|
if False:
|
579
565
|
self.fit(dataset)
|
580
566
|
assert self._sklearn_object is not None
|
581
|
-
|
567
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
568
|
+
return labels
|
582
569
|
else:
|
583
570
|
raise NotImplementedError
|
584
571
|
|
@@ -614,6 +601,7 @@ class VotingRegressor(BaseTransformer):
|
|
614
601
|
output_cols = []
|
615
602
|
|
616
603
|
# Make sure column names are valid snowflake identifiers.
|
604
|
+
assert output_cols is not None # Make MyPy happy
|
617
605
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
618
606
|
|
619
607
|
return rv
|
@@ -624,11 +612,6 @@ class VotingRegressor(BaseTransformer):
|
|
624
612
|
subproject=_SUBPROJECT,
|
625
613
|
custom_tags=dict([("autogen", True)]),
|
626
614
|
)
|
627
|
-
@telemetry.add_stmt_params_to_df(
|
628
|
-
project=_PROJECT,
|
629
|
-
subproject=_SUBPROJECT,
|
630
|
-
custom_tags=dict([("autogen", True)]),
|
631
|
-
)
|
632
615
|
def predict_proba(
|
633
616
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
634
617
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -669,11 +652,6 @@ class VotingRegressor(BaseTransformer):
|
|
669
652
|
subproject=_SUBPROJECT,
|
670
653
|
custom_tags=dict([("autogen", True)]),
|
671
654
|
)
|
672
|
-
@telemetry.add_stmt_params_to_df(
|
673
|
-
project=_PROJECT,
|
674
|
-
subproject=_SUBPROJECT,
|
675
|
-
custom_tags=dict([("autogen", True)]),
|
676
|
-
)
|
677
655
|
def predict_log_proba(
|
678
656
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
679
657
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -710,16 +688,6 @@ class VotingRegressor(BaseTransformer):
|
|
710
688
|
return output_df
|
711
689
|
|
712
690
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
713
|
-
@telemetry.send_api_usage_telemetry(
|
714
|
-
project=_PROJECT,
|
715
|
-
subproject=_SUBPROJECT,
|
716
|
-
custom_tags=dict([("autogen", True)]),
|
717
|
-
)
|
718
|
-
@telemetry.add_stmt_params_to_df(
|
719
|
-
project=_PROJECT,
|
720
|
-
subproject=_SUBPROJECT,
|
721
|
-
custom_tags=dict([("autogen", True)]),
|
722
|
-
)
|
723
691
|
def decision_function(
|
724
692
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
725
693
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -820,11 +788,6 @@ class VotingRegressor(BaseTransformer):
|
|
820
788
|
subproject=_SUBPROJECT,
|
821
789
|
custom_tags=dict([("autogen", True)]),
|
822
790
|
)
|
823
|
-
@telemetry.add_stmt_params_to_df(
|
824
|
-
project=_PROJECT,
|
825
|
-
subproject=_SUBPROJECT,
|
826
|
-
custom_tags=dict([("autogen", True)]),
|
827
|
-
)
|
828
791
|
def kneighbors(
|
829
792
|
self,
|
830
793
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -884,18 +847,28 @@ class VotingRegressor(BaseTransformer):
|
|
884
847
|
# For classifier, the type of predict is the same as the type of label
|
885
848
|
if self._sklearn_object._estimator_type == 'classifier':
|
886
849
|
# label columns is the desired type for output
|
887
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
850
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
888
851
|
# rename the output columns
|
889
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
852
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
890
853
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
891
854
|
([] if self._drop_input_cols else inputs)
|
892
855
|
+ outputs)
|
856
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
857
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
858
|
+
# Clusterer returns int64 cluster labels.
|
859
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
860
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
861
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
862
|
+
([] if self._drop_input_cols else inputs)
|
863
|
+
+ outputs)
|
864
|
+
|
893
865
|
# For regressor, the type of predict is float64
|
894
866
|
elif self._sklearn_object._estimator_type == 'regressor':
|
895
867
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
896
868
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
897
869
|
([] if self._drop_input_cols else inputs)
|
898
870
|
+ outputs)
|
871
|
+
|
899
872
|
for prob_func in PROB_FUNCTIONS:
|
900
873
|
if hasattr(self, prob_func):
|
901
874
|
output_cols_prefix: str = f"{prob_func}_"
|