snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import LightGBMWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class LGBMRegressor(BaseTransformer):
|
56
57
|
r"""LightGBM regressor
|
57
58
|
For more details on this class, see [lightgbm.LGBMRegressor]
|
@@ -63,28 +64,43 @@ class LGBMRegressor(BaseTransformer):
|
|
63
64
|
input_cols: Optional[Union[str, List[str]]]
|
64
65
|
A string or list of strings representing column names that contain features.
|
65
66
|
If this parameter is not specified, all columns in the input DataFrame except
|
66
|
-
the columns specified by label_cols
|
67
|
-
considered input columns.
|
68
|
-
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
69
71
|
label_cols: Optional[Union[str, List[str]]]
|
70
72
|
A string or list of strings representing column names that contain labels.
|
71
|
-
|
72
|
-
|
73
|
-
labels (like a transformer).
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
74
75
|
|
75
76
|
output_cols: Optional[Union[str, List[str]]]
|
76
77
|
A string or list of strings representing column names that will store the
|
77
78
|
output of predict and transform operations. The length of output_cols must
|
78
|
-
match the expected number of output columns from the specific
|
79
|
+
match the expected number of output columns from the specific predictor or
|
79
80
|
transformer class used.
|
80
|
-
If this parameter
|
81
|
-
|
82
|
-
|
83
|
-
be set explicitly for transformers.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
84
90
|
|
85
91
|
sample_weight_col: Optional[str]
|
86
92
|
A string representing the column name containing the sample weights.
|
87
|
-
This argument is only required when working with weighted datasets.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
88
104
|
|
89
105
|
drop_input_cols: Optional[bool], default=False
|
90
106
|
If set, the response of predict(), transform() methods will not contain input columns.
|
@@ -116,6 +132,7 @@ class LGBMRegressor(BaseTransformer):
|
|
116
132
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
117
133
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
118
134
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
135
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
119
136
|
drop_input_cols: Optional[bool] = False,
|
120
137
|
sample_weight_col: Optional[str] = None,
|
121
138
|
**kwargs,
|
@@ -125,9 +142,10 @@ class LGBMRegressor(BaseTransformer):
|
|
125
142
|
self.set_input_cols(input_cols)
|
126
143
|
self.set_output_cols(output_cols)
|
127
144
|
self.set_label_cols(label_cols)
|
145
|
+
self.set_passthrough_cols(passthrough_cols)
|
128
146
|
self.set_drop_input_cols(drop_input_cols)
|
129
147
|
self.set_sample_weight_col(sample_weight_col)
|
130
|
-
deps = set(
|
148
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
|
131
149
|
|
132
150
|
self._deps = list(deps)
|
133
151
|
|
@@ -155,14 +173,15 @@ class LGBMRegressor(BaseTransformer):
|
|
155
173
|
args=init_args,
|
156
174
|
klass=lightgbm.LGBMRegressor
|
157
175
|
)
|
158
|
-
self._sklearn_object = lightgbm.LGBMRegressor(
|
176
|
+
self._sklearn_object: Any = lightgbm.LGBMRegressor(
|
159
177
|
**cleaned_up_init_args,
|
160
178
|
**kwargs,
|
161
179
|
)
|
162
180
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
163
181
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
164
182
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
165
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
183
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
184
|
+
self._autogenerated = True
|
166
185
|
|
167
186
|
def _get_rand_id(self) -> str:
|
168
187
|
"""
|
@@ -173,24 +192,6 @@ class LGBMRegressor(BaseTransformer):
|
|
173
192
|
"""
|
174
193
|
return str(uuid4()).replace("-", "_").upper()
|
175
194
|
|
176
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
177
|
-
"""
|
178
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
179
|
-
|
180
|
-
Args:
|
181
|
-
dataset: Input dataset.
|
182
|
-
"""
|
183
|
-
if not self.input_cols:
|
184
|
-
cols = [
|
185
|
-
c for c in dataset.columns
|
186
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
187
|
-
]
|
188
|
-
self.set_input_cols(input_cols=cols)
|
189
|
-
|
190
|
-
if not self.output_cols:
|
191
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
192
|
-
self.set_output_cols(output_cols=cols)
|
193
|
-
|
194
195
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LGBMRegressor":
|
195
196
|
"""
|
196
197
|
Input columns setter.
|
@@ -236,54 +237,48 @@ class LGBMRegressor(BaseTransformer):
|
|
236
237
|
self
|
237
238
|
"""
|
238
239
|
self._infer_input_output_cols(dataset)
|
239
|
-
if isinstance(dataset,
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
self.
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
240
|
+
if isinstance(dataset, DataFrame):
|
241
|
+
session = dataset._session
|
242
|
+
assert session is not None # keep mypy happy
|
243
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
244
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
245
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
246
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
247
|
+
|
248
|
+
# Specify input columns so column pruning will be enforced
|
249
|
+
selected_cols = self._get_active_columns()
|
250
|
+
if len(selected_cols) > 0:
|
251
|
+
dataset = dataset.select(selected_cols)
|
252
|
+
|
253
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
254
|
+
|
255
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
256
|
+
if SNOWML_SPROC_ENV in os.environ:
|
257
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
258
|
+
project=_PROJECT,
|
259
|
+
subproject=_SUBPROJECT,
|
260
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMRegressor.__class__.__name__),
|
261
|
+
api_calls=[Session.call],
|
262
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
263
|
+
)
|
264
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
265
|
+
pd_df.columns = dataset.columns
|
266
|
+
dataset = pd_df
|
267
|
+
|
268
|
+
model_trainer = ModelTrainerBuilder.build(
|
269
|
+
estimator=self._sklearn_object,
|
270
|
+
dataset=dataset,
|
271
|
+
input_cols=self.input_cols,
|
272
|
+
label_cols=self.label_cols,
|
273
|
+
sample_weight_col=self.sample_weight_col,
|
274
|
+
autogenerated=self._autogenerated,
|
275
|
+
subproject=_SUBPROJECT
|
276
|
+
)
|
277
|
+
self._sklearn_object = model_trainer.train()
|
255
278
|
self._is_fitted = True
|
256
279
|
self._get_model_signatures(dataset)
|
257
280
|
return self
|
258
281
|
|
259
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
260
|
-
session = dataset._session
|
261
|
-
assert session is not None # keep mypy happy
|
262
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
263
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
264
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
265
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
266
|
-
|
267
|
-
# Specify input columns so column pruning will be enforced
|
268
|
-
selected_cols = self._get_active_columns()
|
269
|
-
if len(selected_cols) > 0:
|
270
|
-
dataset = dataset.select(selected_cols)
|
271
|
-
|
272
|
-
estimator = self._sklearn_object
|
273
|
-
assert estimator is not None # Keep mypy happy
|
274
|
-
|
275
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
276
|
-
|
277
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
278
|
-
dataset,
|
279
|
-
session,
|
280
|
-
estimator,
|
281
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
282
|
-
self.input_cols,
|
283
|
-
self.label_cols,
|
284
|
-
self.sample_weight_col,
|
285
|
-
)
|
286
|
-
|
287
282
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
288
283
|
if self._drop_input_cols:
|
289
284
|
return []
|
@@ -471,11 +466,6 @@ class LGBMRegressor(BaseTransformer):
|
|
471
466
|
subproject=_SUBPROJECT,
|
472
467
|
custom_tags=dict([("autogen", True)]),
|
473
468
|
)
|
474
|
-
@telemetry.add_stmt_params_to_df(
|
475
|
-
project=_PROJECT,
|
476
|
-
subproject=_SUBPROJECT,
|
477
|
-
custom_tags=dict([("autogen", True)]),
|
478
|
-
)
|
479
469
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
480
470
|
"""Return the predicted value for each sample
|
481
471
|
For more details on this function, see [lightgbm.LGBMRegressor.predict]
|
@@ -529,11 +519,6 @@ class LGBMRegressor(BaseTransformer):
|
|
529
519
|
subproject=_SUBPROJECT,
|
530
520
|
custom_tags=dict([("autogen", True)]),
|
531
521
|
)
|
532
|
-
@telemetry.add_stmt_params_to_df(
|
533
|
-
project=_PROJECT,
|
534
|
-
subproject=_SUBPROJECT,
|
535
|
-
custom_tags=dict([("autogen", True)]),
|
536
|
-
)
|
537
522
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
538
523
|
"""Method not supported for this class.
|
539
524
|
|
@@ -590,7 +575,8 @@ class LGBMRegressor(BaseTransformer):
|
|
590
575
|
if False:
|
591
576
|
self.fit(dataset)
|
592
577
|
assert self._sklearn_object is not None
|
593
|
-
|
578
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
579
|
+
return labels
|
594
580
|
else:
|
595
581
|
raise NotImplementedError
|
596
582
|
|
@@ -626,6 +612,7 @@ class LGBMRegressor(BaseTransformer):
|
|
626
612
|
output_cols = []
|
627
613
|
|
628
614
|
# Make sure column names are valid snowflake identifiers.
|
615
|
+
assert output_cols is not None # Make MyPy happy
|
629
616
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
630
617
|
|
631
618
|
return rv
|
@@ -636,11 +623,6 @@ class LGBMRegressor(BaseTransformer):
|
|
636
623
|
subproject=_SUBPROJECT,
|
637
624
|
custom_tags=dict([("autogen", True)]),
|
638
625
|
)
|
639
|
-
@telemetry.add_stmt_params_to_df(
|
640
|
-
project=_PROJECT,
|
641
|
-
subproject=_SUBPROJECT,
|
642
|
-
custom_tags=dict([("autogen", True)]),
|
643
|
-
)
|
644
626
|
def predict_proba(
|
645
627
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
646
628
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -681,11 +663,6 @@ class LGBMRegressor(BaseTransformer):
|
|
681
663
|
subproject=_SUBPROJECT,
|
682
664
|
custom_tags=dict([("autogen", True)]),
|
683
665
|
)
|
684
|
-
@telemetry.add_stmt_params_to_df(
|
685
|
-
project=_PROJECT,
|
686
|
-
subproject=_SUBPROJECT,
|
687
|
-
custom_tags=dict([("autogen", True)]),
|
688
|
-
)
|
689
666
|
def predict_log_proba(
|
690
667
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
691
668
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -722,16 +699,6 @@ class LGBMRegressor(BaseTransformer):
|
|
722
699
|
return output_df
|
723
700
|
|
724
701
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
725
|
-
@telemetry.send_api_usage_telemetry(
|
726
|
-
project=_PROJECT,
|
727
|
-
subproject=_SUBPROJECT,
|
728
|
-
custom_tags=dict([("autogen", True)]),
|
729
|
-
)
|
730
|
-
@telemetry.add_stmt_params_to_df(
|
731
|
-
project=_PROJECT,
|
732
|
-
subproject=_SUBPROJECT,
|
733
|
-
custom_tags=dict([("autogen", True)]),
|
734
|
-
)
|
735
702
|
def decision_function(
|
736
703
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
737
704
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -832,11 +799,6 @@ class LGBMRegressor(BaseTransformer):
|
|
832
799
|
subproject=_SUBPROJECT,
|
833
800
|
custom_tags=dict([("autogen", True)]),
|
834
801
|
)
|
835
|
-
@telemetry.add_stmt_params_to_df(
|
836
|
-
project=_PROJECT,
|
837
|
-
subproject=_SUBPROJECT,
|
838
|
-
custom_tags=dict([("autogen", True)]),
|
839
|
-
)
|
840
802
|
def kneighbors(
|
841
803
|
self,
|
842
804
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -896,18 +858,28 @@ class LGBMRegressor(BaseTransformer):
|
|
896
858
|
# For classifier, the type of predict is the same as the type of label
|
897
859
|
if self._sklearn_object._estimator_type == 'classifier':
|
898
860
|
# label columns is the desired type for output
|
899
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
861
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
900
862
|
# rename the output columns
|
901
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
863
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
902
864
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
903
865
|
([] if self._drop_input_cols else inputs)
|
904
866
|
+ outputs)
|
867
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
868
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
869
|
+
# Clusterer returns int64 cluster labels.
|
870
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
871
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
872
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
873
|
+
([] if self._drop_input_cols else inputs)
|
874
|
+
+ outputs)
|
875
|
+
|
905
876
|
# For regressor, the type of predict is float64
|
906
877
|
elif self._sklearn_object._estimator_type == 'regressor':
|
907
878
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
908
879
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
909
880
|
([] if self._drop_input_cols else inputs)
|
910
881
|
+ outputs)
|
882
|
+
|
911
883
|
for prob_func in PROB_FUNCTIONS:
|
912
884
|
if hasattr(self, prob_func):
|
913
885
|
output_cols_prefix: str = f"{prob_func}_"
|