snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class HuberRegressor(BaseTransformer):
|
57
58
|
r"""L2-regularized linear regression model that is robust to outliers
|
58
59
|
For more details on this class, see [sklearn.linear_model.HuberRegressor]
|
@@ -60,6 +61,51 @@ class HuberRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
epsilon: float, default=1.35
|
64
110
|
The parameter epsilon controls the number of samples that should be
|
65
111
|
classified as outliers. The smaller the epsilon, the more robust it is
|
@@ -88,35 +134,6 @@ class HuberRegressor(BaseTransformer):
|
|
88
134
|
The iteration will stop when
|
89
135
|
``max{|proj g_i | i = 1, ..., n}`` <= ``tol``
|
90
136
|
where pg_i is the i-th component of the projected gradient.
|
91
|
-
|
92
|
-
input_cols: Optional[Union[str, List[str]]]
|
93
|
-
A string or list of strings representing column names that contain features.
|
94
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
95
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
96
|
-
considered input columns.
|
97
|
-
|
98
|
-
label_cols: Optional[Union[str, List[str]]]
|
99
|
-
A string or list of strings representing column names that contain labels.
|
100
|
-
This is a required param for estimators, as there is no way to infer these
|
101
|
-
columns. If this parameter is not specified, then object is fitted without
|
102
|
-
labels (like a transformer).
|
103
|
-
|
104
|
-
output_cols: Optional[Union[str, List[str]]]
|
105
|
-
A string or list of strings representing column names that will store the
|
106
|
-
output of predict and transform operations. The length of output_cols must
|
107
|
-
match the expected number of output columns from the specific estimator or
|
108
|
-
transformer class used.
|
109
|
-
If this parameter is not specified, output column names are derived by
|
110
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
111
|
-
column names work for estimator's predict() method, but output_cols must
|
112
|
-
be set explicitly for transformers.
|
113
|
-
|
114
|
-
sample_weight_col: Optional[str]
|
115
|
-
A string representing the column name containing the sample weights.
|
116
|
-
This argument is only required when working with weighted datasets.
|
117
|
-
|
118
|
-
drop_input_cols: Optional[bool], default=False
|
119
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
120
137
|
"""
|
121
138
|
|
122
139
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -131,6 +148,7 @@ class HuberRegressor(BaseTransformer):
|
|
131
148
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
132
149
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
133
150
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
151
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
134
152
|
drop_input_cols: Optional[bool] = False,
|
135
153
|
sample_weight_col: Optional[str] = None,
|
136
154
|
) -> None:
|
@@ -139,9 +157,10 @@ class HuberRegressor(BaseTransformer):
|
|
139
157
|
self.set_input_cols(input_cols)
|
140
158
|
self.set_output_cols(output_cols)
|
141
159
|
self.set_label_cols(label_cols)
|
160
|
+
self.set_passthrough_cols(passthrough_cols)
|
142
161
|
self.set_drop_input_cols(drop_input_cols)
|
143
162
|
self.set_sample_weight_col(sample_weight_col)
|
144
|
-
deps = set(
|
163
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
145
164
|
|
146
165
|
self._deps = list(deps)
|
147
166
|
|
@@ -155,13 +174,14 @@ class HuberRegressor(BaseTransformer):
|
|
155
174
|
args=init_args,
|
156
175
|
klass=sklearn.linear_model.HuberRegressor
|
157
176
|
)
|
158
|
-
self._sklearn_object = sklearn.linear_model.HuberRegressor(
|
177
|
+
self._sklearn_object: Any = sklearn.linear_model.HuberRegressor(
|
159
178
|
**cleaned_up_init_args,
|
160
179
|
)
|
161
180
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
162
181
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
163
182
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
164
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HuberRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
183
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=HuberRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
184
|
+
self._autogenerated = True
|
165
185
|
|
166
186
|
def _get_rand_id(self) -> str:
|
167
187
|
"""
|
@@ -172,24 +192,6 @@ class HuberRegressor(BaseTransformer):
|
|
172
192
|
"""
|
173
193
|
return str(uuid4()).replace("-", "_").upper()
|
174
194
|
|
175
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
176
|
-
"""
|
177
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
178
|
-
|
179
|
-
Args:
|
180
|
-
dataset: Input dataset.
|
181
|
-
"""
|
182
|
-
if not self.input_cols:
|
183
|
-
cols = [
|
184
|
-
c for c in dataset.columns
|
185
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
186
|
-
]
|
187
|
-
self.set_input_cols(input_cols=cols)
|
188
|
-
|
189
|
-
if not self.output_cols:
|
190
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
191
|
-
self.set_output_cols(output_cols=cols)
|
192
|
-
|
193
195
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "HuberRegressor":
|
194
196
|
"""
|
195
197
|
Input columns setter.
|
@@ -235,54 +237,48 @@ class HuberRegressor(BaseTransformer):
|
|
235
237
|
self
|
236
238
|
"""
|
237
239
|
self._infer_input_output_cols(dataset)
|
238
|
-
if isinstance(dataset,
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
self.
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
240
|
+
if isinstance(dataset, DataFrame):
|
241
|
+
session = dataset._session
|
242
|
+
assert session is not None # keep mypy happy
|
243
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
244
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
245
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
246
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
247
|
+
|
248
|
+
# Specify input columns so column pruning will be enforced
|
249
|
+
selected_cols = self._get_active_columns()
|
250
|
+
if len(selected_cols) > 0:
|
251
|
+
dataset = dataset.select(selected_cols)
|
252
|
+
|
253
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
254
|
+
|
255
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
256
|
+
if SNOWML_SPROC_ENV in os.environ:
|
257
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
258
|
+
project=_PROJECT,
|
259
|
+
subproject=_SUBPROJECT,
|
260
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HuberRegressor.__class__.__name__),
|
261
|
+
api_calls=[Session.call],
|
262
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
263
|
+
)
|
264
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
265
|
+
pd_df.columns = dataset.columns
|
266
|
+
dataset = pd_df
|
267
|
+
|
268
|
+
model_trainer = ModelTrainerBuilder.build(
|
269
|
+
estimator=self._sklearn_object,
|
270
|
+
dataset=dataset,
|
271
|
+
input_cols=self.input_cols,
|
272
|
+
label_cols=self.label_cols,
|
273
|
+
sample_weight_col=self.sample_weight_col,
|
274
|
+
autogenerated=self._autogenerated,
|
275
|
+
subproject=_SUBPROJECT
|
276
|
+
)
|
277
|
+
self._sklearn_object = model_trainer.train()
|
254
278
|
self._is_fitted = True
|
255
279
|
self._get_model_signatures(dataset)
|
256
280
|
return self
|
257
281
|
|
258
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
259
|
-
session = dataset._session
|
260
|
-
assert session is not None # keep mypy happy
|
261
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
262
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
263
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
264
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
265
|
-
|
266
|
-
# Specify input columns so column pruning will be enforced
|
267
|
-
selected_cols = self._get_active_columns()
|
268
|
-
if len(selected_cols) > 0:
|
269
|
-
dataset = dataset.select(selected_cols)
|
270
|
-
|
271
|
-
estimator = self._sklearn_object
|
272
|
-
assert estimator is not None # Keep mypy happy
|
273
|
-
|
274
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
275
|
-
|
276
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
277
|
-
dataset,
|
278
|
-
session,
|
279
|
-
estimator,
|
280
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
281
|
-
self.input_cols,
|
282
|
-
self.label_cols,
|
283
|
-
self.sample_weight_col,
|
284
|
-
)
|
285
|
-
|
286
282
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
287
283
|
if self._drop_input_cols:
|
288
284
|
return []
|
@@ -470,11 +466,6 @@ class HuberRegressor(BaseTransformer):
|
|
470
466
|
subproject=_SUBPROJECT,
|
471
467
|
custom_tags=dict([("autogen", True)]),
|
472
468
|
)
|
473
|
-
@telemetry.add_stmt_params_to_df(
|
474
|
-
project=_PROJECT,
|
475
|
-
subproject=_SUBPROJECT,
|
476
|
-
custom_tags=dict([("autogen", True)]),
|
477
|
-
)
|
478
469
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
479
470
|
"""Predict using the linear model
|
480
471
|
For more details on this function, see [sklearn.linear_model.HuberRegressor.predict]
|
@@ -528,11 +519,6 @@ class HuberRegressor(BaseTransformer):
|
|
528
519
|
subproject=_SUBPROJECT,
|
529
520
|
custom_tags=dict([("autogen", True)]),
|
530
521
|
)
|
531
|
-
@telemetry.add_stmt_params_to_df(
|
532
|
-
project=_PROJECT,
|
533
|
-
subproject=_SUBPROJECT,
|
534
|
-
custom_tags=dict([("autogen", True)]),
|
535
|
-
)
|
536
522
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
537
523
|
"""Method not supported for this class.
|
538
524
|
|
@@ -589,7 +575,8 @@ class HuberRegressor(BaseTransformer):
|
|
589
575
|
if False:
|
590
576
|
self.fit(dataset)
|
591
577
|
assert self._sklearn_object is not None
|
592
|
-
|
578
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
579
|
+
return labels
|
593
580
|
else:
|
594
581
|
raise NotImplementedError
|
595
582
|
|
@@ -625,6 +612,7 @@ class HuberRegressor(BaseTransformer):
|
|
625
612
|
output_cols = []
|
626
613
|
|
627
614
|
# Make sure column names are valid snowflake identifiers.
|
615
|
+
assert output_cols is not None # Make MyPy happy
|
628
616
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
629
617
|
|
630
618
|
return rv
|
@@ -635,11 +623,6 @@ class HuberRegressor(BaseTransformer):
|
|
635
623
|
subproject=_SUBPROJECT,
|
636
624
|
custom_tags=dict([("autogen", True)]),
|
637
625
|
)
|
638
|
-
@telemetry.add_stmt_params_to_df(
|
639
|
-
project=_PROJECT,
|
640
|
-
subproject=_SUBPROJECT,
|
641
|
-
custom_tags=dict([("autogen", True)]),
|
642
|
-
)
|
643
626
|
def predict_proba(
|
644
627
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
645
628
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -680,11 +663,6 @@ class HuberRegressor(BaseTransformer):
|
|
680
663
|
subproject=_SUBPROJECT,
|
681
664
|
custom_tags=dict([("autogen", True)]),
|
682
665
|
)
|
683
|
-
@telemetry.add_stmt_params_to_df(
|
684
|
-
project=_PROJECT,
|
685
|
-
subproject=_SUBPROJECT,
|
686
|
-
custom_tags=dict([("autogen", True)]),
|
687
|
-
)
|
688
666
|
def predict_log_proba(
|
689
667
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
690
668
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -721,16 +699,6 @@ class HuberRegressor(BaseTransformer):
|
|
721
699
|
return output_df
|
722
700
|
|
723
701
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
724
|
-
@telemetry.send_api_usage_telemetry(
|
725
|
-
project=_PROJECT,
|
726
|
-
subproject=_SUBPROJECT,
|
727
|
-
custom_tags=dict([("autogen", True)]),
|
728
|
-
)
|
729
|
-
@telemetry.add_stmt_params_to_df(
|
730
|
-
project=_PROJECT,
|
731
|
-
subproject=_SUBPROJECT,
|
732
|
-
custom_tags=dict([("autogen", True)]),
|
733
|
-
)
|
734
702
|
def decision_function(
|
735
703
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
736
704
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -831,11 +799,6 @@ class HuberRegressor(BaseTransformer):
|
|
831
799
|
subproject=_SUBPROJECT,
|
832
800
|
custom_tags=dict([("autogen", True)]),
|
833
801
|
)
|
834
|
-
@telemetry.add_stmt_params_to_df(
|
835
|
-
project=_PROJECT,
|
836
|
-
subproject=_SUBPROJECT,
|
837
|
-
custom_tags=dict([("autogen", True)]),
|
838
|
-
)
|
839
802
|
def kneighbors(
|
840
803
|
self,
|
841
804
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -895,18 +858,28 @@ class HuberRegressor(BaseTransformer):
|
|
895
858
|
# For classifier, the type of predict is the same as the type of label
|
896
859
|
if self._sklearn_object._estimator_type == 'classifier':
|
897
860
|
# label columns is the desired type for output
|
898
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
861
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
899
862
|
# rename the output columns
|
900
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
863
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
901
864
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
902
865
|
([] if self._drop_input_cols else inputs)
|
903
866
|
+ outputs)
|
867
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
868
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
869
|
+
# Clusterer returns int64 cluster labels.
|
870
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
871
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
872
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
873
|
+
([] if self._drop_input_cols else inputs)
|
874
|
+
+ outputs)
|
875
|
+
|
904
876
|
# For regressor, the type of predict is float64
|
905
877
|
elif self._sklearn_object._estimator_type == 'regressor':
|
906
878
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
907
879
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
908
880
|
([] if self._drop_input_cols else inputs)
|
909
881
|
+ outputs)
|
882
|
+
|
910
883
|
for prob_func in PROB_FUNCTIONS:
|
911
884
|
if hasattr(self, prob_func):
|
912
885
|
output_cols_prefix: str = f"{prob_func}_"
|