snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
|
|
23
23
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
24
24
|
from snowflake.ml._internal import telemetry
|
25
25
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
26
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
26
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
|
-
from snowflake.snowpark import DataFrame
|
28
|
+
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
30
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
30
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
31
34
|
gather_dependencies,
|
32
35
|
original_estimator_has_callable,
|
33
36
|
transform_snowml_obj_to_sklearn_obj,
|
34
37
|
validate_sklearn_args,
|
35
38
|
)
|
36
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
37
39
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
38
40
|
|
39
41
|
from snowflake.ml.model.model_signature import (
|
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
|
|
53
55
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
|
54
56
|
|
55
57
|
|
56
|
-
|
57
58
|
class GenericUnivariateSelect(BaseTransformer):
|
58
59
|
r"""Univariate feature selector with configurable strategy
|
59
60
|
For more details on this class, see [sklearn.feature_selection.GenericUnivariateSelect]
|
@@ -61,45 +62,61 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
61
62
|
|
62
63
|
Parameters
|
63
64
|
----------
|
64
|
-
score_func: callable, default=f_classif
|
65
|
-
Function taking two arrays X and y, and returning a pair of arrays
|
66
|
-
(scores, pvalues). For modes 'percentile' or 'kbest' it can return
|
67
|
-
a single array scores.
|
68
|
-
|
69
|
-
mode: {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}, default='percentile'
|
70
|
-
Feature selection mode.
|
71
|
-
|
72
|
-
param: "all", float or int, default=1e-5
|
73
|
-
Parameter of the corresponding mode.
|
74
65
|
|
75
66
|
input_cols: Optional[Union[str, List[str]]]
|
76
67
|
A string or list of strings representing column names that contain features.
|
77
68
|
If this parameter is not specified, all columns in the input DataFrame except
|
78
|
-
the columns specified by label_cols
|
79
|
-
considered input columns.
|
80
|
-
|
69
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
70
|
+
parameters are considered input columns. Input columns can also be set after
|
71
|
+
initialization with the `set_input_cols` method.
|
72
|
+
|
81
73
|
label_cols: Optional[Union[str, List[str]]]
|
82
74
|
A string or list of strings representing column names that contain labels.
|
83
|
-
|
84
|
-
|
85
|
-
labels (like a transformer).
|
75
|
+
Label columns must be specified with this parameter during initialization
|
76
|
+
or with the `set_label_cols` method before fitting.
|
86
77
|
|
87
78
|
output_cols: Optional[Union[str, List[str]]]
|
88
79
|
A string or list of strings representing column names that will store the
|
89
80
|
output of predict and transform operations. The length of output_cols must
|
90
|
-
match the expected number of output columns from the specific
|
81
|
+
match the expected number of output columns from the specific predictor or
|
91
82
|
transformer class used.
|
92
|
-
If this parameter
|
93
|
-
|
94
|
-
|
95
|
-
be set explicitly for transformers.
|
83
|
+
If you omit this parameter, output column names are derived by adding an
|
84
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
85
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
86
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
87
|
+
In general, explicitly specifying output column names is clearer, especially
|
88
|
+
if you don’t specify the input column names.
|
89
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
90
|
+
be set explicitly for transformers. Output columns can also be set after
|
91
|
+
initialization with the `set_output_cols` method.
|
96
92
|
|
97
93
|
sample_weight_col: Optional[str]
|
98
94
|
A string representing the column name containing the sample weights.
|
99
|
-
This argument is only required when working with weighted datasets.
|
95
|
+
This argument is only required when working with weighted datasets. Sample
|
96
|
+
weight column can also be set after initialization with the
|
97
|
+
`set_sample_weight_col` method.
|
98
|
+
|
99
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
100
|
+
A string or a list of strings indicating column names to be excluded from any
|
101
|
+
operations (such as train, transform, or inference). These specified column(s)
|
102
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
103
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
104
|
+
columns, like index columns, during training or inference. Passthrough columns
|
105
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
100
106
|
|
101
107
|
drop_input_cols: Optional[bool], default=False
|
102
108
|
If set, the response of predict(), transform() methods will not contain input columns.
|
109
|
+
|
110
|
+
score_func: callable, default=f_classif
|
111
|
+
Function taking two arrays X and y, and returning a pair of arrays
|
112
|
+
(scores, pvalues). For modes 'percentile' or 'kbest' it can return
|
113
|
+
a single array scores.
|
114
|
+
|
115
|
+
mode: {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}, default='percentile'
|
116
|
+
Feature selection mode.
|
117
|
+
|
118
|
+
param: "all", float or int, default=1e-5
|
119
|
+
Parameter of the corresponding mode.
|
103
120
|
"""
|
104
121
|
|
105
122
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -111,6 +128,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
111
128
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
112
129
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
113
130
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
131
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
114
132
|
drop_input_cols: Optional[bool] = False,
|
115
133
|
sample_weight_col: Optional[str] = None,
|
116
134
|
) -> None:
|
@@ -119,9 +137,10 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
119
137
|
self.set_input_cols(input_cols)
|
120
138
|
self.set_output_cols(output_cols)
|
121
139
|
self.set_label_cols(label_cols)
|
140
|
+
self.set_passthrough_cols(passthrough_cols)
|
122
141
|
self.set_drop_input_cols(drop_input_cols)
|
123
142
|
self.set_sample_weight_col(sample_weight_col)
|
124
|
-
deps = set(
|
143
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
125
144
|
|
126
145
|
self._deps = list(deps)
|
127
146
|
|
@@ -132,13 +151,14 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
132
151
|
args=init_args,
|
133
152
|
klass=sklearn.feature_selection.GenericUnivariateSelect
|
134
153
|
)
|
135
|
-
self._sklearn_object = sklearn.feature_selection.GenericUnivariateSelect(
|
154
|
+
self._sklearn_object: Any = sklearn.feature_selection.GenericUnivariateSelect(
|
136
155
|
**cleaned_up_init_args,
|
137
156
|
)
|
138
157
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
139
158
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
140
159
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
141
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
160
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
161
|
+
self._autogenerated = True
|
142
162
|
|
143
163
|
def _get_rand_id(self) -> str:
|
144
164
|
"""
|
@@ -149,24 +169,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
149
169
|
"""
|
150
170
|
return str(uuid4()).replace("-", "_").upper()
|
151
171
|
|
152
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
153
|
-
"""
|
154
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
155
|
-
|
156
|
-
Args:
|
157
|
-
dataset: Input dataset.
|
158
|
-
"""
|
159
|
-
if not self.input_cols:
|
160
|
-
cols = [
|
161
|
-
c for c in dataset.columns
|
162
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
163
|
-
]
|
164
|
-
self.set_input_cols(input_cols=cols)
|
165
|
-
|
166
|
-
if not self.output_cols:
|
167
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
168
|
-
self.set_output_cols(output_cols=cols)
|
169
|
-
|
170
172
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GenericUnivariateSelect":
|
171
173
|
"""
|
172
174
|
Input columns setter.
|
@@ -212,54 +214,48 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
212
214
|
self
|
213
215
|
"""
|
214
216
|
self._infer_input_output_cols(dataset)
|
215
|
-
if isinstance(dataset,
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
self.
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
217
|
+
if isinstance(dataset, DataFrame):
|
218
|
+
session = dataset._session
|
219
|
+
assert session is not None # keep mypy happy
|
220
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
221
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
222
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
223
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
224
|
+
|
225
|
+
# Specify input columns so column pruning will be enforced
|
226
|
+
selected_cols = self._get_active_columns()
|
227
|
+
if len(selected_cols) > 0:
|
228
|
+
dataset = dataset.select(selected_cols)
|
229
|
+
|
230
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
231
|
+
|
232
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
233
|
+
if SNOWML_SPROC_ENV in os.environ:
|
234
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
235
|
+
project=_PROJECT,
|
236
|
+
subproject=_SUBPROJECT,
|
237
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GenericUnivariateSelect.__class__.__name__),
|
238
|
+
api_calls=[Session.call],
|
239
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
240
|
+
)
|
241
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
242
|
+
pd_df.columns = dataset.columns
|
243
|
+
dataset = pd_df
|
244
|
+
|
245
|
+
model_trainer = ModelTrainerBuilder.build(
|
246
|
+
estimator=self._sklearn_object,
|
247
|
+
dataset=dataset,
|
248
|
+
input_cols=self.input_cols,
|
249
|
+
label_cols=self.label_cols,
|
250
|
+
sample_weight_col=self.sample_weight_col,
|
251
|
+
autogenerated=self._autogenerated,
|
252
|
+
subproject=_SUBPROJECT
|
253
|
+
)
|
254
|
+
self._sklearn_object = model_trainer.train()
|
231
255
|
self._is_fitted = True
|
232
256
|
self._get_model_signatures(dataset)
|
233
257
|
return self
|
234
258
|
|
235
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
236
|
-
session = dataset._session
|
237
|
-
assert session is not None # keep mypy happy
|
238
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
239
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
240
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
241
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
242
|
-
|
243
|
-
# Specify input columns so column pruning will be enforced
|
244
|
-
selected_cols = self._get_active_columns()
|
245
|
-
if len(selected_cols) > 0:
|
246
|
-
dataset = dataset.select(selected_cols)
|
247
|
-
|
248
|
-
estimator = self._sklearn_object
|
249
|
-
assert estimator is not None # Keep mypy happy
|
250
|
-
|
251
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
252
|
-
|
253
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
254
|
-
dataset,
|
255
|
-
session,
|
256
|
-
estimator,
|
257
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
258
|
-
self.input_cols,
|
259
|
-
self.label_cols,
|
260
|
-
self.sample_weight_col,
|
261
|
-
)
|
262
|
-
|
263
259
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
264
260
|
if self._drop_input_cols:
|
265
261
|
return []
|
@@ -447,11 +443,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
447
443
|
subproject=_SUBPROJECT,
|
448
444
|
custom_tags=dict([("autogen", True)]),
|
449
445
|
)
|
450
|
-
@telemetry.add_stmt_params_to_df(
|
451
|
-
project=_PROJECT,
|
452
|
-
subproject=_SUBPROJECT,
|
453
|
-
custom_tags=dict([("autogen", True)]),
|
454
|
-
)
|
455
446
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
456
447
|
"""Method not supported for this class.
|
457
448
|
|
@@ -503,11 +494,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
503
494
|
subproject=_SUBPROJECT,
|
504
495
|
custom_tags=dict([("autogen", True)]),
|
505
496
|
)
|
506
|
-
@telemetry.add_stmt_params_to_df(
|
507
|
-
project=_PROJECT,
|
508
|
-
subproject=_SUBPROJECT,
|
509
|
-
custom_tags=dict([("autogen", True)]),
|
510
|
-
)
|
511
497
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
512
498
|
"""Reduce X to the selected features
|
513
499
|
For more details on this function, see [sklearn.feature_selection.GenericUnivariateSelect.transform]
|
@@ -566,7 +552,8 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
566
552
|
if False:
|
567
553
|
self.fit(dataset)
|
568
554
|
assert self._sklearn_object is not None
|
569
|
-
|
555
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
556
|
+
return labels
|
570
557
|
else:
|
571
558
|
raise NotImplementedError
|
572
559
|
|
@@ -602,6 +589,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
602
589
|
output_cols = []
|
603
590
|
|
604
591
|
# Make sure column names are valid snowflake identifiers.
|
592
|
+
assert output_cols is not None # Make MyPy happy
|
605
593
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
606
594
|
|
607
595
|
return rv
|
@@ -612,11 +600,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
612
600
|
subproject=_SUBPROJECT,
|
613
601
|
custom_tags=dict([("autogen", True)]),
|
614
602
|
)
|
615
|
-
@telemetry.add_stmt_params_to_df(
|
616
|
-
project=_PROJECT,
|
617
|
-
subproject=_SUBPROJECT,
|
618
|
-
custom_tags=dict([("autogen", True)]),
|
619
|
-
)
|
620
603
|
def predict_proba(
|
621
604
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
622
605
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -657,11 +640,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
657
640
|
subproject=_SUBPROJECT,
|
658
641
|
custom_tags=dict([("autogen", True)]),
|
659
642
|
)
|
660
|
-
@telemetry.add_stmt_params_to_df(
|
661
|
-
project=_PROJECT,
|
662
|
-
subproject=_SUBPROJECT,
|
663
|
-
custom_tags=dict([("autogen", True)]),
|
664
|
-
)
|
665
643
|
def predict_log_proba(
|
666
644
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
667
645
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -698,16 +676,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
698
676
|
return output_df
|
699
677
|
|
700
678
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
701
|
-
@telemetry.send_api_usage_telemetry(
|
702
|
-
project=_PROJECT,
|
703
|
-
subproject=_SUBPROJECT,
|
704
|
-
custom_tags=dict([("autogen", True)]),
|
705
|
-
)
|
706
|
-
@telemetry.add_stmt_params_to_df(
|
707
|
-
project=_PROJECT,
|
708
|
-
subproject=_SUBPROJECT,
|
709
|
-
custom_tags=dict([("autogen", True)]),
|
710
|
-
)
|
711
679
|
def decision_function(
|
712
680
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
713
681
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -806,11 +774,6 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
806
774
|
subproject=_SUBPROJECT,
|
807
775
|
custom_tags=dict([("autogen", True)]),
|
808
776
|
)
|
809
|
-
@telemetry.add_stmt_params_to_df(
|
810
|
-
project=_PROJECT,
|
811
|
-
subproject=_SUBPROJECT,
|
812
|
-
custom_tags=dict([("autogen", True)]),
|
813
|
-
)
|
814
777
|
def kneighbors(
|
815
778
|
self,
|
816
779
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -870,18 +833,28 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
870
833
|
# For classifier, the type of predict is the same as the type of label
|
871
834
|
if self._sklearn_object._estimator_type == 'classifier':
|
872
835
|
# label columns is the desired type for output
|
873
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
836
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
874
837
|
# rename the output columns
|
875
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
838
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
839
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
840
|
+
([] if self._drop_input_cols else inputs)
|
841
|
+
+ outputs)
|
842
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
843
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
844
|
+
# Clusterer returns int64 cluster labels.
|
845
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
846
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
876
847
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
877
848
|
([] if self._drop_input_cols else inputs)
|
878
849
|
+ outputs)
|
850
|
+
|
879
851
|
# For regressor, the type of predict is float64
|
880
852
|
elif self._sklearn_object._estimator_type == 'regressor':
|
881
853
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
882
854
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
883
855
|
([] if self._drop_input_cols else inputs)
|
884
856
|
+ outputs)
|
857
|
+
|
885
858
|
for prob_func in PROB_FUNCTIONS:
|
886
859
|
if hasattr(self, prob_func):
|
887
860
|
output_cols_prefix: str = f"{prob_func}_"
|