snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
21
21
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
22
22
  from snowflake.ml._internal import telemetry
23
23
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
24
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
24
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
25
- from snowflake.snowpark import DataFrame
26
+ from snowflake.snowpark import DataFrame, Session
26
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
27
28
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
28
31
  from snowflake.ml.modeling._internal.estimator_utils import (
29
32
  gather_dependencies,
30
33
  original_estimator_has_callable,
31
34
  transform_snowml_obj_to_sklearn_obj,
32
35
  validate_sklearn_args,
33
36
  )
34
- from snowflake.ml.modeling._internal.snowpark_handlers import LightGBMWrapperProvider
35
37
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
36
38
 
37
39
  from snowflake.ml.model.model_signature import (
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
51
53
  _SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", "").split("_")])
52
54
 
53
55
 
54
-
55
56
  class LGBMRegressor(BaseTransformer):
56
57
  r"""LightGBM regressor
57
58
  For more details on this class, see [lightgbm.LGBMRegressor]
@@ -63,28 +64,43 @@ class LGBMRegressor(BaseTransformer):
63
64
  input_cols: Optional[Union[str, List[str]]]
64
65
  A string or list of strings representing column names that contain features.
65
66
  If this parameter is not specified, all columns in the input DataFrame except
66
- the columns specified by label_cols and sample_weight_col parameters are
67
- considered input columns.
68
-
67
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
68
+ parameters are considered input columns. Input columns can also be set after
69
+ initialization with the `set_input_cols` method.
70
+
69
71
  label_cols: Optional[Union[str, List[str]]]
70
72
  A string or list of strings representing column names that contain labels.
71
- This is a required param for estimators, as there is no way to infer these
72
- columns. If this parameter is not specified, then object is fitted without
73
- labels (like a transformer).
73
+ Label columns must be specified with this parameter during initialization
74
+ or with the `set_label_cols` method before fitting.
74
75
 
75
76
  output_cols: Optional[Union[str, List[str]]]
76
77
  A string or list of strings representing column names that will store the
77
78
  output of predict and transform operations. The length of output_cols must
78
- match the expected number of output columns from the specific estimator or
79
+ match the expected number of output columns from the specific predictor or
79
80
  transformer class used.
80
- If this parameter is not specified, output column names are derived by
81
- adding an OUTPUT_ prefix to the label column names. These inferred output
82
- column names work for estimator's predict() method, but output_cols must
83
- be set explicitly for transformers.
81
+ If you omit this parameter, output column names are derived by adding an
82
+ OUTPUT_ prefix to the label column names for supervised estimators, or
83
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
84
+ work for predictors, but output_cols must be set explicitly for transformers.
85
+ In general, explicitly specifying output column names is clearer, especially
86
+ if you don’t specify the input column names.
87
+ To transform in place, pass the same names for input_cols and output_cols.
88
+ be set explicitly for transformers. Output columns can also be set after
89
+ initialization with the `set_output_cols` method.
84
90
 
85
91
  sample_weight_col: Optional[str]
86
92
  A string representing the column name containing the sample weights.
87
- This argument is only required when working with weighted datasets.
93
+ This argument is only required when working with weighted datasets. Sample
94
+ weight column can also be set after initialization with the
95
+ `set_sample_weight_col` method.
96
+
97
+ passthrough_cols: Optional[Union[str, List[str]]]
98
+ A string or a list of strings indicating column names to be excluded from any
99
+ operations (such as train, transform, or inference). These specified column(s)
100
+ will remain untouched throughout the process. This option is helpful in scenarios
101
+ requiring automatic input_cols inference, but need to avoid using specific
102
+ columns, like index columns, during training or inference. Passthrough columns
103
+ can also be set after initialization with the `set_passthrough_cols` method.
88
104
 
89
105
  drop_input_cols: Optional[bool], default=False
90
106
  If set, the response of predict(), transform() methods will not contain input columns.
@@ -116,6 +132,7 @@ class LGBMRegressor(BaseTransformer):
116
132
  input_cols: Optional[Union[str, Iterable[str]]] = None,
117
133
  output_cols: Optional[Union[str, Iterable[str]]] = None,
118
134
  label_cols: Optional[Union[str, Iterable[str]]] = None,
135
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
119
136
  drop_input_cols: Optional[bool] = False,
120
137
  sample_weight_col: Optional[str] = None,
121
138
  **kwargs,
@@ -125,9 +142,10 @@ class LGBMRegressor(BaseTransformer):
125
142
  self.set_input_cols(input_cols)
126
143
  self.set_output_cols(output_cols)
127
144
  self.set_label_cols(label_cols)
145
+ self.set_passthrough_cols(passthrough_cols)
128
146
  self.set_drop_input_cols(drop_input_cols)
129
147
  self.set_sample_weight_col(sample_weight_col)
130
- deps = set(LightGBMWrapperProvider().dependencies)
148
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
131
149
 
132
150
  self._deps = list(deps)
133
151
 
@@ -155,14 +173,15 @@ class LGBMRegressor(BaseTransformer):
155
173
  args=init_args,
156
174
  klass=lightgbm.LGBMRegressor
157
175
  )
158
- self._sklearn_object = lightgbm.LGBMRegressor(
176
+ self._sklearn_object: Any = lightgbm.LGBMRegressor(
159
177
  **cleaned_up_init_args,
160
178
  **kwargs,
161
179
  )
162
180
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
163
181
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
164
182
  self._snowpark_cols: Optional[List[str]] = self.input_cols
165
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=LightGBMWrapperProvider())
183
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LGBMRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
184
+ self._autogenerated = True
166
185
 
167
186
  def _get_rand_id(self) -> str:
168
187
  """
@@ -173,24 +192,6 @@ class LGBMRegressor(BaseTransformer):
173
192
  """
174
193
  return str(uuid4()).replace("-", "_").upper()
175
194
 
176
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
177
- """
178
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
179
-
180
- Args:
181
- dataset: Input dataset.
182
- """
183
- if not self.input_cols:
184
- cols = [
185
- c for c in dataset.columns
186
- if c not in self.get_label_cols() and c != self.sample_weight_col
187
- ]
188
- self.set_input_cols(input_cols=cols)
189
-
190
- if not self.output_cols:
191
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
192
- self.set_output_cols(output_cols=cols)
193
-
194
195
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LGBMRegressor":
195
196
  """
196
197
  Input columns setter.
@@ -236,54 +237,48 @@ class LGBMRegressor(BaseTransformer):
236
237
  self
237
238
  """
238
239
  self._infer_input_output_cols(dataset)
239
- if isinstance(dataset, pd.DataFrame):
240
- assert self._sklearn_object is not None # keep mypy happy
241
- self._sklearn_object = self._handlers.fit_pandas(
242
- dataset,
243
- self._sklearn_object,
244
- self.input_cols,
245
- self.label_cols,
246
- self.sample_weight_col
247
- )
248
- elif isinstance(dataset, DataFrame):
249
- self._fit_snowpark(dataset)
250
- else:
251
- raise TypeError(
252
- f"Unexpected dataset type: {type(dataset)}."
253
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
254
- )
240
+ if isinstance(dataset, DataFrame):
241
+ session = dataset._session
242
+ assert session is not None # keep mypy happy
243
+ # Validate that key package version in user workspace are supported in snowflake conda channel
244
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
245
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
246
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
247
+
248
+ # Specify input columns so column pruning will be enforced
249
+ selected_cols = self._get_active_columns()
250
+ if len(selected_cols) > 0:
251
+ dataset = dataset.select(selected_cols)
252
+
253
+ self._snowpark_cols = dataset.select(self.input_cols).columns
254
+
255
+ # If we are already in a stored procedure, no need to kick off another one.
256
+ if SNOWML_SPROC_ENV in os.environ:
257
+ statement_params = telemetry.get_function_usage_statement_params(
258
+ project=_PROJECT,
259
+ subproject=_SUBPROJECT,
260
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMRegressor.__class__.__name__),
261
+ api_calls=[Session.call],
262
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
263
+ )
264
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
265
+ pd_df.columns = dataset.columns
266
+ dataset = pd_df
267
+
268
+ model_trainer = ModelTrainerBuilder.build(
269
+ estimator=self._sklearn_object,
270
+ dataset=dataset,
271
+ input_cols=self.input_cols,
272
+ label_cols=self.label_cols,
273
+ sample_weight_col=self.sample_weight_col,
274
+ autogenerated=self._autogenerated,
275
+ subproject=_SUBPROJECT
276
+ )
277
+ self._sklearn_object = model_trainer.train()
255
278
  self._is_fitted = True
256
279
  self._get_model_signatures(dataset)
257
280
  return self
258
281
 
259
- def _fit_snowpark(self, dataset: DataFrame) -> None:
260
- session = dataset._session
261
- assert session is not None # keep mypy happy
262
- # Validate that key package version in user workspace are supported in snowflake conda channel
263
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
264
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
265
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
266
-
267
- # Specify input columns so column pruning will be enforced
268
- selected_cols = self._get_active_columns()
269
- if len(selected_cols) > 0:
270
- dataset = dataset.select(selected_cols)
271
-
272
- estimator = self._sklearn_object
273
- assert estimator is not None # Keep mypy happy
274
-
275
- self._snowpark_cols = dataset.select(self.input_cols).columns
276
-
277
- self._sklearn_object = self._handlers.fit_snowpark(
278
- dataset,
279
- session,
280
- estimator,
281
- ["snowflake-snowpark-python"] + self._get_dependencies(),
282
- self.input_cols,
283
- self.label_cols,
284
- self.sample_weight_col,
285
- )
286
-
287
282
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
288
283
  if self._drop_input_cols:
289
284
  return []
@@ -471,11 +466,6 @@ class LGBMRegressor(BaseTransformer):
471
466
  subproject=_SUBPROJECT,
472
467
  custom_tags=dict([("autogen", True)]),
473
468
  )
474
- @telemetry.add_stmt_params_to_df(
475
- project=_PROJECT,
476
- subproject=_SUBPROJECT,
477
- custom_tags=dict([("autogen", True)]),
478
- )
479
469
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
480
470
  """Return the predicted value for each sample
481
471
  For more details on this function, see [lightgbm.LGBMRegressor.predict]
@@ -529,11 +519,6 @@ class LGBMRegressor(BaseTransformer):
529
519
  subproject=_SUBPROJECT,
530
520
  custom_tags=dict([("autogen", True)]),
531
521
  )
532
- @telemetry.add_stmt_params_to_df(
533
- project=_PROJECT,
534
- subproject=_SUBPROJECT,
535
- custom_tags=dict([("autogen", True)]),
536
- )
537
522
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
538
523
  """Method not supported for this class.
539
524
 
@@ -590,7 +575,8 @@ class LGBMRegressor(BaseTransformer):
590
575
  if False:
591
576
  self.fit(dataset)
592
577
  assert self._sklearn_object is not None
593
- return self._sklearn_object.labels_
578
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
579
+ return labels
594
580
  else:
595
581
  raise NotImplementedError
596
582
 
@@ -626,6 +612,7 @@ class LGBMRegressor(BaseTransformer):
626
612
  output_cols = []
627
613
 
628
614
  # Make sure column names are valid snowflake identifiers.
615
+ assert output_cols is not None # Make MyPy happy
629
616
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
630
617
 
631
618
  return rv
@@ -636,11 +623,6 @@ class LGBMRegressor(BaseTransformer):
636
623
  subproject=_SUBPROJECT,
637
624
  custom_tags=dict([("autogen", True)]),
638
625
  )
639
- @telemetry.add_stmt_params_to_df(
640
- project=_PROJECT,
641
- subproject=_SUBPROJECT,
642
- custom_tags=dict([("autogen", True)]),
643
- )
644
626
  def predict_proba(
645
627
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
646
628
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -681,11 +663,6 @@ class LGBMRegressor(BaseTransformer):
681
663
  subproject=_SUBPROJECT,
682
664
  custom_tags=dict([("autogen", True)]),
683
665
  )
684
- @telemetry.add_stmt_params_to_df(
685
- project=_PROJECT,
686
- subproject=_SUBPROJECT,
687
- custom_tags=dict([("autogen", True)]),
688
- )
689
666
  def predict_log_proba(
690
667
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
691
668
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -722,16 +699,6 @@ class LGBMRegressor(BaseTransformer):
722
699
  return output_df
723
700
 
724
701
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
725
- @telemetry.send_api_usage_telemetry(
726
- project=_PROJECT,
727
- subproject=_SUBPROJECT,
728
- custom_tags=dict([("autogen", True)]),
729
- )
730
- @telemetry.add_stmt_params_to_df(
731
- project=_PROJECT,
732
- subproject=_SUBPROJECT,
733
- custom_tags=dict([("autogen", True)]),
734
- )
735
702
  def decision_function(
736
703
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
737
704
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -832,11 +799,6 @@ class LGBMRegressor(BaseTransformer):
832
799
  subproject=_SUBPROJECT,
833
800
  custom_tags=dict([("autogen", True)]),
834
801
  )
835
- @telemetry.add_stmt_params_to_df(
836
- project=_PROJECT,
837
- subproject=_SUBPROJECT,
838
- custom_tags=dict([("autogen", True)]),
839
- )
840
802
  def kneighbors(
841
803
  self,
842
804
  dataset: Union[DataFrame, pd.DataFrame],
@@ -896,18 +858,28 @@ class LGBMRegressor(BaseTransformer):
896
858
  # For classifier, the type of predict is the same as the type of label
897
859
  if self._sklearn_object._estimator_type == 'classifier':
898
860
  # label columns is the desired type for output
899
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
861
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
900
862
  # rename the output columns
901
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
863
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
902
864
  self._model_signature_dict["predict"] = ModelSignature(inputs,
903
865
  ([] if self._drop_input_cols else inputs)
904
866
  + outputs)
867
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
868
+ # For outlier models, returns -1 for outliers and 1 for inliers.
869
+ # Clusterer returns int64 cluster labels.
870
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
871
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
872
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
873
+ ([] if self._drop_input_cols else inputs)
874
+ + outputs)
875
+
905
876
  # For regressor, the type of predict is float64
906
877
  elif self._sklearn_object._estimator_type == 'regressor':
907
878
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
908
879
  self._model_signature_dict["predict"] = ModelSignature(inputs,
909
880
  ([] if self._drop_input_cols else inputs)
910
881
  + outputs)
882
+
911
883
  for prob_func in PROB_FUNCTIONS:
912
884
  if hasattr(self, prob_func):
913
885
  output_cols_prefix: str = f"{prob_func}_"