snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ExtraTreesRegressor(BaseTransformer):
57
58
  r"""An extra-trees regressor
58
59
  For more details on this class, see [sklearn.ensemble.ExtraTreesRegressor]
@@ -60,6 +61,51 @@ class ExtraTreesRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  n_estimators: int, default=100
64
110
  The number of trees in the forest.
65
111
 
@@ -192,35 +238,6 @@ class ExtraTreesRegressor(BaseTransformer):
192
238
  - If int, then draw `max_samples` samples.
193
239
  - If float, then draw `max_samples * X.shape[0]` samples. Thus,
194
240
  `max_samples` should be in the interval `(0.0, 1.0]`.
195
-
196
- input_cols: Optional[Union[str, List[str]]]
197
- A string or list of strings representing column names that contain features.
198
- If this parameter is not specified, all columns in the input DataFrame except
199
- the columns specified by label_cols and sample_weight_col parameters are
200
- considered input columns.
201
-
202
- label_cols: Optional[Union[str, List[str]]]
203
- A string or list of strings representing column names that contain labels.
204
- This is a required param for estimators, as there is no way to infer these
205
- columns. If this parameter is not specified, then object is fitted without
206
- labels (like a transformer).
207
-
208
- output_cols: Optional[Union[str, List[str]]]
209
- A string or list of strings representing column names that will store the
210
- output of predict and transform operations. The length of output_cols must
211
- match the expected number of output columns from the specific estimator or
212
- transformer class used.
213
- If this parameter is not specified, output column names are derived by
214
- adding an OUTPUT_ prefix to the label column names. These inferred output
215
- column names work for estimator's predict() method, but output_cols must
216
- be set explicitly for transformers.
217
-
218
- sample_weight_col: Optional[str]
219
- A string representing the column name containing the sample weights.
220
- This argument is only required when working with weighted datasets.
221
-
222
- drop_input_cols: Optional[bool], default=False
223
- If set, the response of predict(), transform() methods will not contain input columns.
224
241
  """
225
242
 
226
243
  def __init__( # type: ignore[no-untyped-def]
@@ -246,6 +263,7 @@ class ExtraTreesRegressor(BaseTransformer):
246
263
  input_cols: Optional[Union[str, Iterable[str]]] = None,
247
264
  output_cols: Optional[Union[str, Iterable[str]]] = None,
248
265
  label_cols: Optional[Union[str, Iterable[str]]] = None,
266
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
249
267
  drop_input_cols: Optional[bool] = False,
250
268
  sample_weight_col: Optional[str] = None,
251
269
  ) -> None:
@@ -254,9 +272,10 @@ class ExtraTreesRegressor(BaseTransformer):
254
272
  self.set_input_cols(input_cols)
255
273
  self.set_output_cols(output_cols)
256
274
  self.set_label_cols(label_cols)
275
+ self.set_passthrough_cols(passthrough_cols)
257
276
  self.set_drop_input_cols(drop_input_cols)
258
277
  self.set_sample_weight_col(sample_weight_col)
259
- deps = set(SklearnWrapperProvider().dependencies)
278
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
260
279
 
261
280
  self._deps = list(deps)
262
281
 
@@ -281,13 +300,14 @@ class ExtraTreesRegressor(BaseTransformer):
281
300
  args=init_args,
282
301
  klass=sklearn.ensemble.ExtraTreesRegressor
283
302
  )
284
- self._sklearn_object = sklearn.ensemble.ExtraTreesRegressor(
303
+ self._sklearn_object: Any = sklearn.ensemble.ExtraTreesRegressor(
285
304
  **cleaned_up_init_args,
286
305
  )
287
306
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
288
307
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
289
308
  self._snowpark_cols: Optional[List[str]] = self.input_cols
290
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
309
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
310
+ self._autogenerated = True
291
311
 
292
312
  def _get_rand_id(self) -> str:
293
313
  """
@@ -298,24 +318,6 @@ class ExtraTreesRegressor(BaseTransformer):
298
318
  """
299
319
  return str(uuid4()).replace("-", "_").upper()
300
320
 
301
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
302
- """
303
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
304
-
305
- Args:
306
- dataset: Input dataset.
307
- """
308
- if not self.input_cols:
309
- cols = [
310
- c for c in dataset.columns
311
- if c not in self.get_label_cols() and c != self.sample_weight_col
312
- ]
313
- self.set_input_cols(input_cols=cols)
314
-
315
- if not self.output_cols:
316
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
317
- self.set_output_cols(output_cols=cols)
318
-
319
321
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ExtraTreesRegressor":
320
322
  """
321
323
  Input columns setter.
@@ -361,54 +363,48 @@ class ExtraTreesRegressor(BaseTransformer):
361
363
  self
362
364
  """
363
365
  self._infer_input_output_cols(dataset)
364
- if isinstance(dataset, pd.DataFrame):
365
- assert self._sklearn_object is not None # keep mypy happy
366
- self._sklearn_object = self._handlers.fit_pandas(
367
- dataset,
368
- self._sklearn_object,
369
- self.input_cols,
370
- self.label_cols,
371
- self.sample_weight_col
372
- )
373
- elif isinstance(dataset, DataFrame):
374
- self._fit_snowpark(dataset)
375
- else:
376
- raise TypeError(
377
- f"Unexpected dataset type: {type(dataset)}."
378
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
379
- )
366
+ if isinstance(dataset, DataFrame):
367
+ session = dataset._session
368
+ assert session is not None # keep mypy happy
369
+ # Validate that key package version in user workspace are supported in snowflake conda channel
370
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
371
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
372
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
373
+
374
+ # Specify input columns so column pruning will be enforced
375
+ selected_cols = self._get_active_columns()
376
+ if len(selected_cols) > 0:
377
+ dataset = dataset.select(selected_cols)
378
+
379
+ self._snowpark_cols = dataset.select(self.input_cols).columns
380
+
381
+ # If we are already in a stored procedure, no need to kick off another one.
382
+ if SNOWML_SPROC_ENV in os.environ:
383
+ statement_params = telemetry.get_function_usage_statement_params(
384
+ project=_PROJECT,
385
+ subproject=_SUBPROJECT,
386
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesRegressor.__class__.__name__),
387
+ api_calls=[Session.call],
388
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
389
+ )
390
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
391
+ pd_df.columns = dataset.columns
392
+ dataset = pd_df
393
+
394
+ model_trainer = ModelTrainerBuilder.build(
395
+ estimator=self._sklearn_object,
396
+ dataset=dataset,
397
+ input_cols=self.input_cols,
398
+ label_cols=self.label_cols,
399
+ sample_weight_col=self.sample_weight_col,
400
+ autogenerated=self._autogenerated,
401
+ subproject=_SUBPROJECT
402
+ )
403
+ self._sklearn_object = model_trainer.train()
380
404
  self._is_fitted = True
381
405
  self._get_model_signatures(dataset)
382
406
  return self
383
407
 
384
- def _fit_snowpark(self, dataset: DataFrame) -> None:
385
- session = dataset._session
386
- assert session is not None # keep mypy happy
387
- # Validate that key package version in user workspace are supported in snowflake conda channel
388
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
389
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
390
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
391
-
392
- # Specify input columns so column pruning will be enforced
393
- selected_cols = self._get_active_columns()
394
- if len(selected_cols) > 0:
395
- dataset = dataset.select(selected_cols)
396
-
397
- estimator = self._sklearn_object
398
- assert estimator is not None # Keep mypy happy
399
-
400
- self._snowpark_cols = dataset.select(self.input_cols).columns
401
-
402
- self._sklearn_object = self._handlers.fit_snowpark(
403
- dataset,
404
- session,
405
- estimator,
406
- ["snowflake-snowpark-python"] + self._get_dependencies(),
407
- self.input_cols,
408
- self.label_cols,
409
- self.sample_weight_col,
410
- )
411
-
412
408
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
413
409
  if self._drop_input_cols:
414
410
  return []
@@ -596,11 +592,6 @@ class ExtraTreesRegressor(BaseTransformer):
596
592
  subproject=_SUBPROJECT,
597
593
  custom_tags=dict([("autogen", True)]),
598
594
  )
599
- @telemetry.add_stmt_params_to_df(
600
- project=_PROJECT,
601
- subproject=_SUBPROJECT,
602
- custom_tags=dict([("autogen", True)]),
603
- )
604
595
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
605
596
  """Predict regression target for X
606
597
  For more details on this function, see [sklearn.ensemble.ExtraTreesRegressor.predict]
@@ -654,11 +645,6 @@ class ExtraTreesRegressor(BaseTransformer):
654
645
  subproject=_SUBPROJECT,
655
646
  custom_tags=dict([("autogen", True)]),
656
647
  )
657
- @telemetry.add_stmt_params_to_df(
658
- project=_PROJECT,
659
- subproject=_SUBPROJECT,
660
- custom_tags=dict([("autogen", True)]),
661
- )
662
648
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
663
649
  """Method not supported for this class.
664
650
 
@@ -715,7 +701,8 @@ class ExtraTreesRegressor(BaseTransformer):
715
701
  if False:
716
702
  self.fit(dataset)
717
703
  assert self._sklearn_object is not None
718
- return self._sklearn_object.labels_
704
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
705
+ return labels
719
706
  else:
720
707
  raise NotImplementedError
721
708
 
@@ -751,6 +738,7 @@ class ExtraTreesRegressor(BaseTransformer):
751
738
  output_cols = []
752
739
 
753
740
  # Make sure column names are valid snowflake identifiers.
741
+ assert output_cols is not None # Make MyPy happy
754
742
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
755
743
 
756
744
  return rv
@@ -761,11 +749,6 @@ class ExtraTreesRegressor(BaseTransformer):
761
749
  subproject=_SUBPROJECT,
762
750
  custom_tags=dict([("autogen", True)]),
763
751
  )
764
- @telemetry.add_stmt_params_to_df(
765
- project=_PROJECT,
766
- subproject=_SUBPROJECT,
767
- custom_tags=dict([("autogen", True)]),
768
- )
769
752
  def predict_proba(
770
753
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
771
754
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -806,11 +789,6 @@ class ExtraTreesRegressor(BaseTransformer):
806
789
  subproject=_SUBPROJECT,
807
790
  custom_tags=dict([("autogen", True)]),
808
791
  )
809
- @telemetry.add_stmt_params_to_df(
810
- project=_PROJECT,
811
- subproject=_SUBPROJECT,
812
- custom_tags=dict([("autogen", True)]),
813
- )
814
792
  def predict_log_proba(
815
793
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
816
794
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -847,16 +825,6 @@ class ExtraTreesRegressor(BaseTransformer):
847
825
  return output_df
848
826
 
849
827
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
850
- @telemetry.send_api_usage_telemetry(
851
- project=_PROJECT,
852
- subproject=_SUBPROJECT,
853
- custom_tags=dict([("autogen", True)]),
854
- )
855
- @telemetry.add_stmt_params_to_df(
856
- project=_PROJECT,
857
- subproject=_SUBPROJECT,
858
- custom_tags=dict([("autogen", True)]),
859
- )
860
828
  def decision_function(
861
829
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
862
830
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -957,11 +925,6 @@ class ExtraTreesRegressor(BaseTransformer):
957
925
  subproject=_SUBPROJECT,
958
926
  custom_tags=dict([("autogen", True)]),
959
927
  )
960
- @telemetry.add_stmt_params_to_df(
961
- project=_PROJECT,
962
- subproject=_SUBPROJECT,
963
- custom_tags=dict([("autogen", True)]),
964
- )
965
928
  def kneighbors(
966
929
  self,
967
930
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1021,18 +984,28 @@ class ExtraTreesRegressor(BaseTransformer):
1021
984
  # For classifier, the type of predict is the same as the type of label
1022
985
  if self._sklearn_object._estimator_type == 'classifier':
1023
986
  # label columns is the desired type for output
1024
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
987
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1025
988
  # rename the output columns
1026
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
989
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1027
990
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1028
991
  ([] if self._drop_input_cols else inputs)
1029
992
  + outputs)
993
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
994
+ # For outlier models, returns -1 for outliers and 1 for inliers.
995
+ # Clusterer returns int64 cluster labels.
996
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
997
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
998
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
999
+ ([] if self._drop_input_cols else inputs)
1000
+ + outputs)
1001
+
1030
1002
  # For regressor, the type of predict is float64
1031
1003
  elif self._sklearn_object._estimator_type == 'regressor':
1032
1004
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1033
1005
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1034
1006
  ([] if self._drop_input_cols else inputs)
1035
1007
  + outputs)
1008
+
1036
1009
  for prob_func in PROB_FUNCTIONS:
1037
1010
  if hasattr(self, prob_func):
1038
1011
  output_cols_prefix: str = f"{prob_func}_"