snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class HuberRegressor(BaseTransformer):
57
58
  r"""L2-regularized linear regression model that is robust to outliers
58
59
  For more details on this class, see [sklearn.linear_model.HuberRegressor]
@@ -60,6 +61,51 @@ class HuberRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  epsilon: float, default=1.35
64
110
  The parameter epsilon controls the number of samples that should be
65
111
  classified as outliers. The smaller the epsilon, the more robust it is
@@ -88,35 +134,6 @@ class HuberRegressor(BaseTransformer):
88
134
  The iteration will stop when
89
135
  ``max{|proj g_i | i = 1, ..., n}`` <= ``tol``
90
136
  where pg_i is the i-th component of the projected gradient.
91
-
92
- input_cols: Optional[Union[str, List[str]]]
93
- A string or list of strings representing column names that contain features.
94
- If this parameter is not specified, all columns in the input DataFrame except
95
- the columns specified by label_cols and sample_weight_col parameters are
96
- considered input columns.
97
-
98
- label_cols: Optional[Union[str, List[str]]]
99
- A string or list of strings representing column names that contain labels.
100
- This is a required param for estimators, as there is no way to infer these
101
- columns. If this parameter is not specified, then object is fitted without
102
- labels (like a transformer).
103
-
104
- output_cols: Optional[Union[str, List[str]]]
105
- A string or list of strings representing column names that will store the
106
- output of predict and transform operations. The length of output_cols must
107
- match the expected number of output columns from the specific estimator or
108
- transformer class used.
109
- If this parameter is not specified, output column names are derived by
110
- adding an OUTPUT_ prefix to the label column names. These inferred output
111
- column names work for estimator's predict() method, but output_cols must
112
- be set explicitly for transformers.
113
-
114
- sample_weight_col: Optional[str]
115
- A string representing the column name containing the sample weights.
116
- This argument is only required when working with weighted datasets.
117
-
118
- drop_input_cols: Optional[bool], default=False
119
- If set, the response of predict(), transform() methods will not contain input columns.
120
137
  """
121
138
 
122
139
  def __init__( # type: ignore[no-untyped-def]
@@ -131,6 +148,7 @@ class HuberRegressor(BaseTransformer):
131
148
  input_cols: Optional[Union[str, Iterable[str]]] = None,
132
149
  output_cols: Optional[Union[str, Iterable[str]]] = None,
133
150
  label_cols: Optional[Union[str, Iterable[str]]] = None,
151
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
134
152
  drop_input_cols: Optional[bool] = False,
135
153
  sample_weight_col: Optional[str] = None,
136
154
  ) -> None:
@@ -139,9 +157,10 @@ class HuberRegressor(BaseTransformer):
139
157
  self.set_input_cols(input_cols)
140
158
  self.set_output_cols(output_cols)
141
159
  self.set_label_cols(label_cols)
160
+ self.set_passthrough_cols(passthrough_cols)
142
161
  self.set_drop_input_cols(drop_input_cols)
143
162
  self.set_sample_weight_col(sample_weight_col)
144
- deps = set(SklearnWrapperProvider().dependencies)
163
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
145
164
 
146
165
  self._deps = list(deps)
147
166
 
@@ -155,13 +174,14 @@ class HuberRegressor(BaseTransformer):
155
174
  args=init_args,
156
175
  klass=sklearn.linear_model.HuberRegressor
157
176
  )
158
- self._sklearn_object = sklearn.linear_model.HuberRegressor(
177
+ self._sklearn_object: Any = sklearn.linear_model.HuberRegressor(
159
178
  **cleaned_up_init_args,
160
179
  )
161
180
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
162
181
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
163
182
  self._snowpark_cols: Optional[List[str]] = self.input_cols
164
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=HuberRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
183
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=HuberRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
184
+ self._autogenerated = True
165
185
 
166
186
  def _get_rand_id(self) -> str:
167
187
  """
@@ -172,24 +192,6 @@ class HuberRegressor(BaseTransformer):
172
192
  """
173
193
  return str(uuid4()).replace("-", "_").upper()
174
194
 
175
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
176
- """
177
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
178
-
179
- Args:
180
- dataset: Input dataset.
181
- """
182
- if not self.input_cols:
183
- cols = [
184
- c for c in dataset.columns
185
- if c not in self.get_label_cols() and c != self.sample_weight_col
186
- ]
187
- self.set_input_cols(input_cols=cols)
188
-
189
- if not self.output_cols:
190
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
191
- self.set_output_cols(output_cols=cols)
192
-
193
195
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "HuberRegressor":
194
196
  """
195
197
  Input columns setter.
@@ -235,54 +237,48 @@ class HuberRegressor(BaseTransformer):
235
237
  self
236
238
  """
237
239
  self._infer_input_output_cols(dataset)
238
- if isinstance(dataset, pd.DataFrame):
239
- assert self._sklearn_object is not None # keep mypy happy
240
- self._sklearn_object = self._handlers.fit_pandas(
241
- dataset,
242
- self._sklearn_object,
243
- self.input_cols,
244
- self.label_cols,
245
- self.sample_weight_col
246
- )
247
- elif isinstance(dataset, DataFrame):
248
- self._fit_snowpark(dataset)
249
- else:
250
- raise TypeError(
251
- f"Unexpected dataset type: {type(dataset)}."
252
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
253
- )
240
+ if isinstance(dataset, DataFrame):
241
+ session = dataset._session
242
+ assert session is not None # keep mypy happy
243
+ # Validate that key package version in user workspace are supported in snowflake conda channel
244
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
245
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
246
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
247
+
248
+ # Specify input columns so column pruning will be enforced
249
+ selected_cols = self._get_active_columns()
250
+ if len(selected_cols) > 0:
251
+ dataset = dataset.select(selected_cols)
252
+
253
+ self._snowpark_cols = dataset.select(self.input_cols).columns
254
+
255
+ # If we are already in a stored procedure, no need to kick off another one.
256
+ if SNOWML_SPROC_ENV in os.environ:
257
+ statement_params = telemetry.get_function_usage_statement_params(
258
+ project=_PROJECT,
259
+ subproject=_SUBPROJECT,
260
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HuberRegressor.__class__.__name__),
261
+ api_calls=[Session.call],
262
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
263
+ )
264
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
265
+ pd_df.columns = dataset.columns
266
+ dataset = pd_df
267
+
268
+ model_trainer = ModelTrainerBuilder.build(
269
+ estimator=self._sklearn_object,
270
+ dataset=dataset,
271
+ input_cols=self.input_cols,
272
+ label_cols=self.label_cols,
273
+ sample_weight_col=self.sample_weight_col,
274
+ autogenerated=self._autogenerated,
275
+ subproject=_SUBPROJECT
276
+ )
277
+ self._sklearn_object = model_trainer.train()
254
278
  self._is_fitted = True
255
279
  self._get_model_signatures(dataset)
256
280
  return self
257
281
 
258
- def _fit_snowpark(self, dataset: DataFrame) -> None:
259
- session = dataset._session
260
- assert session is not None # keep mypy happy
261
- # Validate that key package version in user workspace are supported in snowflake conda channel
262
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
263
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
264
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
265
-
266
- # Specify input columns so column pruning will be enforced
267
- selected_cols = self._get_active_columns()
268
- if len(selected_cols) > 0:
269
- dataset = dataset.select(selected_cols)
270
-
271
- estimator = self._sklearn_object
272
- assert estimator is not None # Keep mypy happy
273
-
274
- self._snowpark_cols = dataset.select(self.input_cols).columns
275
-
276
- self._sklearn_object = self._handlers.fit_snowpark(
277
- dataset,
278
- session,
279
- estimator,
280
- ["snowflake-snowpark-python"] + self._get_dependencies(),
281
- self.input_cols,
282
- self.label_cols,
283
- self.sample_weight_col,
284
- )
285
-
286
282
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
287
283
  if self._drop_input_cols:
288
284
  return []
@@ -470,11 +466,6 @@ class HuberRegressor(BaseTransformer):
470
466
  subproject=_SUBPROJECT,
471
467
  custom_tags=dict([("autogen", True)]),
472
468
  )
473
- @telemetry.add_stmt_params_to_df(
474
- project=_PROJECT,
475
- subproject=_SUBPROJECT,
476
- custom_tags=dict([("autogen", True)]),
477
- )
478
469
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
479
470
  """Predict using the linear model
480
471
  For more details on this function, see [sklearn.linear_model.HuberRegressor.predict]
@@ -528,11 +519,6 @@ class HuberRegressor(BaseTransformer):
528
519
  subproject=_SUBPROJECT,
529
520
  custom_tags=dict([("autogen", True)]),
530
521
  )
531
- @telemetry.add_stmt_params_to_df(
532
- project=_PROJECT,
533
- subproject=_SUBPROJECT,
534
- custom_tags=dict([("autogen", True)]),
535
- )
536
522
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
537
523
  """Method not supported for this class.
538
524
 
@@ -589,7 +575,8 @@ class HuberRegressor(BaseTransformer):
589
575
  if False:
590
576
  self.fit(dataset)
591
577
  assert self._sklearn_object is not None
592
- return self._sklearn_object.labels_
578
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
579
+ return labels
593
580
  else:
594
581
  raise NotImplementedError
595
582
 
@@ -625,6 +612,7 @@ class HuberRegressor(BaseTransformer):
625
612
  output_cols = []
626
613
 
627
614
  # Make sure column names are valid snowflake identifiers.
615
+ assert output_cols is not None # Make MyPy happy
628
616
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
629
617
 
630
618
  return rv
@@ -635,11 +623,6 @@ class HuberRegressor(BaseTransformer):
635
623
  subproject=_SUBPROJECT,
636
624
  custom_tags=dict([("autogen", True)]),
637
625
  )
638
- @telemetry.add_stmt_params_to_df(
639
- project=_PROJECT,
640
- subproject=_SUBPROJECT,
641
- custom_tags=dict([("autogen", True)]),
642
- )
643
626
  def predict_proba(
644
627
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
645
628
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -680,11 +663,6 @@ class HuberRegressor(BaseTransformer):
680
663
  subproject=_SUBPROJECT,
681
664
  custom_tags=dict([("autogen", True)]),
682
665
  )
683
- @telemetry.add_stmt_params_to_df(
684
- project=_PROJECT,
685
- subproject=_SUBPROJECT,
686
- custom_tags=dict([("autogen", True)]),
687
- )
688
666
  def predict_log_proba(
689
667
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
690
668
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -721,16 +699,6 @@ class HuberRegressor(BaseTransformer):
721
699
  return output_df
722
700
 
723
701
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
724
- @telemetry.send_api_usage_telemetry(
725
- project=_PROJECT,
726
- subproject=_SUBPROJECT,
727
- custom_tags=dict([("autogen", True)]),
728
- )
729
- @telemetry.add_stmt_params_to_df(
730
- project=_PROJECT,
731
- subproject=_SUBPROJECT,
732
- custom_tags=dict([("autogen", True)]),
733
- )
734
702
  def decision_function(
735
703
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
736
704
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -831,11 +799,6 @@ class HuberRegressor(BaseTransformer):
831
799
  subproject=_SUBPROJECT,
832
800
  custom_tags=dict([("autogen", True)]),
833
801
  )
834
- @telemetry.add_stmt_params_to_df(
835
- project=_PROJECT,
836
- subproject=_SUBPROJECT,
837
- custom_tags=dict([("autogen", True)]),
838
- )
839
802
  def kneighbors(
840
803
  self,
841
804
  dataset: Union[DataFrame, pd.DataFrame],
@@ -895,18 +858,28 @@ class HuberRegressor(BaseTransformer):
895
858
  # For classifier, the type of predict is the same as the type of label
896
859
  if self._sklearn_object._estimator_type == 'classifier':
897
860
  # label columns is the desired type for output
898
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
861
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
899
862
  # rename the output columns
900
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
863
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
901
864
  self._model_signature_dict["predict"] = ModelSignature(inputs,
902
865
  ([] if self._drop_input_cols else inputs)
903
866
  + outputs)
867
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
868
+ # For outlier models, returns -1 for outliers and 1 for inliers.
869
+ # Clusterer returns int64 cluster labels.
870
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
871
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
872
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
873
+ ([] if self._drop_input_cols else inputs)
874
+ + outputs)
875
+
904
876
  # For regressor, the type of predict is float64
905
877
  elif self._sklearn_object._estimator_type == 'regressor':
906
878
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
907
879
  self._model_signature_dict["predict"] = ModelSignature(inputs,
908
880
  ([] if self._drop_input_cols else inputs)
909
881
  + outputs)
882
+
910
883
  for prob_func in PROB_FUNCTIONS:
911
884
  if hasattr(self, prob_func):
912
885
  output_cols_prefix: str = f"{prob_func}_"