snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -38,8 +38,10 @@ Requires-Dist: importlib_resources>=5.1.4, <6
38
38
  Requires-Dist: numpy>=1.23,<2
39
39
  Requires-Dist: packaging>=20.9,<24
40
40
  Requires-Dist: pandas>=1.0.0,<2
41
+ Requires-Dist: pyarrow
41
42
  Requires-Dist: pytimeparse>=1.1.8,<2
42
43
  Requires-Dist: pyyaml>=6.0,<7
44
+ Requires-Dist: retrying>=1.3.3,<2
43
45
  Requires-Dist: s3fs>=2022.11,<2024
44
46
  Requires-Dist: scikit-learn>=1.2.1,<1.4
45
47
  Requires-Dist: scipy>=1.9,<2
@@ -74,7 +76,7 @@ Provides-Extra: transformers
74
76
  Requires-Dist: sentencepiece>=0.1.95,<0.2; extra == 'transformers'
75
77
  Requires-Dist: tokenizers>=0.10,<1; extra == 'transformers'
76
78
  Requires-Dist: transformers>=4.32.1,<5; extra == 'transformers'
77
- Version: 1.1.0
79
+ Version: 1.1.2
78
80
 
79
81
  # Snowpark ML
80
82
 
@@ -163,6 +165,37 @@ Note that until a `snowflake-ml-python` package version is available in the offi
163
165
  be compatibility issues. Server-side functionality that `snowflake-ml-python` depends on may not yet be released.
164
166
  # Release History
165
167
 
168
+ ## 1.1.2
169
+
170
+ ### Bug Fixes
171
+
172
+ - Generic: Fix the issue that stack trace is hidden by telemetry unexpectedly.
173
+ - Model Development: Execute model signature inference without materializing full dataframe in memory.
174
+ - Model Registry: Fix occasional 'snowflake-ml-python library does not exist' error when deploying to SPCS.
175
+
176
+ ### Behavior Changes
177
+
178
+ - Model Registry: When calling `predict` with Snowpark DataFrame, both inferred or normalized column names are accepted.
179
+ - Model Registry: When logging a Snowpark ML Modeling Model, sample input data or manually provided signature will be
180
+ ignored since they are not necessary.
181
+
182
+ ### New Features
183
+
184
+ - Model Development: SQL implementation of binary `precision_score` metric.
185
+
186
+ ## 1.1.1
187
+
188
+ ### Bug Fixes
189
+
190
+ - Model Registry: The `predict` target method on registered models is now compatible with unsupervised estimators.
191
+ - Model Development: Fix confusion_matrix incorrect results when the row number cannot be divided by the batch size.
192
+
193
+ ### New Features
194
+
195
+ - Introduced passthrough_col param in Modeling API. This new param is helpful in scenarios
196
+ requiring automatic input_cols inference, but need to avoid using specific
197
+ columns, like index columns, during training or inference.
198
+
166
199
  ## 1.1.0
167
200
 
168
201
  ### Bug Fixes
@@ -0,0 +1,347 @@
1
+ snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
+ snowflake/cortex/_complete.py,sha256=C2wLk5RMtg-d2bkdbQKou6U8nvR8g3vykpCkH9-gF9g,1226
3
+ snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
+ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4TsM,1149
5
+ snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
+ snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
+ snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
+ snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
9
+ snowflake/ml/_internal/env_utils.py,sha256=lKLjqTnnq5Hhn_072Cmg1VlpJw8zGxBFtTeZIKZC_WM,25731
10
+ snowflake/ml/_internal/exceptions/error_codes.py,sha256=a6c6yTgCR-Fwqk2rpjRPS__fJjrcE2G1aj3r57uWCbY,5177
11
+ snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
12
+ snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
13
+ snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
14
+ snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
15
+ snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=cWDJHjHst8P-gPTPOY2EYapjhlB9tUm159VPBxNYefc,466
16
+ snowflake/ml/_internal/file_utils.py,sha256=n16qTQ2h10huLV3HyEc2mztELydcK3WsMcGzmCHOdUU,13207
17
+ snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
18
+ snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
+ snowflake/ml/_internal/telemetry.py,sha256=a7quIbktsSY4eHVfDxkfZmiLERwSm8CuJUOTMXF9c-M,21825
20
+ snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
21
+ snowflake/ml/_internal/utils/formatting.py,sha256=udoXzwbgeZ6NTUeU7ywgSA4pASv3xtxm-IslW1l6ZqM,3677
22
+ snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
23
+ snowflake/ml/_internal/utils/image_registry_http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
24
+ snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
25
+ snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
26
+ snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
27
+ snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=tpu6B0HKpbT-svvU2Pbz7zNqzg-jgoSmwYvtTzXYyzw,5857
28
+ snowflake/ml/_internal/utils/query_result_checker.py,sha256=QoGXiPMPB3LMdadhwizBwvTdXph0zAde6CSVcqiO_5M,10583
29
+ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
30
+ snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
31
+ snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTdWZEu9pCq2oRNuJBoqfKD9QDQ,1727
32
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR38BkBtx813eMqz5wmQosgc1sce0,5403
33
+ snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
34
+ snowflake/ml/_internal/utils/spcs_image_registry.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
35
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=BYd0_ZNHjbpP33XeVLOcnhZXCrIschQegpE_hXXJ4bw,3502
36
+ snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
37
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
38
+ snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
39
+ snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
40
+ snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
41
+ snowflake/ml/fileset/parquet_parser.py,sha256=Fo1utyn94fJ-p74vQ6rA2EX0QJiHEQnWbKM4I4bhT0A,5918
42
+ snowflake/ml/fileset/sfcfs.py,sha256=w27A8GffBoM1oMo6IfxafUNuMOC6_qr-fOy4Vpc-nEA,11968
43
+ snowflake/ml/fileset/stage_fs.py,sha256=Qu9-yzcPqabRiDP_mUjq4NFodp_xCMP9N-0Gfc0-PiI,15908
44
+ snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
45
+ snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
46
+ snowflake/ml/model/_api.py,sha256=nhLsrwpI3CoXMF2FcL4VSs4hub1vMLGIsRV7kZjdsow,21512
47
+ snowflake/ml/model/_client/model/model_impl.py,sha256=Zc-wSLXxii7DCgMfoEYcDxRWpdVcbQx_0XsAylejZwg,6153
48
+ snowflake/ml/model/_client/model/model_method_info.py,sha256=qYjZlMbsrHpueyBw1Tt3E2Q1CH_-AREzwVWwDcsHNMk,491
49
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=D597yI0u_pgHGwbJEur7SZgQpiYBbBCklU0d9JqGsFg,11052
50
+ snowflake/ml/model/_client/ops/metadata_ops.py,sha256=FbC3JgxKZ9G36FJhA8Vld3szN4nsyJM-uIx10vz43v0,4130
51
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=W3Rldu9KgI1fivXJgNZh5b1Cb9KsHe7LpljSf2UWfQM,11794
52
+ snowflake/ml/model/_client/sql/model.py,sha256=9pwTV6Q168QlCqFU-IETH3cvLdtwTCi2O8hZp1LVwxw,2806
53
+ snowflake/ml/model/_client/sql/model_version.py,sha256=NN9icPZdK8IdQ78Tc-ATz2uyz6rR3hdvyimBo_P-pzQ,8075
54
+ snowflake/ml/model/_client/sql/stage.py,sha256=bGYx6xc19uuA-QOjw-EXMxYi7tqWuDJAaiBwayko6_o,1344
55
+ snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
56
+ snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=zsPgZx5xup0obcsB0Y_o4AG683Ek94E6Yn55IeyUeQ0,10671
57
+ snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7hB44ABsKvUZsaQV6UXTY7JakfNN0lpE4t7qkq-Slos,6228
58
+ snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
59
+ snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=0XYmBtUlWJdPTcT6cyQySXByVpa1dzf-yOHSb59CPIY,11179
60
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=7hqrWa45cQB_guf7yg601kEdWyiZuNbF7hwkmL2P45E,9649
61
+ snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=yzNu-yOo9wfMj5Tsky3PZLgGMRzY0da2LWwaPcC5F40,1696
62
+ snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
63
+ snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
64
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=ABlB2VEx_MFdzhLdEiXrC1dbywdkZJQpDil9-f2agXc,28810
65
+ snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=cymya_M0r0Tekepi0j3w5_9vEyBWgZ9JvQA0rMBJhBQ,5175
66
+ snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=UTMTGnC8EfB49fyV-zg3vuFUOYqy3Ig17EEo7nTwO94,156
67
+ snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
68
+ snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model,sha256=2SUfeKVOSuZJgY6HZLi0m80ZrOzofjABbnusUl_JT1U,540
69
+ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=ysEBrEs0sBCGHnk9uBX-IPZ_JA3ReRyyrDTFO_FNDPw,1841
70
+ snowflake/ml/model/_deploy_client/utils/image_registry_client.py,sha256=tYxt-Ge886uiLCKQYGFrzetG4i1NQcOjKVH5N9mnnhY,9110
71
+ snowflake/ml/model/_deploy_client/utils/imagelib.py,sha256=5YUPG31dKD8q7Eiis8G41qYRhwQOWnZhNw0gLjn1kkA,14485
72
+ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=lz7uvABEa8S9EbqRvTx4xOZLQo7Dqyz1Lrw2KOwj_zc,12869
73
+ snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=qJV1Yi6hfdJ3Ay8wyqS4Jz1cTm0bVLFtoNsgz_FTq3g,7677
74
+ snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
75
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=hpaClgvyW-_e5TYawx-c34zNzDq58qL37yPO0ubnBWM,6313
76
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=avKG931OCFZVrlBjAv9R7UiSc-4X3a3XFXX4LlI1OOs,4258
77
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=wVS37mAhdzSkdkW-LZcQ3MU2T1XfdSREzCOyUAUh0_Y,1194
78
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=CCzD07OnbX2vkMO6qgQCCDM-dpCz0gthuRHC438ntpQ,1645
79
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
80
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=RyR7ayq0K8aqmTzJfn4jXnNa6tflE3Br8F2hfcFTwik,5351
81
+ snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=jf96gr4xT2QQt2mJ9SixbG8W5psWYR3TmwgCEt25bdQ,204
82
+ snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=-a93izywHKSEuwmV_OWAyKwnBaeM29EHw99pA1oHF7Y,4114
83
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
84
+ snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
85
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=1K0H3Iio3r3UK5Ryd2-EvdvLGsBrH6uefop7W64ba4U,6023
86
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=gfDr6WyClxWzd0Nkg7AN8v5d2OsiatVqGqOlHHyynl4,2597
87
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=ahpjdOU-77L5Z7QBKmIGiNpB0Y6LF3SWF3Y91TRh5CU,7280
88
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=BueHnKxgU7NfQZZsa-Ctu1B8Ce3s2mT0DrmHzu22ib0,19983
89
+ snowflake/ml/model/_packager/model_handlers/llm.py,sha256=0Dod1nFNQfsF_7rIC4LLnp9eucMsracv0vVNZey1eBY,10767
90
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=nyk-ty7HlmO8Q3SNJCk0bw91JiFCChdEqJ0aw459e_A,8988
91
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=7kp7OobwIbbVoO8LQ2jONBgEdHbLrTkIJi0UBhiutsU,7829
92
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=mvDX7VN-J3QSI3hb2-O9WVf3tjhGviBSUNUE436l0ow,8025
93
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Ln7t_N8r3Uq57glRXXSc3vRiHJpkMFOKQK62yDNFfk0,7252
94
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=xXSZfyN-zqSwTkrcUi0YZ0AUo5sC0D_Ji_ppBeqa8Ts,8134
95
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=MCfrUTBNwQfnNGUrHVYRFLZLQeFATuDWs3bVeO4Rw7Q,8064
96
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=l9HvwZdwLZXWJ3AasWWrVTTO84fgDGIGQfMRheVlE94,8686
97
+ snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
98
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=BX1VhAGi1qBBPkg7fJrJNupwBIPptpB3aW9ZTV65epM,226
99
+ snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
100
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=YFFEQ_OErwD2CAYgWGIIAawQUkEZ5x0kLze_Sreiuzc,15555
101
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=j5b7hkh3Kz79vDaQmuCnBq5S9FvpUfDz3Ee2KmaKfBE,1897
102
+ snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
103
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=czF4J_i3FPHDaaFwKF93Gr6qxVwF4IbaoCdb3G_5iH8,1034
104
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
105
+ snowflake/ml/model/_packager/model_packager.py,sha256=aw9eiFhQENNFTNc0zZHJjPG7LKy1FDmEst-eD9T0tOc,5893
106
+ snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
107
+ snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
108
+ snowflake/ml/model/_signatures/core.py,sha256=QcDdf-oBalvUeV2q87QVuvbbhaMg5HObpZ4lbc18m6Y,17874
109
+ snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
110
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=qKDzRQ3bFa1pLo6-1ReMUOZANMkjW32-B8AqgEIx7nc,8057
111
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyMIi4BfUv0zrirXMPmzUD4,4568
112
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=--EZ5gxlnFy9MOVXFiCzNZPJ4BU20HwplvTG_tq-Tmo,5923
113
+ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
114
+ snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
115
+ snowflake/ml/model/custom_model.py,sha256=8qEHi8myHcp02jcpFbG9Kqscn9YRv3QnzehCrTSI8ds,8016
116
+ snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
117
+ snowflake/ml/model/model_signature.py,sha256=NJ5IWHUjG0oeNHeCiEfSUJ73ZLvTrztRkHLQeBwlVAM,26778
118
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
119
+ snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
120
+ snowflake/ml/model/type_hints.py,sha256=N255-eGcW_Qz3ob31HJyMl5147yV4NtPYMyAGW-kq2o,10639
121
+ snowflake/ml/modeling/_internal/distributed_hpo_trainer.py,sha256=Q6MeR7vQMp2XuCf4eJ4LDykLQOfJL934rQaerx7ZnCE,24838
122
+ snowflake/ml/modeling/_internal/estimator_protocols.py,sha256=JaRmP4NAPcSdYXjOIIPCUoakelf6MG_cAx_XgNeCudY,2350
123
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=L0Kdk5xxBKAFzerKfdBdral3C3XUOYWdGyYj_FcHzdY,5039
124
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=m644udYNgRL9lwCf2v35aj7BLkh9f5ZaSzNwA3jdl-U,5086
125
+ snowflake/ml/modeling/_internal/model_trainer.py,sha256=vTv_v9kiV0I4t67hHjBp-4Wwz0U7pp7L1pJB00wJJM8,374
126
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=Y52I4fG0RatKRRLvMqzIYqRkrmq3CxyF61sMOqmLHsk,3165
127
+ snowflake/ml/modeling/_internal/pandas_trainer.py,sha256=wYhOHBuzdgKuQj5K23DEf3DZPnjp7il2br3-GOVmOHM,1960
128
+ snowflake/ml/modeling/_internal/snowpark_handlers.py,sha256=KLaZ7x82UnxpCmyLQmzaw2h1mdw1UbC5d3bevhn_5lE,16165
129
+ snowflake/ml/modeling/_internal/snowpark_trainer.py,sha256=WEBHwi0-hMm49gpa6e4W5h9e3gbU43bHl970LIsw-7g,13595
130
+ snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
131
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=zE9emcL477AZr1RLVwhZEVDvNAXt0djGLOBqgLjkqvM,44294
132
+ snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
133
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=QSg240nBhwgNp3Sxh_eJCPPbj368LX6k6FgZbVsnCAY,42122
134
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=Anps_fQn9EVIo9Xpjpbxl_9IUhgIeO2D-W57q6LL5T0,44159
135
+ snowflake/ml/modeling/cluster/birch.py,sha256=2HSCMLMssTNJRA9DskRlFtQHcqtYrttbzcq4JhqZnOo,41847
136
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=v7DJGyMN7KN68ybEUVUBS92i_JtkxfrvfPx1kOc5bx4,44546
137
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=uspo-V4v2vCR5PblGSnZslSIHXWRYH0KUtdPPra3Wyc,42209
138
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=UZoNPdzL0SMNYaIeMxyoADGL48jVF4O2w9yYlKXFM2c,44677
139
+ snowflake/ml/modeling/cluster/k_means.py,sha256=EG4-3oA4uuDluh3trWESaIvo-pUqGXhvqTJr_dbjim4,44102
140
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=wdw2JYFqZM8KvUNMYRKLtyRocE0VrxebR1sa_Da9OSc,42419
141
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=rY5KtY5Lxr7FkdJo3TtUgaKL5toTEIK_7GYDh4D1z8I,45464
142
+ snowflake/ml/modeling/cluster/optics.py,sha256=_0hU7YGo3ZdwzkA25b2OvC4KAa0LgeBGTb9BBTNObpA,45523
143
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=7u4zb4WV0qnAIwqhrPVMiwnEw29WLfsJ4e3DPRXdAgo,42419
144
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=R4LCv1FRKNwsLWYuVVIQQzLjyC-exAC15MeuXTHtIF0,45610
145
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=BiwfX89ch6Kua4qd0YgoymyjQid_b4rtMecc8iOzdtw,41552
146
+ snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
147
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=kQNpdYnbMXLtChCqfiam2MNaB8gjMeFohDYRxgdlca4,44118
148
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=DMi6xeGHff5mT59u1jxq4mQ8ar1RNZlSE9F82tmoGno,42106
149
+ snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
150
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=716ejN7mJI6B_8hjBp5WAwXY2dPdg6S_7cvpOnyLJA0,42188
151
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=RuXxvX5Bfxk_KnxYKxW1nAjS7xGuNQLNXAKwsb5xOXk,40252
152
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=HK9gf1IByXQTYrW_PQb5rmL3f6Qj8Ev2vpt9eozzwAc,42116
153
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=_28Qh5GQOZv91DwF9nJeQ8K8Xc-FhGbF_IezPLp_mQY,43281
154
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=g-Q1tCSp1RQ9gTzuLWBn9dx41bXUiuMseAvz1bbg-pA,40390
155
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=dT5ZQnq8inXdtYuH9GemdWp0rboigKX774FXvygeiLY,41145
156
+ snowflake/ml/modeling/covariance/oas.py,sha256=2wK0Dr2A8EEaeo6RJ03vQynmLr-H9UACuwPZkRnRRBE,40031
157
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=Ux9K6WAFAwvAOxWpPGtdEUxb5-JixdIhbsStf2m7lRk,40407
158
+ snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
159
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=PAs0UCtHSHHu7A1A8D_hq0_Am-TTsV9nE-pgjLnYGmE,45115
160
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=LAIRDj80aLgSA9oH66fAVHREZo46CRMtUBEXAo0Twuo,42562
161
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=pAwrHoYl7EkHqTvH0iIo70xQfrgayu-Wk_30TEa0Bas,42761
162
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=Ph06tVydfo-gJlal_DN43CZgDgDrrGm38BUu_Ach76U,41114
163
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=9Akp_6ycpoQjPeYQUUTKlMSRqjJj0CULXGRcFBN9O8g,45113
164
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=O_8pVVjyjxaM6Am2y03Z-LEke_sS97i3R1GQfqFeG5c,46159
165
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=AWON_Etn61XxKW1k8fp6ElrTvwb40MmcQEHeLPJhPsg,43451
166
+ snowflake/ml/modeling/decomposition/pca.py,sha256=q9nlywv_YBMxBXc5zFVrhuRcZZtHA6AwH8H6mMwXMfg,44156
167
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=nhtJqVBKxdvjduYRmSIVnnArRHULDPMUGp8Oped5Fxk,42283
168
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=Pvy9cnJ1yK3YFhtM9LH0h1vknLg7ZTDlH-K5WPyHfI4,41871
169
+ snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
170
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=ODez4RAriRtdEWKHWFLRm9ypIqQwfNeGr4N1sjBjxBk,44586
171
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=eVkmxfLkMgv-IrFKuVIGiNXfNwsGbEhnJjRtG4ZWrc4,42675
172
+ snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
173
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=mBo5tpLdaxd9rnX9GHQkY2sKstVcjUQlIbwJNBNy2xA,43493
174
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=CeUI9-DdpHlAMwp06y9zorFnwj-SHsAj_qMvc0XumAc,42384
175
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=WE2rlUvTO_9-7EAX7LTUW82N8aDL6ZEFdnN2GzcThyw,44404
176
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=DH5VxJE2vZ9_5yagKRfreSg3Pd6YpCErmC8V3F9iq9Y,43640
177
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=0uC9hM7goZ3pJXmhqNpJpUzCl6AhKVH3GBu_34oKX1I,49324
178
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=lYJAssigF66xUIi4xu9zzi4Gr7FWtcCTt5BD912EFUk,47928
179
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=ltDiX0korOtL8NSy8cWffrmG6rOwQNYkGUHtYXhzp24,50779
180
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=_y9e3SFQPkWDb7hAHUVP_IYRjyrkW9UWmBOufs1MQtE,50372
181
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=re4VmK9yc_p6eQsMtzTUBMuvIvqgfyW2WdCnqYcYaZY,50613
182
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=YeRlNQGgp4Go_vHFEffK6pGVqBkMSC2cArJylOCnTXQ,49098
183
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=18RsumnKzh94EMcj8oz3lpyp6_GR8eqpCBACxWXOjRg,43328
184
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=AZHezpegfTBwN01I1EMBf-jjViahj3DQhNxWilcYJX4,49307
185
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=Pls_ESIGSt5qS47TRb5rsDqBBu1fUu2Q1ampcO8s8tg,47899
186
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=HcEhAX895Bb1iDAWk1tAcU90uKy_r1T5fxZPPKoTqC0,43337
187
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=7EM-m0ob6LepNoKPEzBLsJ7n5qtCqQE6I34syO2D0NU,42908
188
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=IoA-d6eRejfuiyyotNROivbrff_yoLP0q98MZjiM56M,41437
189
+ snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
190
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=32SKh-4goj-7-v5h7lH9eHLef76JRQF7abJ9nHw5Ghg,40748
191
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=SMCmQ20R_gtRN-H0v_nGCsOavdBVlKjPSs91Ycjg2aY,40391
192
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=XdKc21FFiNhYK-1PjQuHo6Qu34TIsVk1O2TWNQ99xYE,40385
193
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=9UTA0e9wR2Eo9QWsyXPnvY8XtYzaO__FDuU3tPcLUIM,40393
194
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=KZxYrjbHJtR6nz7XK_4h26pxq0ve6yFV2XcEg0nMv5o,40478
195
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=MiNh1yd-7dYGPhvWyuFQucKhAWT8brNt_I5gh65Qips,40518
196
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=zzq_5tFkir01KHDix27XGSe3WWi7BDVN-t55ats7nuk,43111
197
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=9zhfhg9Fbm9TeM_tpll_UBuD_g6ahuOz-cmMuS-gnCw,40071
198
+ snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
199
+ snowflake/ml/modeling/framework/base.py,sha256=eT0baNs7Iqe4tG0Ax4fivvlk0ugmrFrUBlHkwA3BA9M,27776
200
+ snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
201
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=Re3amZ7458E0yfRA0qaf44XhtSjUw80R00dIl3l4UT0,46045
202
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=k0YsT7zAkhveQH0sdRZkxFHwLxH9EVMgLE3vzszCB9s,45110
203
+ snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
204
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=n9ee5w70HGU-i0XsAvx4nqv-lxea7JPFqcQZANPinBI,46608
205
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=tyfez7cIxb3B2dOSZW4Etqck13yQvwPHDbR1AZKEz8I,42365
206
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=mNRrplRKe8mVs-U-5hxJGvWG7gR4edg5X96W16EasyQ,41193
207
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=eC9CRhHMmsylm7oi5LGiukRlP6HIN6r3IP1DVpYrwmg,19258
208
+ snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
209
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=slSYL4YDq2TUkUo1HAlXlgd6ynLbTJsBYEpiDq1voM0,40184
210
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=q_K17n3nP1eMMvhDfhfFDkV4CzB7i25-1ZhUYzbm6tg,41988
211
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=cWLY1nZDUWq9OfZcn4CHp5BGICevfEepPV9h_UZgA98,41197
212
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=uZWIMRm8WNBLnvsafKb38nhP_vcNGSfbg_baDqs1z0w,40584
213
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=C_P-8MIRQUcsEMwvuinHB7jGDD2K6Ln6YdB5NKelWUU,40611
214
+ snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
215
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=Nn4iK8HXRlbScqh1fU3T-S_xKSjhetw8TroBnVMDEd4,42424
216
+ snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
217
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=Z23y4nbfZloEN2Yjk7LMPYi1sS5bwfnIXzITGNhAhJE,41926
218
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=eLnPH1-DlFF9N3N6Td8Lh8zbSgpyqwy1g5Dhwp40Hgg,41429
219
+ snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
220
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=r-SwQq12WPfHsg3RcDW1plpfGxKc_s6gt_0Us86Bp5Y,42369
221
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=8K6-8LVHKL4zmbWlI-f1LbTEZFeV_ZnazghFamTa0rg,42785
222
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=ZUkDSYq4MRwpRd3KGP5FsdLa9HgUcMql5IYMUubT_Qg,43357
223
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=xb7zWB9vMrfzFbzo6k-Omw4608UaSxjCEBOgo_DkfAw,44625
224
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=o1scZw-CCcH6kTB8vbFt-qWWdUWuemyMSNJoRiTKk6M,42437
225
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=LZwLkxxHn_htLbH0s7qFFsIN0oz2CVyUpCr6O2OZvvM,41634
226
+ snowflake/ml/modeling/linear_model/lars.py,sha256=k0dvEVeTEzVNMHhyAsz1nBPjcAQkucdrxuJCJsEejLc,42857
227
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Eh-IyOxbKHp2Y3f5NodRDTG3YqclD918V-olh-KgaPY,43078
228
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=JShk44B9zD4prWKyAHzppQ-GdglMJMZjSzBlS6rUvGA,42963
229
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=JbAcu-GDy-t9Za83oklbhGvXPIZ6JRypFxLrK-gTi0A,43748
230
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=NHGlww5vSA36dKofJB3D-T6RVh_isVpjrBT4UjqfgGQ,43993
231
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=1A-Sb-Ge801L4lnyeMtL6sdAEIrVGrdztMeCPM6hSH8,43954
232
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=ccC9i4b9SmuxXjDRQqMVmZu2yxyr-NyMO5M3coMJPLo,43300
233
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=UAGE29bHiU70FiroI59FWrobzpkXR1QqikJn02bg9m8,41176
234
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ODWsWUwDGwkawZdn1CW_ryagFoqMjg4ZyNpo__WCWbg,47431
235
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=BTn5681xix_mpMqieVLRhK0R1lnArg5kIxzJdVW7J30,48471
236
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=bKcdmnMeb1JV18TwTG_q_-zPYuWKQCbuQjoWD9YLVEg,42648
237
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=Nkz1EO6QzjMXrDxyrJFtRtsNu_DXu71hiuMthZ5A954,44286
238
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=3kylNKXdCafJHyh0XV5Qk0ATJ5uqCoKqPJMfYefbPRY,42196
239
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=K5sHbKvQVmlS1wClJIH8jdEl1IhTgUojaCc_D-6q8sg,43458
240
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=25020v9CMjv8_gQM7a2pc8xFgTMVnDt8gYoe-ab9e6A,41803
241
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=EMnrQ7Q8KtoEdjIRRHcquhnyeWBauv02agtv16DOnRQ,45159
242
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=KKIJlfgoCNo459WB9GcDuAmsyim2T5eo7EpC3N3C7Q0,44226
243
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=WDLSnssHoTTNx8Bku51Kec9LLcHkElVgqa2v5fUVdBw,44543
244
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=8GVb5cmCNjzN6m_AvKnmHbb8RRs21nIoqZ1AMuqQioc,42482
245
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=O_UZ1JxvFbx0wI31pNoVt-79BEw7Dtv7Dep4iQiqD88,45601
246
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=S7YB-jUvDqFjTjuCDqrMtC6NeS4iLuyKyaoBjGjd_5M,44507
247
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=TL_VEGVXJmvRjMP3UINCajblPpZvHXmGViMvUlPTTCc,44895
248
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=Fb1gwZVnqNwG8F6HG5CeircGMmhiZmr5ePUW1coKjyA,42890
249
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=UAAWugy6SNULRuK2wOHM19s9OUsWt_Ba_WrzJg5N79s,43591
250
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Uzdm5mZcKkaajvwUzXLego4eoq-hkeT0q5YpU-Xtc4A,49968
251
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=X07IzRC3E1Pe3NTcbCNgNPZzbXLIX8idh04fKJC9Ulg,44517
252
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=nz4OLjOchSWnWdc9M1KJmra3Wgl-QdVys4O0fz1ZEFg,47439
253
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=pqbHyT5C71op7sRlAc4ej6YB9je6ubhtGO5XlWZFk7s,42917
254
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=qokbrtCzEVgXcpRcz1vQxNGAneMW56UXG2cOnxftvko,43873
255
+ snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
256
+ snowflake/ml/modeling/manifold/isomap.py,sha256=6_Z7N3uz0ZFgnOtAl8iqKKUDv6KAzto8UaJbhnFvfWg,42878
257
+ snowflake/ml/modeling/manifold/mds.py,sha256=D5hC-bzDqClGbVyMndWSnqJ8j4E9Xt4jldMNFeA4Alg,42092
258
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=cGTCYXnwFWZsgimA4yPTr9lnH_bQSTLmmi88v8Rho9Q,42916
259
+ snowflake/ml/modeling/manifold/tsne.py,sha256=HBrtrp9-HktW8nuQW-qdjxHfQ_Vmw1kLQibxYPuVMUM,45875
260
+ snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
261
+ snowflake/ml/modeling/metrics/classification.py,sha256=xvD_-4fTkR_qwGT4SPry7npbCwv03wZy0mMpPufDja8,63232
262
+ snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
263
+ snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
264
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=ga7eVXlLHscKlqQd6HccUqNKIy1_5GpWBggyN0yuGsM,13075
265
+ snowflake/ml/modeling/metrics/ranking.py,sha256=n1lK7StCE0touDN_PRUYMGH3-OPUMC4OTA9oz__rxpw,17230
266
+ snowflake/ml/modeling/metrics/regression.py,sha256=L0DdKi4eKw5t4-JcICwMPfwz2Y6MA853V17a64E9lxs,25488
267
+ snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
268
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=TVsXXWOx5Kp1B0r9alCbzYd3OilM0PgF69oWXQ8iL2s,47406
269
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=tiA_dFW1JyuRQNHKHKrP7qDiySyyGemXQlm1YWpJDDQ,45331
270
+ snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
271
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=KNrM2z1H5Cbg4Lb6GV1yNOEHjm2xcSgDWCeymBF51ws,36020
272
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=i8AxF6XzwEiRpvYuvFtAUB0p5m0fT67jVrXfIyE0EI8,36752
273
+ snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
274
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=z01em7_f_InUo1ErGfvQLvf9HyFM0SjbrVWXKNFQtpk,41176
275
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=mOu2my5gjR5fKcKvSi81D9MdujZKTrOUNGbhsIgbHb8,42110
276
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=hi1S9TQ6BcTW4RfmBNCnK4tsd4c5QMfEuD4d0DbnfEE,41446
277
+ snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
278
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=Ng3TEuRuMXgGm1EKQXCwGk06V2nRNbhPXLgbimMJzBc,41715
279
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=kazY2H7F3nbj_IOnHz09PLuz7KQHA-44w-_IpOmv_Lk,42050
280
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=LXNpAgpMHFdCwKkKhF73zlGHy1OT0Ec4koIO4ZwFRUc,41730
281
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=alamumTY2VDL3uUZ23FxPFw3sSKiw9eKw7DwopjvgvU,40859
282
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=Vhng6tCHrqQ0lFYhEOt67wC3SdH3YXym_Ly6zcbrlH4,41495
283
+ snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
284
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=Q2sMUfDkGYzMKXJytsFIDetpbbFfORSST3LVFUj0-oI,44564
285
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=NUvZYEsZoUPGK9IX0L5L6fd9-PginTGMKQAXztBCFbg,44035
286
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=94AoY4NL5U9Fg1thgNAPycSrpiWsaqGW4gfoS-33Azo,42134
287
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=7gR_QkGUWjON96rtEMRDV4qOAJW4aX7n8swrolE2dVs,44713
288
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=vRgMPoHs8KxLr_X_9G_zM_4OuUSOJwCh-kpbm1VhQxQ,41053
289
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=A_QBmlmUdElXT3HFCMPguHSHCe258IoOUDZk-ECjjOM,42862
290
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=tEF8kHhzKrBodp6MnT6RipjtoHjnv_TMgeCEbyJVxcE,44242
291
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=uN2si0RooDyzkYlt4QbWuy5ssJJN4WlRBrmGEQuLIck,44977
292
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=uY6fWUjey6ICTHF6AOYxfAHtEiTr59UsDQZA38lkf18,43858
293
+ snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
294
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=_E_B20PqUTYMnmF_0tLxz7pfLzkiqZ0n1Wmz6argviw,41109
295
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=_0D1cf0W1XpnmHjJ20Ts6T7uvxevo3QkVTKlZMsEp7o,48937
296
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=Yf-n_Z16bF5946X5RE-bxhmjJTmhRO48fkoaNA8IIKU,48206
297
+ snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
298
+ snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
299
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=iVewRZJVNHP0F8dvISy2u52cUq2oeSPQqEiyZDZywRM,24810
300
+ snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
301
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=jc2ZhVaW6R6SH12di4W3J8Awgb8GhDBjCQbaH4bnaqc,7111
302
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=XUCGQlitkx3Tv794D4dLKu758EHN_PU6HWPh6U-_Eko,21082
303
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=z95P3umu9L4Uk4UlAGDOkRRs5h33RPVNeCHbJ1oqjdw,7517
304
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=U_QUzDVS6W4gd_uvt5iBZUQuDu60yFRHZvpk7Vqq1kY,8880
305
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=9Pv7uEZDDFUfHfnneULZ6rPct68Wycb5t73DI2NGwWU,11223
306
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rSn1c8n7sbIswlDrFdq1eaWRvW0nTrX1LF0IIHBWTJM,6696
307
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=0kX_H6dhjPiycUW0axCb_-Wbz37MhoAuMq33HHnuwWU,71691
308
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=rkY_9ANjLAfn1VNm3aowppLJBnHVDsAJRthtWCKFcTA,33388
309
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=stqufcAZPGYFLx0t3cSfuQiTcVziY8pYFnrQN1R7XWE,41268
310
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=SrQgRixonU2pwqfy3DVeBC3OiQ_0UeQpqNtEkn4Hr74,12510
311
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=Wol8YEr2JjqsbFrLk5A4MKcpXvLDScVtflnspOB-PSg,11197
312
+ snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
313
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=isv5vGRekwilgoJscibAov3Uz1NP1no80rCDg0hw7aw,41952
314
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=vxPuEOjUiguMYz2zC064oC3gXNREZ4C77f7aCaLX6Yo,42301
315
+ snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
316
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=4mucBAl6S7ecpGCicDGHIMTnHhPJZ5IAb44c-gyVvx0,44762
317
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=hJW4FgaoFnX6PJIcHTK3qSeVzku9AeO7RGqY2Vmo6Mo,43115
318
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=YsfqoORcPD8A98giKYJxyhc2ObG4WBekyWoJ7aioLWA,45074
319
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=N7GeL9eb6YXPUehKmy6l0LYZeHuBQawvOm6ha3WwC-Q,42153
320
+ snowflake/ml/modeling/svm/svc.py,sha256=bF90WlgQ1HXYTcut-0PcRKOQdFkiMf69-w8rTKBPc4w,45223
321
+ snowflake/ml/modeling/svm/svr.py,sha256=Pgyobz8tnjIqBDcJAvU2Ik-xqBFcry59pJYX34Ci2xg,42342
322
+ snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
323
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=6vGtVQZP09qhx1YAgWWSwh4gGkJhrBBYY1QP6nlpzYw,47499
324
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=WnT9JbJCAx8jOQoa--vgop8FJ2CPCG7Z_BbNSPvVq-4,46198
325
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=8bwrrJT6JsIQ09eJAlyj1PaCmeVdLcLZVLGlNQLX5J0,46841
326
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=VPSLOU0E_6fNVqpMcZbGyrgbTvFZ4LUnfIVl7MJDEPc,45549
327
+ snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
328
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=NC0cK7y4R90TD_j3VaT3vYmzYzyAjWEQWEDX-RF1ZrI,51211
329
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=m2lbMz_BOXKgcYGlxFSdI7HNP9QHq2sZNkg2SkCa6KE,50710
330
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=EG9hBTOnJS8qqu37XhbCWN08IGQYDn2MZKhqWRx6s1o,51387
331
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=xVVbgYwYCPfHQ_L39W86U-jhi7iK3E7rkrXPBDLiW2w,50913
332
+ snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
333
+ snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
334
+ snowflake/ml/registry/_artifact_manager.py,sha256=Q-6cRfU-pQBNVroh1_YIhd8hQtk8lC0y9vRBCDVizGQ,5544
335
+ snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-eXTqT8GXpFI,5316
336
+ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
337
+ snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
338
+ snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
339
+ snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
340
+ snowflake/ml/registry/model_registry.py,sha256=xuxxHHwID2wUGVTTmw38B9qHMnTVCFs27L0xtitBfB4,89068
341
+ snowflake/ml/registry/registry.py,sha256=EhHbLXmQBfDoY5_LzFoYvTBEk22dF5aRnUojV8-AKvc,8337
342
+ snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
343
+ snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
344
+ snowflake/ml/version.py,sha256=49e6tMCffnQ3df2CnnDC2TQbUn51EfJgoPwcyHzp9Ys,16
345
+ snowflake_ml_python-1.1.2.dist-info/METADATA,sha256=Gpk7iDIXw8SZAjp1EvGoo1KqHSpHwDX3kWHTF8BjvKc,26685
346
+ snowflake_ml_python-1.1.2.dist-info/RECORD,,
347
+ snowflake_ml_python-1.1.2.dist-info/WHEEL,sha256=sobxWSyDDkdg_rinUth-jxhXHqoNqlmNMJY3aTZn2Us,91