snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class FactorAnalysis(BaseTransformer):
57
58
  r"""Factor Analysis (FA)
58
59
  For more details on this class, see [sklearn.decomposition.FactorAnalysis]
@@ -60,6 +61,49 @@ class FactorAnalysis(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=None
64
108
  Dimensionality of latent space, the number of components
65
109
  of ``X`` that are obtained after ``transform``.
@@ -103,35 +147,6 @@ class FactorAnalysis(BaseTransformer):
103
147
  Only used when ``svd_method`` equals 'randomized'. Pass an int for
104
148
  reproducible results across multiple function calls.
105
149
  See :term:`Glossary <random_state>`.
106
-
107
- input_cols: Optional[Union[str, List[str]]]
108
- A string or list of strings representing column names that contain features.
109
- If this parameter is not specified, all columns in the input DataFrame except
110
- the columns specified by label_cols and sample_weight_col parameters are
111
- considered input columns.
112
-
113
- label_cols: Optional[Union[str, List[str]]]
114
- A string or list of strings representing column names that contain labels.
115
- This is a required param for estimators, as there is no way to infer these
116
- columns. If this parameter is not specified, then object is fitted without
117
- labels (like a transformer).
118
-
119
- output_cols: Optional[Union[str, List[str]]]
120
- A string or list of strings representing column names that will store the
121
- output of predict and transform operations. The length of output_cols must
122
- match the expected number of output columns from the specific estimator or
123
- transformer class used.
124
- If this parameter is not specified, output column names are derived by
125
- adding an OUTPUT_ prefix to the label column names. These inferred output
126
- column names work for estimator's predict() method, but output_cols must
127
- be set explicitly for transformers.
128
-
129
- sample_weight_col: Optional[str]
130
- A string representing the column name containing the sample weights.
131
- This argument is only required when working with weighted datasets.
132
-
133
- drop_input_cols: Optional[bool], default=False
134
- If set, the response of predict(), transform() methods will not contain input columns.
135
150
  """
136
151
 
137
152
  def __init__( # type: ignore[no-untyped-def]
@@ -149,6 +164,7 @@ class FactorAnalysis(BaseTransformer):
149
164
  input_cols: Optional[Union[str, Iterable[str]]] = None,
150
165
  output_cols: Optional[Union[str, Iterable[str]]] = None,
151
166
  label_cols: Optional[Union[str, Iterable[str]]] = None,
167
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
152
168
  drop_input_cols: Optional[bool] = False,
153
169
  sample_weight_col: Optional[str] = None,
154
170
  ) -> None:
@@ -157,9 +173,10 @@ class FactorAnalysis(BaseTransformer):
157
173
  self.set_input_cols(input_cols)
158
174
  self.set_output_cols(output_cols)
159
175
  self.set_label_cols(label_cols)
176
+ self.set_passthrough_cols(passthrough_cols)
160
177
  self.set_drop_input_cols(drop_input_cols)
161
178
  self.set_sample_weight_col(sample_weight_col)
162
- deps = set(SklearnWrapperProvider().dependencies)
179
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
163
180
 
164
181
  self._deps = list(deps)
165
182
 
@@ -176,13 +193,14 @@ class FactorAnalysis(BaseTransformer):
176
193
  args=init_args,
177
194
  klass=sklearn.decomposition.FactorAnalysis
178
195
  )
179
- self._sklearn_object = sklearn.decomposition.FactorAnalysis(
196
+ self._sklearn_object: Any = sklearn.decomposition.FactorAnalysis(
180
197
  **cleaned_up_init_args,
181
198
  )
182
199
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
183
200
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
184
201
  self._snowpark_cols: Optional[List[str]] = self.input_cols
185
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=FactorAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
202
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=FactorAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
203
+ self._autogenerated = True
186
204
 
187
205
  def _get_rand_id(self) -> str:
188
206
  """
@@ -193,24 +211,6 @@ class FactorAnalysis(BaseTransformer):
193
211
  """
194
212
  return str(uuid4()).replace("-", "_").upper()
195
213
 
196
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
197
- """
198
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
199
-
200
- Args:
201
- dataset: Input dataset.
202
- """
203
- if not self.input_cols:
204
- cols = [
205
- c for c in dataset.columns
206
- if c not in self.get_label_cols() and c != self.sample_weight_col
207
- ]
208
- self.set_input_cols(input_cols=cols)
209
-
210
- if not self.output_cols:
211
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
212
- self.set_output_cols(output_cols=cols)
213
-
214
214
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "FactorAnalysis":
215
215
  """
216
216
  Input columns setter.
@@ -256,54 +256,48 @@ class FactorAnalysis(BaseTransformer):
256
256
  self
257
257
  """
258
258
  self._infer_input_output_cols(dataset)
259
- if isinstance(dataset, pd.DataFrame):
260
- assert self._sklearn_object is not None # keep mypy happy
261
- self._sklearn_object = self._handlers.fit_pandas(
262
- dataset,
263
- self._sklearn_object,
264
- self.input_cols,
265
- self.label_cols,
266
- self.sample_weight_col
267
- )
268
- elif isinstance(dataset, DataFrame):
269
- self._fit_snowpark(dataset)
270
- else:
271
- raise TypeError(
272
- f"Unexpected dataset type: {type(dataset)}."
273
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
274
- )
259
+ if isinstance(dataset, DataFrame):
260
+ session = dataset._session
261
+ assert session is not None # keep mypy happy
262
+ # Validate that key package version in user workspace are supported in snowflake conda channel
263
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
264
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
265
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
266
+
267
+ # Specify input columns so column pruning will be enforced
268
+ selected_cols = self._get_active_columns()
269
+ if len(selected_cols) > 0:
270
+ dataset = dataset.select(selected_cols)
271
+
272
+ self._snowpark_cols = dataset.select(self.input_cols).columns
273
+
274
+ # If we are already in a stored procedure, no need to kick off another one.
275
+ if SNOWML_SPROC_ENV in os.environ:
276
+ statement_params = telemetry.get_function_usage_statement_params(
277
+ project=_PROJECT,
278
+ subproject=_SUBPROJECT,
279
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FactorAnalysis.__class__.__name__),
280
+ api_calls=[Session.call],
281
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
282
+ )
283
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
284
+ pd_df.columns = dataset.columns
285
+ dataset = pd_df
286
+
287
+ model_trainer = ModelTrainerBuilder.build(
288
+ estimator=self._sklearn_object,
289
+ dataset=dataset,
290
+ input_cols=self.input_cols,
291
+ label_cols=self.label_cols,
292
+ sample_weight_col=self.sample_weight_col,
293
+ autogenerated=self._autogenerated,
294
+ subproject=_SUBPROJECT
295
+ )
296
+ self._sklearn_object = model_trainer.train()
275
297
  self._is_fitted = True
276
298
  self._get_model_signatures(dataset)
277
299
  return self
278
300
 
279
- def _fit_snowpark(self, dataset: DataFrame) -> None:
280
- session = dataset._session
281
- assert session is not None # keep mypy happy
282
- # Validate that key package version in user workspace are supported in snowflake conda channel
283
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
284
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
285
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
286
-
287
- # Specify input columns so column pruning will be enforced
288
- selected_cols = self._get_active_columns()
289
- if len(selected_cols) > 0:
290
- dataset = dataset.select(selected_cols)
291
-
292
- estimator = self._sklearn_object
293
- assert estimator is not None # Keep mypy happy
294
-
295
- self._snowpark_cols = dataset.select(self.input_cols).columns
296
-
297
- self._sklearn_object = self._handlers.fit_snowpark(
298
- dataset,
299
- session,
300
- estimator,
301
- ["snowflake-snowpark-python"] + self._get_dependencies(),
302
- self.input_cols,
303
- self.label_cols,
304
- self.sample_weight_col,
305
- )
306
-
307
301
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
308
302
  if self._drop_input_cols:
309
303
  return []
@@ -491,11 +485,6 @@ class FactorAnalysis(BaseTransformer):
491
485
  subproject=_SUBPROJECT,
492
486
  custom_tags=dict([("autogen", True)]),
493
487
  )
494
- @telemetry.add_stmt_params_to_df(
495
- project=_PROJECT,
496
- subproject=_SUBPROJECT,
497
- custom_tags=dict([("autogen", True)]),
498
- )
499
488
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
500
489
  """Method not supported for this class.
501
490
 
@@ -547,11 +536,6 @@ class FactorAnalysis(BaseTransformer):
547
536
  subproject=_SUBPROJECT,
548
537
  custom_tags=dict([("autogen", True)]),
549
538
  )
550
- @telemetry.add_stmt_params_to_df(
551
- project=_PROJECT,
552
- subproject=_SUBPROJECT,
553
- custom_tags=dict([("autogen", True)]),
554
- )
555
539
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
556
540
  """Apply dimensionality reduction to X using the model
557
541
  For more details on this function, see [sklearn.decomposition.FactorAnalysis.transform]
@@ -610,7 +594,8 @@ class FactorAnalysis(BaseTransformer):
610
594
  if False:
611
595
  self.fit(dataset)
612
596
  assert self._sklearn_object is not None
613
- return self._sklearn_object.labels_
597
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
598
+ return labels
614
599
  else:
615
600
  raise NotImplementedError
616
601
 
@@ -646,6 +631,7 @@ class FactorAnalysis(BaseTransformer):
646
631
  output_cols = []
647
632
 
648
633
  # Make sure column names are valid snowflake identifiers.
634
+ assert output_cols is not None # Make MyPy happy
649
635
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
650
636
 
651
637
  return rv
@@ -656,11 +642,6 @@ class FactorAnalysis(BaseTransformer):
656
642
  subproject=_SUBPROJECT,
657
643
  custom_tags=dict([("autogen", True)]),
658
644
  )
659
- @telemetry.add_stmt_params_to_df(
660
- project=_PROJECT,
661
- subproject=_SUBPROJECT,
662
- custom_tags=dict([("autogen", True)]),
663
- )
664
645
  def predict_proba(
665
646
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
666
647
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -701,11 +682,6 @@ class FactorAnalysis(BaseTransformer):
701
682
  subproject=_SUBPROJECT,
702
683
  custom_tags=dict([("autogen", True)]),
703
684
  )
704
- @telemetry.add_stmt_params_to_df(
705
- project=_PROJECT,
706
- subproject=_SUBPROJECT,
707
- custom_tags=dict([("autogen", True)]),
708
- )
709
685
  def predict_log_proba(
710
686
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
711
687
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -742,16 +718,6 @@ class FactorAnalysis(BaseTransformer):
742
718
  return output_df
743
719
 
744
720
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
745
- @telemetry.send_api_usage_telemetry(
746
- project=_PROJECT,
747
- subproject=_SUBPROJECT,
748
- custom_tags=dict([("autogen", True)]),
749
- )
750
- @telemetry.add_stmt_params_to_df(
751
- project=_PROJECT,
752
- subproject=_SUBPROJECT,
753
- custom_tags=dict([("autogen", True)]),
754
- )
755
721
  def decision_function(
756
722
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
757
723
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -852,11 +818,6 @@ class FactorAnalysis(BaseTransformer):
852
818
  subproject=_SUBPROJECT,
853
819
  custom_tags=dict([("autogen", True)]),
854
820
  )
855
- @telemetry.add_stmt_params_to_df(
856
- project=_PROJECT,
857
- subproject=_SUBPROJECT,
858
- custom_tags=dict([("autogen", True)]),
859
- )
860
821
  def kneighbors(
861
822
  self,
862
823
  dataset: Union[DataFrame, pd.DataFrame],
@@ -916,18 +877,28 @@ class FactorAnalysis(BaseTransformer):
916
877
  # For classifier, the type of predict is the same as the type of label
917
878
  if self._sklearn_object._estimator_type == 'classifier':
918
879
  # label columns is the desired type for output
919
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
880
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
920
881
  # rename the output columns
921
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
882
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
883
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
884
+ ([] if self._drop_input_cols else inputs)
885
+ + outputs)
886
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
887
+ # For outlier models, returns -1 for outliers and 1 for inliers.
888
+ # Clusterer returns int64 cluster labels.
889
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
890
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
922
891
  self._model_signature_dict["predict"] = ModelSignature(inputs,
923
892
  ([] if self._drop_input_cols else inputs)
924
893
  + outputs)
894
+
925
895
  # For regressor, the type of predict is float64
926
896
  elif self._sklearn_object._estimator_type == 'regressor':
927
897
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
928
898
  self._model_signature_dict["predict"] = ModelSignature(inputs,
929
899
  ([] if self._drop_input_cols else inputs)
930
900
  + outputs)
901
+
931
902
  for prob_func in PROB_FUNCTIONS:
932
903
  if hasattr(self, prob_func):
933
904
  output_cols_prefix: str = f"{prob_func}_"