snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class ExtraTreesRegressor(BaseTransformer):
|
57
58
|
r"""An extra-trees regressor
|
58
59
|
For more details on this class, see [sklearn.ensemble.ExtraTreesRegressor]
|
@@ -60,6 +61,51 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_estimators: int, default=100
|
64
110
|
The number of trees in the forest.
|
65
111
|
|
@@ -192,35 +238,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
192
238
|
- If int, then draw `max_samples` samples.
|
193
239
|
- If float, then draw `max_samples * X.shape[0]` samples. Thus,
|
194
240
|
`max_samples` should be in the interval `(0.0, 1.0]`.
|
195
|
-
|
196
|
-
input_cols: Optional[Union[str, List[str]]]
|
197
|
-
A string or list of strings representing column names that contain features.
|
198
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
199
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
200
|
-
considered input columns.
|
201
|
-
|
202
|
-
label_cols: Optional[Union[str, List[str]]]
|
203
|
-
A string or list of strings representing column names that contain labels.
|
204
|
-
This is a required param for estimators, as there is no way to infer these
|
205
|
-
columns. If this parameter is not specified, then object is fitted without
|
206
|
-
labels (like a transformer).
|
207
|
-
|
208
|
-
output_cols: Optional[Union[str, List[str]]]
|
209
|
-
A string or list of strings representing column names that will store the
|
210
|
-
output of predict and transform operations. The length of output_cols must
|
211
|
-
match the expected number of output columns from the specific estimator or
|
212
|
-
transformer class used.
|
213
|
-
If this parameter is not specified, output column names are derived by
|
214
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
215
|
-
column names work for estimator's predict() method, but output_cols must
|
216
|
-
be set explicitly for transformers.
|
217
|
-
|
218
|
-
sample_weight_col: Optional[str]
|
219
|
-
A string representing the column name containing the sample weights.
|
220
|
-
This argument is only required when working with weighted datasets.
|
221
|
-
|
222
|
-
drop_input_cols: Optional[bool], default=False
|
223
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
224
241
|
"""
|
225
242
|
|
226
243
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -246,6 +263,7 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
246
263
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
247
264
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
248
265
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
266
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
249
267
|
drop_input_cols: Optional[bool] = False,
|
250
268
|
sample_weight_col: Optional[str] = None,
|
251
269
|
) -> None:
|
@@ -254,9 +272,10 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
254
272
|
self.set_input_cols(input_cols)
|
255
273
|
self.set_output_cols(output_cols)
|
256
274
|
self.set_label_cols(label_cols)
|
275
|
+
self.set_passthrough_cols(passthrough_cols)
|
257
276
|
self.set_drop_input_cols(drop_input_cols)
|
258
277
|
self.set_sample_weight_col(sample_weight_col)
|
259
|
-
deps = set(
|
278
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
260
279
|
|
261
280
|
self._deps = list(deps)
|
262
281
|
|
@@ -281,13 +300,14 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
281
300
|
args=init_args,
|
282
301
|
klass=sklearn.ensemble.ExtraTreesRegressor
|
283
302
|
)
|
284
|
-
self._sklearn_object = sklearn.ensemble.ExtraTreesRegressor(
|
303
|
+
self._sklearn_object: Any = sklearn.ensemble.ExtraTreesRegressor(
|
285
304
|
**cleaned_up_init_args,
|
286
305
|
)
|
287
306
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
288
307
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
289
308
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
290
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
309
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
310
|
+
self._autogenerated = True
|
291
311
|
|
292
312
|
def _get_rand_id(self) -> str:
|
293
313
|
"""
|
@@ -298,24 +318,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
298
318
|
"""
|
299
319
|
return str(uuid4()).replace("-", "_").upper()
|
300
320
|
|
301
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
302
|
-
"""
|
303
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
304
|
-
|
305
|
-
Args:
|
306
|
-
dataset: Input dataset.
|
307
|
-
"""
|
308
|
-
if not self.input_cols:
|
309
|
-
cols = [
|
310
|
-
c for c in dataset.columns
|
311
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
312
|
-
]
|
313
|
-
self.set_input_cols(input_cols=cols)
|
314
|
-
|
315
|
-
if not self.output_cols:
|
316
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
317
|
-
self.set_output_cols(output_cols=cols)
|
318
|
-
|
319
321
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ExtraTreesRegressor":
|
320
322
|
"""
|
321
323
|
Input columns setter.
|
@@ -361,54 +363,48 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
361
363
|
self
|
362
364
|
"""
|
363
365
|
self._infer_input_output_cols(dataset)
|
364
|
-
if isinstance(dataset,
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
self.
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
366
|
+
if isinstance(dataset, DataFrame):
|
367
|
+
session = dataset._session
|
368
|
+
assert session is not None # keep mypy happy
|
369
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
370
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
371
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
372
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
373
|
+
|
374
|
+
# Specify input columns so column pruning will be enforced
|
375
|
+
selected_cols = self._get_active_columns()
|
376
|
+
if len(selected_cols) > 0:
|
377
|
+
dataset = dataset.select(selected_cols)
|
378
|
+
|
379
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
380
|
+
|
381
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
382
|
+
if SNOWML_SPROC_ENV in os.environ:
|
383
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
384
|
+
project=_PROJECT,
|
385
|
+
subproject=_SUBPROJECT,
|
386
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesRegressor.__class__.__name__),
|
387
|
+
api_calls=[Session.call],
|
388
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
389
|
+
)
|
390
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
391
|
+
pd_df.columns = dataset.columns
|
392
|
+
dataset = pd_df
|
393
|
+
|
394
|
+
model_trainer = ModelTrainerBuilder.build(
|
395
|
+
estimator=self._sklearn_object,
|
396
|
+
dataset=dataset,
|
397
|
+
input_cols=self.input_cols,
|
398
|
+
label_cols=self.label_cols,
|
399
|
+
sample_weight_col=self.sample_weight_col,
|
400
|
+
autogenerated=self._autogenerated,
|
401
|
+
subproject=_SUBPROJECT
|
402
|
+
)
|
403
|
+
self._sklearn_object = model_trainer.train()
|
380
404
|
self._is_fitted = True
|
381
405
|
self._get_model_signatures(dataset)
|
382
406
|
return self
|
383
407
|
|
384
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
385
|
-
session = dataset._session
|
386
|
-
assert session is not None # keep mypy happy
|
387
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
388
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
389
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
390
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
391
|
-
|
392
|
-
# Specify input columns so column pruning will be enforced
|
393
|
-
selected_cols = self._get_active_columns()
|
394
|
-
if len(selected_cols) > 0:
|
395
|
-
dataset = dataset.select(selected_cols)
|
396
|
-
|
397
|
-
estimator = self._sklearn_object
|
398
|
-
assert estimator is not None # Keep mypy happy
|
399
|
-
|
400
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
401
|
-
|
402
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
403
|
-
dataset,
|
404
|
-
session,
|
405
|
-
estimator,
|
406
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
407
|
-
self.input_cols,
|
408
|
-
self.label_cols,
|
409
|
-
self.sample_weight_col,
|
410
|
-
)
|
411
|
-
|
412
408
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
413
409
|
if self._drop_input_cols:
|
414
410
|
return []
|
@@ -596,11 +592,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
596
592
|
subproject=_SUBPROJECT,
|
597
593
|
custom_tags=dict([("autogen", True)]),
|
598
594
|
)
|
599
|
-
@telemetry.add_stmt_params_to_df(
|
600
|
-
project=_PROJECT,
|
601
|
-
subproject=_SUBPROJECT,
|
602
|
-
custom_tags=dict([("autogen", True)]),
|
603
|
-
)
|
604
595
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
605
596
|
"""Predict regression target for X
|
606
597
|
For more details on this function, see [sklearn.ensemble.ExtraTreesRegressor.predict]
|
@@ -654,11 +645,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
654
645
|
subproject=_SUBPROJECT,
|
655
646
|
custom_tags=dict([("autogen", True)]),
|
656
647
|
)
|
657
|
-
@telemetry.add_stmt_params_to_df(
|
658
|
-
project=_PROJECT,
|
659
|
-
subproject=_SUBPROJECT,
|
660
|
-
custom_tags=dict([("autogen", True)]),
|
661
|
-
)
|
662
648
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
663
649
|
"""Method not supported for this class.
|
664
650
|
|
@@ -715,7 +701,8 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
715
701
|
if False:
|
716
702
|
self.fit(dataset)
|
717
703
|
assert self._sklearn_object is not None
|
718
|
-
|
704
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
705
|
+
return labels
|
719
706
|
else:
|
720
707
|
raise NotImplementedError
|
721
708
|
|
@@ -751,6 +738,7 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
751
738
|
output_cols = []
|
752
739
|
|
753
740
|
# Make sure column names are valid snowflake identifiers.
|
741
|
+
assert output_cols is not None # Make MyPy happy
|
754
742
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
755
743
|
|
756
744
|
return rv
|
@@ -761,11 +749,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
761
749
|
subproject=_SUBPROJECT,
|
762
750
|
custom_tags=dict([("autogen", True)]),
|
763
751
|
)
|
764
|
-
@telemetry.add_stmt_params_to_df(
|
765
|
-
project=_PROJECT,
|
766
|
-
subproject=_SUBPROJECT,
|
767
|
-
custom_tags=dict([("autogen", True)]),
|
768
|
-
)
|
769
752
|
def predict_proba(
|
770
753
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
771
754
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -806,11 +789,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
806
789
|
subproject=_SUBPROJECT,
|
807
790
|
custom_tags=dict([("autogen", True)]),
|
808
791
|
)
|
809
|
-
@telemetry.add_stmt_params_to_df(
|
810
|
-
project=_PROJECT,
|
811
|
-
subproject=_SUBPROJECT,
|
812
|
-
custom_tags=dict([("autogen", True)]),
|
813
|
-
)
|
814
792
|
def predict_log_proba(
|
815
793
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
816
794
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -847,16 +825,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
847
825
|
return output_df
|
848
826
|
|
849
827
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
850
|
-
@telemetry.send_api_usage_telemetry(
|
851
|
-
project=_PROJECT,
|
852
|
-
subproject=_SUBPROJECT,
|
853
|
-
custom_tags=dict([("autogen", True)]),
|
854
|
-
)
|
855
|
-
@telemetry.add_stmt_params_to_df(
|
856
|
-
project=_PROJECT,
|
857
|
-
subproject=_SUBPROJECT,
|
858
|
-
custom_tags=dict([("autogen", True)]),
|
859
|
-
)
|
860
828
|
def decision_function(
|
861
829
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
862
830
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -957,11 +925,6 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
957
925
|
subproject=_SUBPROJECT,
|
958
926
|
custom_tags=dict([("autogen", True)]),
|
959
927
|
)
|
960
|
-
@telemetry.add_stmt_params_to_df(
|
961
|
-
project=_PROJECT,
|
962
|
-
subproject=_SUBPROJECT,
|
963
|
-
custom_tags=dict([("autogen", True)]),
|
964
|
-
)
|
965
928
|
def kneighbors(
|
966
929
|
self,
|
967
930
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1021,18 +984,28 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
1021
984
|
# For classifier, the type of predict is the same as the type of label
|
1022
985
|
if self._sklearn_object._estimator_type == 'classifier':
|
1023
986
|
# label columns is the desired type for output
|
1024
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
987
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1025
988
|
# rename the output columns
|
1026
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
989
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1027
990
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1028
991
|
([] if self._drop_input_cols else inputs)
|
1029
992
|
+ outputs)
|
993
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
994
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
995
|
+
# Clusterer returns int64 cluster labels.
|
996
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
997
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
998
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
999
|
+
([] if self._drop_input_cols else inputs)
|
1000
|
+
+ outputs)
|
1001
|
+
|
1030
1002
|
# For regressor, the type of predict is float64
|
1031
1003
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1032
1004
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1033
1005
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1034
1006
|
([] if self._drop_input_cols else inputs)
|
1035
1007
|
+ outputs)
|
1008
|
+
|
1036
1009
|
for prob_func in PROB_FUNCTIONS:
|
1037
1010
|
if hasattr(self, prob_func):
|
1038
1011
|
output_cols_prefix: str = f"{prob_func}_"
|