snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
23
23
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
24
24
  from snowflake.ml._internal import telemetry
25
25
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
26
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
- from snowflake.snowpark import DataFrame
28
+ from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
30
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
30
33
  from snowflake.ml.modeling._internal.estimator_utils import (
31
34
  gather_dependencies,
32
35
  original_estimator_has_callable,
33
36
  transform_snowml_obj_to_sklearn_obj,
34
37
  validate_sklearn_args,
35
38
  )
36
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
37
39
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
40
 
39
41
  from snowflake.ml.model.model_signature import (
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
53
55
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
54
56
 
55
57
 
56
-
57
58
  class GenericUnivariateSelect(BaseTransformer):
58
59
  r"""Univariate feature selector with configurable strategy
59
60
  For more details on this class, see [sklearn.feature_selection.GenericUnivariateSelect]
@@ -61,45 +62,61 @@ class GenericUnivariateSelect(BaseTransformer):
61
62
 
62
63
  Parameters
63
64
  ----------
64
- score_func: callable, default=f_classif
65
- Function taking two arrays X and y, and returning a pair of arrays
66
- (scores, pvalues). For modes 'percentile' or 'kbest' it can return
67
- a single array scores.
68
-
69
- mode: {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}, default='percentile'
70
- Feature selection mode.
71
-
72
- param: "all", float or int, default=1e-5
73
- Parameter of the corresponding mode.
74
65
 
75
66
  input_cols: Optional[Union[str, List[str]]]
76
67
  A string or list of strings representing column names that contain features.
77
68
  If this parameter is not specified, all columns in the input DataFrame except
78
- the columns specified by label_cols and sample_weight_col parameters are
79
- considered input columns.
80
-
69
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
70
+ parameters are considered input columns. Input columns can also be set after
71
+ initialization with the `set_input_cols` method.
72
+
81
73
  label_cols: Optional[Union[str, List[str]]]
82
74
  A string or list of strings representing column names that contain labels.
83
- This is a required param for estimators, as there is no way to infer these
84
- columns. If this parameter is not specified, then object is fitted without
85
- labels (like a transformer).
75
+ Label columns must be specified with this parameter during initialization
76
+ or with the `set_label_cols` method before fitting.
86
77
 
87
78
  output_cols: Optional[Union[str, List[str]]]
88
79
  A string or list of strings representing column names that will store the
89
80
  output of predict and transform operations. The length of output_cols must
90
- match the expected number of output columns from the specific estimator or
81
+ match the expected number of output columns from the specific predictor or
91
82
  transformer class used.
92
- If this parameter is not specified, output column names are derived by
93
- adding an OUTPUT_ prefix to the label column names. These inferred output
94
- column names work for estimator's predict() method, but output_cols must
95
- be set explicitly for transformers.
83
+ If you omit this parameter, output column names are derived by adding an
84
+ OUTPUT_ prefix to the label column names for supervised estimators, or
85
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
86
+ work for predictors, but output_cols must be set explicitly for transformers.
87
+ In general, explicitly specifying output column names is clearer, especially
88
+ if you don’t specify the input column names.
89
+ To transform in place, pass the same names for input_cols and output_cols.
90
+ be set explicitly for transformers. Output columns can also be set after
91
+ initialization with the `set_output_cols` method.
96
92
 
97
93
  sample_weight_col: Optional[str]
98
94
  A string representing the column name containing the sample weights.
99
- This argument is only required when working with weighted datasets.
95
+ This argument is only required when working with weighted datasets. Sample
96
+ weight column can also be set after initialization with the
97
+ `set_sample_weight_col` method.
98
+
99
+ passthrough_cols: Optional[Union[str, List[str]]]
100
+ A string or a list of strings indicating column names to be excluded from any
101
+ operations (such as train, transform, or inference). These specified column(s)
102
+ will remain untouched throughout the process. This option is helpful in scenarios
103
+ requiring automatic input_cols inference, but need to avoid using specific
104
+ columns, like index columns, during training or inference. Passthrough columns
105
+ can also be set after initialization with the `set_passthrough_cols` method.
100
106
 
101
107
  drop_input_cols: Optional[bool], default=False
102
108
  If set, the response of predict(), transform() methods will not contain input columns.
109
+
110
+ score_func: callable, default=f_classif
111
+ Function taking two arrays X and y, and returning a pair of arrays
112
+ (scores, pvalues). For modes 'percentile' or 'kbest' it can return
113
+ a single array scores.
114
+
115
+ mode: {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}, default='percentile'
116
+ Feature selection mode.
117
+
118
+ param: "all", float or int, default=1e-5
119
+ Parameter of the corresponding mode.
103
120
  """
104
121
 
105
122
  def __init__( # type: ignore[no-untyped-def]
@@ -111,6 +128,7 @@ class GenericUnivariateSelect(BaseTransformer):
111
128
  input_cols: Optional[Union[str, Iterable[str]]] = None,
112
129
  output_cols: Optional[Union[str, Iterable[str]]] = None,
113
130
  label_cols: Optional[Union[str, Iterable[str]]] = None,
131
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
114
132
  drop_input_cols: Optional[bool] = False,
115
133
  sample_weight_col: Optional[str] = None,
116
134
  ) -> None:
@@ -119,9 +137,10 @@ class GenericUnivariateSelect(BaseTransformer):
119
137
  self.set_input_cols(input_cols)
120
138
  self.set_output_cols(output_cols)
121
139
  self.set_label_cols(label_cols)
140
+ self.set_passthrough_cols(passthrough_cols)
122
141
  self.set_drop_input_cols(drop_input_cols)
123
142
  self.set_sample_weight_col(sample_weight_col)
124
- deps = set(SklearnWrapperProvider().dependencies)
143
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
125
144
 
126
145
  self._deps = list(deps)
127
146
 
@@ -132,13 +151,14 @@ class GenericUnivariateSelect(BaseTransformer):
132
151
  args=init_args,
133
152
  klass=sklearn.feature_selection.GenericUnivariateSelect
134
153
  )
135
- self._sklearn_object = sklearn.feature_selection.GenericUnivariateSelect(
154
+ self._sklearn_object: Any = sklearn.feature_selection.GenericUnivariateSelect(
136
155
  **cleaned_up_init_args,
137
156
  )
138
157
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
139
158
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
140
159
  self._snowpark_cols: Optional[List[str]] = self.input_cols
141
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
160
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
161
+ self._autogenerated = True
142
162
 
143
163
  def _get_rand_id(self) -> str:
144
164
  """
@@ -149,24 +169,6 @@ class GenericUnivariateSelect(BaseTransformer):
149
169
  """
150
170
  return str(uuid4()).replace("-", "_").upper()
151
171
 
152
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
153
- """
154
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
155
-
156
- Args:
157
- dataset: Input dataset.
158
- """
159
- if not self.input_cols:
160
- cols = [
161
- c for c in dataset.columns
162
- if c not in self.get_label_cols() and c != self.sample_weight_col
163
- ]
164
- self.set_input_cols(input_cols=cols)
165
-
166
- if not self.output_cols:
167
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
168
- self.set_output_cols(output_cols=cols)
169
-
170
172
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GenericUnivariateSelect":
171
173
  """
172
174
  Input columns setter.
@@ -212,54 +214,48 @@ class GenericUnivariateSelect(BaseTransformer):
212
214
  self
213
215
  """
214
216
  self._infer_input_output_cols(dataset)
215
- if isinstance(dataset, pd.DataFrame):
216
- assert self._sklearn_object is not None # keep mypy happy
217
- self._sklearn_object = self._handlers.fit_pandas(
218
- dataset,
219
- self._sklearn_object,
220
- self.input_cols,
221
- self.label_cols,
222
- self.sample_weight_col
223
- )
224
- elif isinstance(dataset, DataFrame):
225
- self._fit_snowpark(dataset)
226
- else:
227
- raise TypeError(
228
- f"Unexpected dataset type: {type(dataset)}."
229
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
230
- )
217
+ if isinstance(dataset, DataFrame):
218
+ session = dataset._session
219
+ assert session is not None # keep mypy happy
220
+ # Validate that key package version in user workspace are supported in snowflake conda channel
221
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
222
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
223
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
224
+
225
+ # Specify input columns so column pruning will be enforced
226
+ selected_cols = self._get_active_columns()
227
+ if len(selected_cols) > 0:
228
+ dataset = dataset.select(selected_cols)
229
+
230
+ self._snowpark_cols = dataset.select(self.input_cols).columns
231
+
232
+ # If we are already in a stored procedure, no need to kick off another one.
233
+ if SNOWML_SPROC_ENV in os.environ:
234
+ statement_params = telemetry.get_function_usage_statement_params(
235
+ project=_PROJECT,
236
+ subproject=_SUBPROJECT,
237
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GenericUnivariateSelect.__class__.__name__),
238
+ api_calls=[Session.call],
239
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
240
+ )
241
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
242
+ pd_df.columns = dataset.columns
243
+ dataset = pd_df
244
+
245
+ model_trainer = ModelTrainerBuilder.build(
246
+ estimator=self._sklearn_object,
247
+ dataset=dataset,
248
+ input_cols=self.input_cols,
249
+ label_cols=self.label_cols,
250
+ sample_weight_col=self.sample_weight_col,
251
+ autogenerated=self._autogenerated,
252
+ subproject=_SUBPROJECT
253
+ )
254
+ self._sklearn_object = model_trainer.train()
231
255
  self._is_fitted = True
232
256
  self._get_model_signatures(dataset)
233
257
  return self
234
258
 
235
- def _fit_snowpark(self, dataset: DataFrame) -> None:
236
- session = dataset._session
237
- assert session is not None # keep mypy happy
238
- # Validate that key package version in user workspace are supported in snowflake conda channel
239
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
240
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
241
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
242
-
243
- # Specify input columns so column pruning will be enforced
244
- selected_cols = self._get_active_columns()
245
- if len(selected_cols) > 0:
246
- dataset = dataset.select(selected_cols)
247
-
248
- estimator = self._sklearn_object
249
- assert estimator is not None # Keep mypy happy
250
-
251
- self._snowpark_cols = dataset.select(self.input_cols).columns
252
-
253
- self._sklearn_object = self._handlers.fit_snowpark(
254
- dataset,
255
- session,
256
- estimator,
257
- ["snowflake-snowpark-python"] + self._get_dependencies(),
258
- self.input_cols,
259
- self.label_cols,
260
- self.sample_weight_col,
261
- )
262
-
263
259
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
264
260
  if self._drop_input_cols:
265
261
  return []
@@ -447,11 +443,6 @@ class GenericUnivariateSelect(BaseTransformer):
447
443
  subproject=_SUBPROJECT,
448
444
  custom_tags=dict([("autogen", True)]),
449
445
  )
450
- @telemetry.add_stmt_params_to_df(
451
- project=_PROJECT,
452
- subproject=_SUBPROJECT,
453
- custom_tags=dict([("autogen", True)]),
454
- )
455
446
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
456
447
  """Method not supported for this class.
457
448
 
@@ -503,11 +494,6 @@ class GenericUnivariateSelect(BaseTransformer):
503
494
  subproject=_SUBPROJECT,
504
495
  custom_tags=dict([("autogen", True)]),
505
496
  )
506
- @telemetry.add_stmt_params_to_df(
507
- project=_PROJECT,
508
- subproject=_SUBPROJECT,
509
- custom_tags=dict([("autogen", True)]),
510
- )
511
497
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
512
498
  """Reduce X to the selected features
513
499
  For more details on this function, see [sklearn.feature_selection.GenericUnivariateSelect.transform]
@@ -566,7 +552,8 @@ class GenericUnivariateSelect(BaseTransformer):
566
552
  if False:
567
553
  self.fit(dataset)
568
554
  assert self._sklearn_object is not None
569
- return self._sklearn_object.labels_
555
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
556
+ return labels
570
557
  else:
571
558
  raise NotImplementedError
572
559
 
@@ -602,6 +589,7 @@ class GenericUnivariateSelect(BaseTransformer):
602
589
  output_cols = []
603
590
 
604
591
  # Make sure column names are valid snowflake identifiers.
592
+ assert output_cols is not None # Make MyPy happy
605
593
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
606
594
 
607
595
  return rv
@@ -612,11 +600,6 @@ class GenericUnivariateSelect(BaseTransformer):
612
600
  subproject=_SUBPROJECT,
613
601
  custom_tags=dict([("autogen", True)]),
614
602
  )
615
- @telemetry.add_stmt_params_to_df(
616
- project=_PROJECT,
617
- subproject=_SUBPROJECT,
618
- custom_tags=dict([("autogen", True)]),
619
- )
620
603
  def predict_proba(
621
604
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
622
605
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -657,11 +640,6 @@ class GenericUnivariateSelect(BaseTransformer):
657
640
  subproject=_SUBPROJECT,
658
641
  custom_tags=dict([("autogen", True)]),
659
642
  )
660
- @telemetry.add_stmt_params_to_df(
661
- project=_PROJECT,
662
- subproject=_SUBPROJECT,
663
- custom_tags=dict([("autogen", True)]),
664
- )
665
643
  def predict_log_proba(
666
644
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
667
645
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -698,16 +676,6 @@ class GenericUnivariateSelect(BaseTransformer):
698
676
  return output_df
699
677
 
700
678
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
701
- @telemetry.send_api_usage_telemetry(
702
- project=_PROJECT,
703
- subproject=_SUBPROJECT,
704
- custom_tags=dict([("autogen", True)]),
705
- )
706
- @telemetry.add_stmt_params_to_df(
707
- project=_PROJECT,
708
- subproject=_SUBPROJECT,
709
- custom_tags=dict([("autogen", True)]),
710
- )
711
679
  def decision_function(
712
680
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
713
681
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -806,11 +774,6 @@ class GenericUnivariateSelect(BaseTransformer):
806
774
  subproject=_SUBPROJECT,
807
775
  custom_tags=dict([("autogen", True)]),
808
776
  )
809
- @telemetry.add_stmt_params_to_df(
810
- project=_PROJECT,
811
- subproject=_SUBPROJECT,
812
- custom_tags=dict([("autogen", True)]),
813
- )
814
777
  def kneighbors(
815
778
  self,
816
779
  dataset: Union[DataFrame, pd.DataFrame],
@@ -870,18 +833,28 @@ class GenericUnivariateSelect(BaseTransformer):
870
833
  # For classifier, the type of predict is the same as the type of label
871
834
  if self._sklearn_object._estimator_type == 'classifier':
872
835
  # label columns is the desired type for output
873
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
836
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
874
837
  # rename the output columns
875
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
838
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
839
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
840
+ ([] if self._drop_input_cols else inputs)
841
+ + outputs)
842
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
843
+ # For outlier models, returns -1 for outliers and 1 for inliers.
844
+ # Clusterer returns int64 cluster labels.
845
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
846
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
876
847
  self._model_signature_dict["predict"] = ModelSignature(inputs,
877
848
  ([] if self._drop_input_cols else inputs)
878
849
  + outputs)
850
+
879
851
  # For regressor, the type of predict is float64
880
852
  elif self._sklearn_object._estimator_type == 'regressor':
881
853
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
882
854
  self._model_signature_dict["predict"] = ModelSignature(inputs,
883
855
  ([] if self._drop_input_cols else inputs)
884
856
  + outputs)
857
+
885
858
  for prob_func in PROB_FUNCTIONS:
886
859
  if hasattr(self, prob_func):
887
860
  output_cols_prefix: str = f"{prob_func}_"