snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class FactorAnalysis(BaseTransformer):
|
57
58
|
r"""Factor Analysis (FA)
|
58
59
|
For more details on this class, see [sklearn.decomposition.FactorAnalysis]
|
@@ -60,6 +61,49 @@ class FactorAnalysis(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Dimensionality of latent space, the number of components
|
65
109
|
of ``X`` that are obtained after ``transform``.
|
@@ -103,35 +147,6 @@ class FactorAnalysis(BaseTransformer):
|
|
103
147
|
Only used when ``svd_method`` equals 'randomized'. Pass an int for
|
104
148
|
reproducible results across multiple function calls.
|
105
149
|
See :term:`Glossary <random_state>`.
|
106
|
-
|
107
|
-
input_cols: Optional[Union[str, List[str]]]
|
108
|
-
A string or list of strings representing column names that contain features.
|
109
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
110
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
111
|
-
considered input columns.
|
112
|
-
|
113
|
-
label_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain labels.
|
115
|
-
This is a required param for estimators, as there is no way to infer these
|
116
|
-
columns. If this parameter is not specified, then object is fitted without
|
117
|
-
labels (like a transformer).
|
118
|
-
|
119
|
-
output_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that will store the
|
121
|
-
output of predict and transform operations. The length of output_cols must
|
122
|
-
match the expected number of output columns from the specific estimator or
|
123
|
-
transformer class used.
|
124
|
-
If this parameter is not specified, output column names are derived by
|
125
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
126
|
-
column names work for estimator's predict() method, but output_cols must
|
127
|
-
be set explicitly for transformers.
|
128
|
-
|
129
|
-
sample_weight_col: Optional[str]
|
130
|
-
A string representing the column name containing the sample weights.
|
131
|
-
This argument is only required when working with weighted datasets.
|
132
|
-
|
133
|
-
drop_input_cols: Optional[bool], default=False
|
134
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
135
150
|
"""
|
136
151
|
|
137
152
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -149,6 +164,7 @@ class FactorAnalysis(BaseTransformer):
|
|
149
164
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
150
165
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
151
166
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
167
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
152
168
|
drop_input_cols: Optional[bool] = False,
|
153
169
|
sample_weight_col: Optional[str] = None,
|
154
170
|
) -> None:
|
@@ -157,9 +173,10 @@ class FactorAnalysis(BaseTransformer):
|
|
157
173
|
self.set_input_cols(input_cols)
|
158
174
|
self.set_output_cols(output_cols)
|
159
175
|
self.set_label_cols(label_cols)
|
176
|
+
self.set_passthrough_cols(passthrough_cols)
|
160
177
|
self.set_drop_input_cols(drop_input_cols)
|
161
178
|
self.set_sample_weight_col(sample_weight_col)
|
162
|
-
deps = set(
|
179
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
163
180
|
|
164
181
|
self._deps = list(deps)
|
165
182
|
|
@@ -176,13 +193,14 @@ class FactorAnalysis(BaseTransformer):
|
|
176
193
|
args=init_args,
|
177
194
|
klass=sklearn.decomposition.FactorAnalysis
|
178
195
|
)
|
179
|
-
self._sklearn_object = sklearn.decomposition.FactorAnalysis(
|
196
|
+
self._sklearn_object: Any = sklearn.decomposition.FactorAnalysis(
|
180
197
|
**cleaned_up_init_args,
|
181
198
|
)
|
182
199
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
183
200
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
184
201
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
185
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FactorAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
202
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=FactorAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
203
|
+
self._autogenerated = True
|
186
204
|
|
187
205
|
def _get_rand_id(self) -> str:
|
188
206
|
"""
|
@@ -193,24 +211,6 @@ class FactorAnalysis(BaseTransformer):
|
|
193
211
|
"""
|
194
212
|
return str(uuid4()).replace("-", "_").upper()
|
195
213
|
|
196
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
197
|
-
"""
|
198
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
199
|
-
|
200
|
-
Args:
|
201
|
-
dataset: Input dataset.
|
202
|
-
"""
|
203
|
-
if not self.input_cols:
|
204
|
-
cols = [
|
205
|
-
c for c in dataset.columns
|
206
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
207
|
-
]
|
208
|
-
self.set_input_cols(input_cols=cols)
|
209
|
-
|
210
|
-
if not self.output_cols:
|
211
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
212
|
-
self.set_output_cols(output_cols=cols)
|
213
|
-
|
214
214
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "FactorAnalysis":
|
215
215
|
"""
|
216
216
|
Input columns setter.
|
@@ -256,54 +256,48 @@ class FactorAnalysis(BaseTransformer):
|
|
256
256
|
self
|
257
257
|
"""
|
258
258
|
self._infer_input_output_cols(dataset)
|
259
|
-
if isinstance(dataset,
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
self.
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
259
|
+
if isinstance(dataset, DataFrame):
|
260
|
+
session = dataset._session
|
261
|
+
assert session is not None # keep mypy happy
|
262
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
263
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
264
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
265
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
266
|
+
|
267
|
+
# Specify input columns so column pruning will be enforced
|
268
|
+
selected_cols = self._get_active_columns()
|
269
|
+
if len(selected_cols) > 0:
|
270
|
+
dataset = dataset.select(selected_cols)
|
271
|
+
|
272
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
273
|
+
|
274
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
275
|
+
if SNOWML_SPROC_ENV in os.environ:
|
276
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
277
|
+
project=_PROJECT,
|
278
|
+
subproject=_SUBPROJECT,
|
279
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FactorAnalysis.__class__.__name__),
|
280
|
+
api_calls=[Session.call],
|
281
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
282
|
+
)
|
283
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
284
|
+
pd_df.columns = dataset.columns
|
285
|
+
dataset = pd_df
|
286
|
+
|
287
|
+
model_trainer = ModelTrainerBuilder.build(
|
288
|
+
estimator=self._sklearn_object,
|
289
|
+
dataset=dataset,
|
290
|
+
input_cols=self.input_cols,
|
291
|
+
label_cols=self.label_cols,
|
292
|
+
sample_weight_col=self.sample_weight_col,
|
293
|
+
autogenerated=self._autogenerated,
|
294
|
+
subproject=_SUBPROJECT
|
295
|
+
)
|
296
|
+
self._sklearn_object = model_trainer.train()
|
275
297
|
self._is_fitted = True
|
276
298
|
self._get_model_signatures(dataset)
|
277
299
|
return self
|
278
300
|
|
279
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
280
|
-
session = dataset._session
|
281
|
-
assert session is not None # keep mypy happy
|
282
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
283
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
284
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
285
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
286
|
-
|
287
|
-
# Specify input columns so column pruning will be enforced
|
288
|
-
selected_cols = self._get_active_columns()
|
289
|
-
if len(selected_cols) > 0:
|
290
|
-
dataset = dataset.select(selected_cols)
|
291
|
-
|
292
|
-
estimator = self._sklearn_object
|
293
|
-
assert estimator is not None # Keep mypy happy
|
294
|
-
|
295
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
296
|
-
|
297
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
298
|
-
dataset,
|
299
|
-
session,
|
300
|
-
estimator,
|
301
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
302
|
-
self.input_cols,
|
303
|
-
self.label_cols,
|
304
|
-
self.sample_weight_col,
|
305
|
-
)
|
306
|
-
|
307
301
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
308
302
|
if self._drop_input_cols:
|
309
303
|
return []
|
@@ -491,11 +485,6 @@ class FactorAnalysis(BaseTransformer):
|
|
491
485
|
subproject=_SUBPROJECT,
|
492
486
|
custom_tags=dict([("autogen", True)]),
|
493
487
|
)
|
494
|
-
@telemetry.add_stmt_params_to_df(
|
495
|
-
project=_PROJECT,
|
496
|
-
subproject=_SUBPROJECT,
|
497
|
-
custom_tags=dict([("autogen", True)]),
|
498
|
-
)
|
499
488
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
500
489
|
"""Method not supported for this class.
|
501
490
|
|
@@ -547,11 +536,6 @@ class FactorAnalysis(BaseTransformer):
|
|
547
536
|
subproject=_SUBPROJECT,
|
548
537
|
custom_tags=dict([("autogen", True)]),
|
549
538
|
)
|
550
|
-
@telemetry.add_stmt_params_to_df(
|
551
|
-
project=_PROJECT,
|
552
|
-
subproject=_SUBPROJECT,
|
553
|
-
custom_tags=dict([("autogen", True)]),
|
554
|
-
)
|
555
539
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
556
540
|
"""Apply dimensionality reduction to X using the model
|
557
541
|
For more details on this function, see [sklearn.decomposition.FactorAnalysis.transform]
|
@@ -610,7 +594,8 @@ class FactorAnalysis(BaseTransformer):
|
|
610
594
|
if False:
|
611
595
|
self.fit(dataset)
|
612
596
|
assert self._sklearn_object is not None
|
613
|
-
|
597
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
598
|
+
return labels
|
614
599
|
else:
|
615
600
|
raise NotImplementedError
|
616
601
|
|
@@ -646,6 +631,7 @@ class FactorAnalysis(BaseTransformer):
|
|
646
631
|
output_cols = []
|
647
632
|
|
648
633
|
# Make sure column names are valid snowflake identifiers.
|
634
|
+
assert output_cols is not None # Make MyPy happy
|
649
635
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
650
636
|
|
651
637
|
return rv
|
@@ -656,11 +642,6 @@ class FactorAnalysis(BaseTransformer):
|
|
656
642
|
subproject=_SUBPROJECT,
|
657
643
|
custom_tags=dict([("autogen", True)]),
|
658
644
|
)
|
659
|
-
@telemetry.add_stmt_params_to_df(
|
660
|
-
project=_PROJECT,
|
661
|
-
subproject=_SUBPROJECT,
|
662
|
-
custom_tags=dict([("autogen", True)]),
|
663
|
-
)
|
664
645
|
def predict_proba(
|
665
646
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
666
647
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -701,11 +682,6 @@ class FactorAnalysis(BaseTransformer):
|
|
701
682
|
subproject=_SUBPROJECT,
|
702
683
|
custom_tags=dict([("autogen", True)]),
|
703
684
|
)
|
704
|
-
@telemetry.add_stmt_params_to_df(
|
705
|
-
project=_PROJECT,
|
706
|
-
subproject=_SUBPROJECT,
|
707
|
-
custom_tags=dict([("autogen", True)]),
|
708
|
-
)
|
709
685
|
def predict_log_proba(
|
710
686
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
711
687
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -742,16 +718,6 @@ class FactorAnalysis(BaseTransformer):
|
|
742
718
|
return output_df
|
743
719
|
|
744
720
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
745
|
-
@telemetry.send_api_usage_telemetry(
|
746
|
-
project=_PROJECT,
|
747
|
-
subproject=_SUBPROJECT,
|
748
|
-
custom_tags=dict([("autogen", True)]),
|
749
|
-
)
|
750
|
-
@telemetry.add_stmt_params_to_df(
|
751
|
-
project=_PROJECT,
|
752
|
-
subproject=_SUBPROJECT,
|
753
|
-
custom_tags=dict([("autogen", True)]),
|
754
|
-
)
|
755
721
|
def decision_function(
|
756
722
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
757
723
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -852,11 +818,6 @@ class FactorAnalysis(BaseTransformer):
|
|
852
818
|
subproject=_SUBPROJECT,
|
853
819
|
custom_tags=dict([("autogen", True)]),
|
854
820
|
)
|
855
|
-
@telemetry.add_stmt_params_to_df(
|
856
|
-
project=_PROJECT,
|
857
|
-
subproject=_SUBPROJECT,
|
858
|
-
custom_tags=dict([("autogen", True)]),
|
859
|
-
)
|
860
821
|
def kneighbors(
|
861
822
|
self,
|
862
823
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -916,18 +877,28 @@ class FactorAnalysis(BaseTransformer):
|
|
916
877
|
# For classifier, the type of predict is the same as the type of label
|
917
878
|
if self._sklearn_object._estimator_type == 'classifier':
|
918
879
|
# label columns is the desired type for output
|
919
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
880
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
920
881
|
# rename the output columns
|
921
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
882
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
883
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
884
|
+
([] if self._drop_input_cols else inputs)
|
885
|
+
+ outputs)
|
886
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
887
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
888
|
+
# Clusterer returns int64 cluster labels.
|
889
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
890
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
922
891
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
923
892
|
([] if self._drop_input_cols else inputs)
|
924
893
|
+ outputs)
|
894
|
+
|
925
895
|
# For regressor, the type of predict is float64
|
926
896
|
elif self._sklearn_object._estimator_type == 'regressor':
|
927
897
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
928
898
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
929
899
|
([] if self._drop_input_cols else inputs)
|
930
900
|
+ outputs)
|
901
|
+
|
931
902
|
for prob_func in PROB_FUNCTIONS:
|
932
903
|
if hasattr(self, prob_func):
|
933
904
|
output_cols_prefix: str = f"{prob_func}_"
|