snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class KNeighborsClassifier(BaseTransformer):
57
58
  r"""Classifier implementing the k-nearest neighbors vote
58
59
  For more details on this class, see [sklearn.neighbors.KNeighborsClassifier]
@@ -60,6 +61,51 @@ class KNeighborsClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  n_neighbors: int, default=5
64
110
  Number of neighbors to use by default for :meth:`kneighbors` queries.
65
111
 
@@ -125,35 +171,6 @@ class KNeighborsClassifier(BaseTransformer):
125
171
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
126
172
  for more details.
127
173
  Doesn't affect :meth:`fit` method.
128
-
129
- input_cols: Optional[Union[str, List[str]]]
130
- A string or list of strings representing column names that contain features.
131
- If this parameter is not specified, all columns in the input DataFrame except
132
- the columns specified by label_cols and sample_weight_col parameters are
133
- considered input columns.
134
-
135
- label_cols: Optional[Union[str, List[str]]]
136
- A string or list of strings representing column names that contain labels.
137
- This is a required param for estimators, as there is no way to infer these
138
- columns. If this parameter is not specified, then object is fitted without
139
- labels (like a transformer).
140
-
141
- output_cols: Optional[Union[str, List[str]]]
142
- A string or list of strings representing column names that will store the
143
- output of predict and transform operations. The length of output_cols must
144
- match the expected number of output columns from the specific estimator or
145
- transformer class used.
146
- If this parameter is not specified, output column names are derived by
147
- adding an OUTPUT_ prefix to the label column names. These inferred output
148
- column names work for estimator's predict() method, but output_cols must
149
- be set explicitly for transformers.
150
-
151
- sample_weight_col: Optional[str]
152
- A string representing the column name containing the sample weights.
153
- This argument is only required when working with weighted datasets.
154
-
155
- drop_input_cols: Optional[bool], default=False
156
- If set, the response of predict(), transform() methods will not contain input columns.
157
174
  """
158
175
 
159
176
  def __init__( # type: ignore[no-untyped-def]
@@ -170,6 +187,7 @@ class KNeighborsClassifier(BaseTransformer):
170
187
  input_cols: Optional[Union[str, Iterable[str]]] = None,
171
188
  output_cols: Optional[Union[str, Iterable[str]]] = None,
172
189
  label_cols: Optional[Union[str, Iterable[str]]] = None,
190
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
173
191
  drop_input_cols: Optional[bool] = False,
174
192
  sample_weight_col: Optional[str] = None,
175
193
  ) -> None:
@@ -178,9 +196,10 @@ class KNeighborsClassifier(BaseTransformer):
178
196
  self.set_input_cols(input_cols)
179
197
  self.set_output_cols(output_cols)
180
198
  self.set_label_cols(label_cols)
199
+ self.set_passthrough_cols(passthrough_cols)
181
200
  self.set_drop_input_cols(drop_input_cols)
182
201
  self.set_sample_weight_col(sample_weight_col)
183
- deps = set(SklearnWrapperProvider().dependencies)
202
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
184
203
 
185
204
  self._deps = list(deps)
186
205
 
@@ -196,13 +215,14 @@ class KNeighborsClassifier(BaseTransformer):
196
215
  args=init_args,
197
216
  klass=sklearn.neighbors.KNeighborsClassifier
198
217
  )
199
- self._sklearn_object = sklearn.neighbors.KNeighborsClassifier(
218
+ self._sklearn_object: Any = sklearn.neighbors.KNeighborsClassifier(
200
219
  **cleaned_up_init_args,
201
220
  )
202
221
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
203
222
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
204
223
  self._snowpark_cols: Optional[List[str]] = self.input_cols
205
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
224
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=KNeighborsClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
225
+ self._autogenerated = True
206
226
 
207
227
  def _get_rand_id(self) -> str:
208
228
  """
@@ -213,24 +233,6 @@ class KNeighborsClassifier(BaseTransformer):
213
233
  """
214
234
  return str(uuid4()).replace("-", "_").upper()
215
235
 
216
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
217
- """
218
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
219
-
220
- Args:
221
- dataset: Input dataset.
222
- """
223
- if not self.input_cols:
224
- cols = [
225
- c for c in dataset.columns
226
- if c not in self.get_label_cols() and c != self.sample_weight_col
227
- ]
228
- self.set_input_cols(input_cols=cols)
229
-
230
- if not self.output_cols:
231
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
232
- self.set_output_cols(output_cols=cols)
233
-
234
236
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KNeighborsClassifier":
235
237
  """
236
238
  Input columns setter.
@@ -276,54 +278,48 @@ class KNeighborsClassifier(BaseTransformer):
276
278
  self
277
279
  """
278
280
  self._infer_input_output_cols(dataset)
279
- if isinstance(dataset, pd.DataFrame):
280
- assert self._sklearn_object is not None # keep mypy happy
281
- self._sklearn_object = self._handlers.fit_pandas(
282
- dataset,
283
- self._sklearn_object,
284
- self.input_cols,
285
- self.label_cols,
286
- self.sample_weight_col
287
- )
288
- elif isinstance(dataset, DataFrame):
289
- self._fit_snowpark(dataset)
290
- else:
291
- raise TypeError(
292
- f"Unexpected dataset type: {type(dataset)}."
293
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
294
- )
281
+ if isinstance(dataset, DataFrame):
282
+ session = dataset._session
283
+ assert session is not None # keep mypy happy
284
+ # Validate that key package version in user workspace are supported in snowflake conda channel
285
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
286
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
287
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
288
+
289
+ # Specify input columns so column pruning will be enforced
290
+ selected_cols = self._get_active_columns()
291
+ if len(selected_cols) > 0:
292
+ dataset = dataset.select(selected_cols)
293
+
294
+ self._snowpark_cols = dataset.select(self.input_cols).columns
295
+
296
+ # If we are already in a stored procedure, no need to kick off another one.
297
+ if SNOWML_SPROC_ENV in os.environ:
298
+ statement_params = telemetry.get_function_usage_statement_params(
299
+ project=_PROJECT,
300
+ subproject=_SUBPROJECT,
301
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KNeighborsClassifier.__class__.__name__),
302
+ api_calls=[Session.call],
303
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
304
+ )
305
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
306
+ pd_df.columns = dataset.columns
307
+ dataset = pd_df
308
+
309
+ model_trainer = ModelTrainerBuilder.build(
310
+ estimator=self._sklearn_object,
311
+ dataset=dataset,
312
+ input_cols=self.input_cols,
313
+ label_cols=self.label_cols,
314
+ sample_weight_col=self.sample_weight_col,
315
+ autogenerated=self._autogenerated,
316
+ subproject=_SUBPROJECT
317
+ )
318
+ self._sklearn_object = model_trainer.train()
295
319
  self._is_fitted = True
296
320
  self._get_model_signatures(dataset)
297
321
  return self
298
322
 
299
- def _fit_snowpark(self, dataset: DataFrame) -> None:
300
- session = dataset._session
301
- assert session is not None # keep mypy happy
302
- # Validate that key package version in user workspace are supported in snowflake conda channel
303
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
304
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
305
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
306
-
307
- # Specify input columns so column pruning will be enforced
308
- selected_cols = self._get_active_columns()
309
- if len(selected_cols) > 0:
310
- dataset = dataset.select(selected_cols)
311
-
312
- estimator = self._sklearn_object
313
- assert estimator is not None # Keep mypy happy
314
-
315
- self._snowpark_cols = dataset.select(self.input_cols).columns
316
-
317
- self._sklearn_object = self._handlers.fit_snowpark(
318
- dataset,
319
- session,
320
- estimator,
321
- ["snowflake-snowpark-python"] + self._get_dependencies(),
322
- self.input_cols,
323
- self.label_cols,
324
- self.sample_weight_col,
325
- )
326
-
327
323
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
328
324
  if self._drop_input_cols:
329
325
  return []
@@ -511,11 +507,6 @@ class KNeighborsClassifier(BaseTransformer):
511
507
  subproject=_SUBPROJECT,
512
508
  custom_tags=dict([("autogen", True)]),
513
509
  )
514
- @telemetry.add_stmt_params_to_df(
515
- project=_PROJECT,
516
- subproject=_SUBPROJECT,
517
- custom_tags=dict([("autogen", True)]),
518
- )
519
510
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
520
511
  """Predict the class labels for the provided data
521
512
  For more details on this function, see [sklearn.neighbors.KNeighborsClassifier.predict]
@@ -569,11 +560,6 @@ class KNeighborsClassifier(BaseTransformer):
569
560
  subproject=_SUBPROJECT,
570
561
  custom_tags=dict([("autogen", True)]),
571
562
  )
572
- @telemetry.add_stmt_params_to_df(
573
- project=_PROJECT,
574
- subproject=_SUBPROJECT,
575
- custom_tags=dict([("autogen", True)]),
576
- )
577
563
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
578
564
  """Method not supported for this class.
579
565
 
@@ -630,7 +616,8 @@ class KNeighborsClassifier(BaseTransformer):
630
616
  if False:
631
617
  self.fit(dataset)
632
618
  assert self._sklearn_object is not None
633
- return self._sklearn_object.labels_
619
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
620
+ return labels
634
621
  else:
635
622
  raise NotImplementedError
636
623
 
@@ -666,6 +653,7 @@ class KNeighborsClassifier(BaseTransformer):
666
653
  output_cols = []
667
654
 
668
655
  # Make sure column names are valid snowflake identifiers.
656
+ assert output_cols is not None # Make MyPy happy
669
657
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
670
658
 
671
659
  return rv
@@ -676,11 +664,6 @@ class KNeighborsClassifier(BaseTransformer):
676
664
  subproject=_SUBPROJECT,
677
665
  custom_tags=dict([("autogen", True)]),
678
666
  )
679
- @telemetry.add_stmt_params_to_df(
680
- project=_PROJECT,
681
- subproject=_SUBPROJECT,
682
- custom_tags=dict([("autogen", True)]),
683
- )
684
667
  def predict_proba(
685
668
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
686
669
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -723,11 +706,6 @@ class KNeighborsClassifier(BaseTransformer):
723
706
  subproject=_SUBPROJECT,
724
707
  custom_tags=dict([("autogen", True)]),
725
708
  )
726
- @telemetry.add_stmt_params_to_df(
727
- project=_PROJECT,
728
- subproject=_SUBPROJECT,
729
- custom_tags=dict([("autogen", True)]),
730
- )
731
709
  def predict_log_proba(
732
710
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
733
711
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -766,16 +744,6 @@ class KNeighborsClassifier(BaseTransformer):
766
744
  return output_df
767
745
 
768
746
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
769
- @telemetry.send_api_usage_telemetry(
770
- project=_PROJECT,
771
- subproject=_SUBPROJECT,
772
- custom_tags=dict([("autogen", True)]),
773
- )
774
- @telemetry.add_stmt_params_to_df(
775
- project=_PROJECT,
776
- subproject=_SUBPROJECT,
777
- custom_tags=dict([("autogen", True)]),
778
- )
779
747
  def decision_function(
780
748
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
781
749
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -876,11 +844,6 @@ class KNeighborsClassifier(BaseTransformer):
876
844
  subproject=_SUBPROJECT,
877
845
  custom_tags=dict([("autogen", True)]),
878
846
  )
879
- @telemetry.add_stmt_params_to_df(
880
- project=_PROJECT,
881
- subproject=_SUBPROJECT,
882
- custom_tags=dict([("autogen", True)]),
883
- )
884
847
  def kneighbors(
885
848
  self,
886
849
  dataset: Union[DataFrame, pd.DataFrame],
@@ -942,18 +905,28 @@ class KNeighborsClassifier(BaseTransformer):
942
905
  # For classifier, the type of predict is the same as the type of label
943
906
  if self._sklearn_object._estimator_type == 'classifier':
944
907
  # label columns is the desired type for output
945
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
908
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
946
909
  # rename the output columns
947
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
910
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
948
911
  self._model_signature_dict["predict"] = ModelSignature(inputs,
949
912
  ([] if self._drop_input_cols else inputs)
950
913
  + outputs)
914
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
915
+ # For outlier models, returns -1 for outliers and 1 for inliers.
916
+ # Clusterer returns int64 cluster labels.
917
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
918
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
919
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
920
+ ([] if self._drop_input_cols else inputs)
921
+ + outputs)
922
+
951
923
  # For regressor, the type of predict is float64
952
924
  elif self._sklearn_object._estimator_type == 'regressor':
953
925
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
954
926
  self._model_signature_dict["predict"] = ModelSignature(inputs,
955
927
  ([] if self._drop_input_cols else inputs)
956
928
  + outputs)
929
+
957
930
  for prob_func in PROB_FUNCTIONS:
958
931
  if hasattr(self, prob_func):
959
932
  output_cols_prefix: str = f"{prob_func}_"