snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KNeighborsClassifier(BaseTransformer):
|
57
58
|
r"""Classifier implementing the k-nearest neighbors vote
|
58
59
|
For more details on this class, see [sklearn.neighbors.KNeighborsClassifier]
|
@@ -60,6 +61,51 @@ class KNeighborsClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_neighbors: int, default=5
|
64
110
|
Number of neighbors to use by default for :meth:`kneighbors` queries.
|
65
111
|
|
@@ -125,35 +171,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
125
171
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
126
172
|
for more details.
|
127
173
|
Doesn't affect :meth:`fit` method.
|
128
|
-
|
129
|
-
input_cols: Optional[Union[str, List[str]]]
|
130
|
-
A string or list of strings representing column names that contain features.
|
131
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
132
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
133
|
-
considered input columns.
|
134
|
-
|
135
|
-
label_cols: Optional[Union[str, List[str]]]
|
136
|
-
A string or list of strings representing column names that contain labels.
|
137
|
-
This is a required param for estimators, as there is no way to infer these
|
138
|
-
columns. If this parameter is not specified, then object is fitted without
|
139
|
-
labels (like a transformer).
|
140
|
-
|
141
|
-
output_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or list of strings representing column names that will store the
|
143
|
-
output of predict and transform operations. The length of output_cols must
|
144
|
-
match the expected number of output columns from the specific estimator or
|
145
|
-
transformer class used.
|
146
|
-
If this parameter is not specified, output column names are derived by
|
147
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
148
|
-
column names work for estimator's predict() method, but output_cols must
|
149
|
-
be set explicitly for transformers.
|
150
|
-
|
151
|
-
sample_weight_col: Optional[str]
|
152
|
-
A string representing the column name containing the sample weights.
|
153
|
-
This argument is only required when working with weighted datasets.
|
154
|
-
|
155
|
-
drop_input_cols: Optional[bool], default=False
|
156
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
157
174
|
"""
|
158
175
|
|
159
176
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -170,6 +187,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
170
187
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
171
188
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
172
189
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
190
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
173
191
|
drop_input_cols: Optional[bool] = False,
|
174
192
|
sample_weight_col: Optional[str] = None,
|
175
193
|
) -> None:
|
@@ -178,9 +196,10 @@ class KNeighborsClassifier(BaseTransformer):
|
|
178
196
|
self.set_input_cols(input_cols)
|
179
197
|
self.set_output_cols(output_cols)
|
180
198
|
self.set_label_cols(label_cols)
|
199
|
+
self.set_passthrough_cols(passthrough_cols)
|
181
200
|
self.set_drop_input_cols(drop_input_cols)
|
182
201
|
self.set_sample_weight_col(sample_weight_col)
|
183
|
-
deps = set(
|
202
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
184
203
|
|
185
204
|
self._deps = list(deps)
|
186
205
|
|
@@ -196,13 +215,14 @@ class KNeighborsClassifier(BaseTransformer):
|
|
196
215
|
args=init_args,
|
197
216
|
klass=sklearn.neighbors.KNeighborsClassifier
|
198
217
|
)
|
199
|
-
self._sklearn_object = sklearn.neighbors.KNeighborsClassifier(
|
218
|
+
self._sklearn_object: Any = sklearn.neighbors.KNeighborsClassifier(
|
200
219
|
**cleaned_up_init_args,
|
201
220
|
)
|
202
221
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
203
222
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
204
223
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
205
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
224
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
225
|
+
self._autogenerated = True
|
206
226
|
|
207
227
|
def _get_rand_id(self) -> str:
|
208
228
|
"""
|
@@ -213,24 +233,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
213
233
|
"""
|
214
234
|
return str(uuid4()).replace("-", "_").upper()
|
215
235
|
|
216
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
217
|
-
"""
|
218
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
219
|
-
|
220
|
-
Args:
|
221
|
-
dataset: Input dataset.
|
222
|
-
"""
|
223
|
-
if not self.input_cols:
|
224
|
-
cols = [
|
225
|
-
c for c in dataset.columns
|
226
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
227
|
-
]
|
228
|
-
self.set_input_cols(input_cols=cols)
|
229
|
-
|
230
|
-
if not self.output_cols:
|
231
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
232
|
-
self.set_output_cols(output_cols=cols)
|
233
|
-
|
234
236
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KNeighborsClassifier":
|
235
237
|
"""
|
236
238
|
Input columns setter.
|
@@ -276,54 +278,48 @@ class KNeighborsClassifier(BaseTransformer):
|
|
276
278
|
self
|
277
279
|
"""
|
278
280
|
self._infer_input_output_cols(dataset)
|
279
|
-
if isinstance(dataset,
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
self.
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
281
|
+
if isinstance(dataset, DataFrame):
|
282
|
+
session = dataset._session
|
283
|
+
assert session is not None # keep mypy happy
|
284
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
285
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
286
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
287
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
288
|
+
|
289
|
+
# Specify input columns so column pruning will be enforced
|
290
|
+
selected_cols = self._get_active_columns()
|
291
|
+
if len(selected_cols) > 0:
|
292
|
+
dataset = dataset.select(selected_cols)
|
293
|
+
|
294
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
|
+
|
296
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
297
|
+
if SNOWML_SPROC_ENV in os.environ:
|
298
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
299
|
+
project=_PROJECT,
|
300
|
+
subproject=_SUBPROJECT,
|
301
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KNeighborsClassifier.__class__.__name__),
|
302
|
+
api_calls=[Session.call],
|
303
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
304
|
+
)
|
305
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
306
|
+
pd_df.columns = dataset.columns
|
307
|
+
dataset = pd_df
|
308
|
+
|
309
|
+
model_trainer = ModelTrainerBuilder.build(
|
310
|
+
estimator=self._sklearn_object,
|
311
|
+
dataset=dataset,
|
312
|
+
input_cols=self.input_cols,
|
313
|
+
label_cols=self.label_cols,
|
314
|
+
sample_weight_col=self.sample_weight_col,
|
315
|
+
autogenerated=self._autogenerated,
|
316
|
+
subproject=_SUBPROJECT
|
317
|
+
)
|
318
|
+
self._sklearn_object = model_trainer.train()
|
295
319
|
self._is_fitted = True
|
296
320
|
self._get_model_signatures(dataset)
|
297
321
|
return self
|
298
322
|
|
299
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
300
|
-
session = dataset._session
|
301
|
-
assert session is not None # keep mypy happy
|
302
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
303
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
304
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
305
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
306
|
-
|
307
|
-
# Specify input columns so column pruning will be enforced
|
308
|
-
selected_cols = self._get_active_columns()
|
309
|
-
if len(selected_cols) > 0:
|
310
|
-
dataset = dataset.select(selected_cols)
|
311
|
-
|
312
|
-
estimator = self._sklearn_object
|
313
|
-
assert estimator is not None # Keep mypy happy
|
314
|
-
|
315
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
316
|
-
|
317
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
318
|
-
dataset,
|
319
|
-
session,
|
320
|
-
estimator,
|
321
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
322
|
-
self.input_cols,
|
323
|
-
self.label_cols,
|
324
|
-
self.sample_weight_col,
|
325
|
-
)
|
326
|
-
|
327
323
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
328
324
|
if self._drop_input_cols:
|
329
325
|
return []
|
@@ -511,11 +507,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
511
507
|
subproject=_SUBPROJECT,
|
512
508
|
custom_tags=dict([("autogen", True)]),
|
513
509
|
)
|
514
|
-
@telemetry.add_stmt_params_to_df(
|
515
|
-
project=_PROJECT,
|
516
|
-
subproject=_SUBPROJECT,
|
517
|
-
custom_tags=dict([("autogen", True)]),
|
518
|
-
)
|
519
510
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
520
511
|
"""Predict the class labels for the provided data
|
521
512
|
For more details on this function, see [sklearn.neighbors.KNeighborsClassifier.predict]
|
@@ -569,11 +560,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
569
560
|
subproject=_SUBPROJECT,
|
570
561
|
custom_tags=dict([("autogen", True)]),
|
571
562
|
)
|
572
|
-
@telemetry.add_stmt_params_to_df(
|
573
|
-
project=_PROJECT,
|
574
|
-
subproject=_SUBPROJECT,
|
575
|
-
custom_tags=dict([("autogen", True)]),
|
576
|
-
)
|
577
563
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
578
564
|
"""Method not supported for this class.
|
579
565
|
|
@@ -630,7 +616,8 @@ class KNeighborsClassifier(BaseTransformer):
|
|
630
616
|
if False:
|
631
617
|
self.fit(dataset)
|
632
618
|
assert self._sklearn_object is not None
|
633
|
-
|
619
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
620
|
+
return labels
|
634
621
|
else:
|
635
622
|
raise NotImplementedError
|
636
623
|
|
@@ -666,6 +653,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
666
653
|
output_cols = []
|
667
654
|
|
668
655
|
# Make sure column names are valid snowflake identifiers.
|
656
|
+
assert output_cols is not None # Make MyPy happy
|
669
657
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
670
658
|
|
671
659
|
return rv
|
@@ -676,11 +664,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
676
664
|
subproject=_SUBPROJECT,
|
677
665
|
custom_tags=dict([("autogen", True)]),
|
678
666
|
)
|
679
|
-
@telemetry.add_stmt_params_to_df(
|
680
|
-
project=_PROJECT,
|
681
|
-
subproject=_SUBPROJECT,
|
682
|
-
custom_tags=dict([("autogen", True)]),
|
683
|
-
)
|
684
667
|
def predict_proba(
|
685
668
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
686
669
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -723,11 +706,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
723
706
|
subproject=_SUBPROJECT,
|
724
707
|
custom_tags=dict([("autogen", True)]),
|
725
708
|
)
|
726
|
-
@telemetry.add_stmt_params_to_df(
|
727
|
-
project=_PROJECT,
|
728
|
-
subproject=_SUBPROJECT,
|
729
|
-
custom_tags=dict([("autogen", True)]),
|
730
|
-
)
|
731
709
|
def predict_log_proba(
|
732
710
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
733
711
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -766,16 +744,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
766
744
|
return output_df
|
767
745
|
|
768
746
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
769
|
-
@telemetry.send_api_usage_telemetry(
|
770
|
-
project=_PROJECT,
|
771
|
-
subproject=_SUBPROJECT,
|
772
|
-
custom_tags=dict([("autogen", True)]),
|
773
|
-
)
|
774
|
-
@telemetry.add_stmt_params_to_df(
|
775
|
-
project=_PROJECT,
|
776
|
-
subproject=_SUBPROJECT,
|
777
|
-
custom_tags=dict([("autogen", True)]),
|
778
|
-
)
|
779
747
|
def decision_function(
|
780
748
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
781
749
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -876,11 +844,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
876
844
|
subproject=_SUBPROJECT,
|
877
845
|
custom_tags=dict([("autogen", True)]),
|
878
846
|
)
|
879
|
-
@telemetry.add_stmt_params_to_df(
|
880
|
-
project=_PROJECT,
|
881
|
-
subproject=_SUBPROJECT,
|
882
|
-
custom_tags=dict([("autogen", True)]),
|
883
|
-
)
|
884
847
|
def kneighbors(
|
885
848
|
self,
|
886
849
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -942,18 +905,28 @@ class KNeighborsClassifier(BaseTransformer):
|
|
942
905
|
# For classifier, the type of predict is the same as the type of label
|
943
906
|
if self._sklearn_object._estimator_type == 'classifier':
|
944
907
|
# label columns is the desired type for output
|
945
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
908
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
946
909
|
# rename the output columns
|
947
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
910
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
948
911
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
949
912
|
([] if self._drop_input_cols else inputs)
|
950
913
|
+ outputs)
|
914
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
915
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
916
|
+
# Clusterer returns int64 cluster labels.
|
917
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
918
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
919
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
|
+
([] if self._drop_input_cols else inputs)
|
921
|
+
+ outputs)
|
922
|
+
|
951
923
|
# For regressor, the type of predict is float64
|
952
924
|
elif self._sklearn_object._estimator_type == 'regressor':
|
953
925
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
954
926
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
955
927
|
([] if self._drop_input_cols else inputs)
|
956
928
|
+ outputs)
|
929
|
+
|
957
930
|
for prob_func in PROB_FUNCTIONS:
|
958
931
|
if hasattr(self, prob_func):
|
959
932
|
output_cols_prefix: str = f"{prob_func}_"
|