snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class VarianceThreshold(BaseTransformer):
57
58
  r"""Feature selector that removes all low-variance features
58
59
  For more details on this class, see [sklearn.feature_selection.VarianceThreshold]
@@ -60,39 +61,53 @@ class VarianceThreshold(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- threshold: float, default=0
64
- Features with a training-set variance lower than this threshold will
65
- be removed. The default is to keep all features with non-zero variance,
66
- i.e. remove the features that have the same value in all samples.
67
64
 
68
65
  input_cols: Optional[Union[str, List[str]]]
69
66
  A string or list of strings representing column names that contain features.
70
67
  If this parameter is not specified, all columns in the input DataFrame except
71
- the columns specified by label_cols and sample_weight_col parameters are
72
- considered input columns.
73
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
74
72
  label_cols: Optional[Union[str, List[str]]]
75
- A string or list of strings representing column names that contain labels.
76
- This is a required param for estimators, as there is no way to infer these
77
- columns. If this parameter is not specified, then object is fitted without
78
- labels (like a transformer).
79
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
80
75
  output_cols: Optional[Union[str, List[str]]]
81
76
  A string or list of strings representing column names that will store the
82
77
  output of predict and transform operations. The length of output_cols must
83
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
84
79
  transformer class used.
85
- If this parameter is not specified, output column names are derived by
86
- adding an OUTPUT_ prefix to the label column names. These inferred output
87
- column names work for estimator's predict() method, but output_cols must
88
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
89
 
90
90
  sample_weight_col: Optional[str]
91
91
  A string representing the column name containing the sample weights.
92
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
93
103
 
94
104
  drop_input_cols: Optional[bool], default=False
95
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ threshold: float, default=0
108
+ Features with a training-set variance lower than this threshold will
109
+ be removed. The default is to keep all features with non-zero variance,
110
+ i.e. remove the features that have the same value in all samples.
96
111
  """
97
112
 
98
113
  def __init__( # type: ignore[no-untyped-def]
@@ -102,6 +117,7 @@ class VarianceThreshold(BaseTransformer):
102
117
  input_cols: Optional[Union[str, Iterable[str]]] = None,
103
118
  output_cols: Optional[Union[str, Iterable[str]]] = None,
104
119
  label_cols: Optional[Union[str, Iterable[str]]] = None,
120
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
105
121
  drop_input_cols: Optional[bool] = False,
106
122
  sample_weight_col: Optional[str] = None,
107
123
  ) -> None:
@@ -110,9 +126,10 @@ class VarianceThreshold(BaseTransformer):
110
126
  self.set_input_cols(input_cols)
111
127
  self.set_output_cols(output_cols)
112
128
  self.set_label_cols(label_cols)
129
+ self.set_passthrough_cols(passthrough_cols)
113
130
  self.set_drop_input_cols(drop_input_cols)
114
131
  self.set_sample_weight_col(sample_weight_col)
115
- deps = set(SklearnWrapperProvider().dependencies)
132
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
116
133
 
117
134
  self._deps = list(deps)
118
135
 
@@ -121,13 +138,14 @@ class VarianceThreshold(BaseTransformer):
121
138
  args=init_args,
122
139
  klass=sklearn.feature_selection.VarianceThreshold
123
140
  )
124
- self._sklearn_object = sklearn.feature_selection.VarianceThreshold(
141
+ self._sklearn_object: Any = sklearn.feature_selection.VarianceThreshold(
125
142
  **cleaned_up_init_args,
126
143
  )
127
144
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
128
145
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
129
146
  self._snowpark_cols: Optional[List[str]] = self.input_cols
130
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
147
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
148
+ self._autogenerated = True
131
149
 
132
150
  def _get_rand_id(self) -> str:
133
151
  """
@@ -138,24 +156,6 @@ class VarianceThreshold(BaseTransformer):
138
156
  """
139
157
  return str(uuid4()).replace("-", "_").upper()
140
158
 
141
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
142
- """
143
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
144
-
145
- Args:
146
- dataset: Input dataset.
147
- """
148
- if not self.input_cols:
149
- cols = [
150
- c for c in dataset.columns
151
- if c not in self.get_label_cols() and c != self.sample_weight_col
152
- ]
153
- self.set_input_cols(input_cols=cols)
154
-
155
- if not self.output_cols:
156
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
157
- self.set_output_cols(output_cols=cols)
158
-
159
159
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "VarianceThreshold":
160
160
  """
161
161
  Input columns setter.
@@ -201,54 +201,48 @@ class VarianceThreshold(BaseTransformer):
201
201
  self
202
202
  """
203
203
  self._infer_input_output_cols(dataset)
204
- if isinstance(dataset, pd.DataFrame):
205
- assert self._sklearn_object is not None # keep mypy happy
206
- self._sklearn_object = self._handlers.fit_pandas(
207
- dataset,
208
- self._sklearn_object,
209
- self.input_cols,
210
- self.label_cols,
211
- self.sample_weight_col
212
- )
213
- elif isinstance(dataset, DataFrame):
214
- self._fit_snowpark(dataset)
215
- else:
216
- raise TypeError(
217
- f"Unexpected dataset type: {type(dataset)}."
218
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
219
- )
204
+ if isinstance(dataset, DataFrame):
205
+ session = dataset._session
206
+ assert session is not None # keep mypy happy
207
+ # Validate that key package version in user workspace are supported in snowflake conda channel
208
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
209
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
210
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
211
+
212
+ # Specify input columns so column pruning will be enforced
213
+ selected_cols = self._get_active_columns()
214
+ if len(selected_cols) > 0:
215
+ dataset = dataset.select(selected_cols)
216
+
217
+ self._snowpark_cols = dataset.select(self.input_cols).columns
218
+
219
+ # If we are already in a stored procedure, no need to kick off another one.
220
+ if SNOWML_SPROC_ENV in os.environ:
221
+ statement_params = telemetry.get_function_usage_statement_params(
222
+ project=_PROJECT,
223
+ subproject=_SUBPROJECT,
224
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VarianceThreshold.__class__.__name__),
225
+ api_calls=[Session.call],
226
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
227
+ )
228
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
229
+ pd_df.columns = dataset.columns
230
+ dataset = pd_df
231
+
232
+ model_trainer = ModelTrainerBuilder.build(
233
+ estimator=self._sklearn_object,
234
+ dataset=dataset,
235
+ input_cols=self.input_cols,
236
+ label_cols=self.label_cols,
237
+ sample_weight_col=self.sample_weight_col,
238
+ autogenerated=self._autogenerated,
239
+ subproject=_SUBPROJECT
240
+ )
241
+ self._sklearn_object = model_trainer.train()
220
242
  self._is_fitted = True
221
243
  self._get_model_signatures(dataset)
222
244
  return self
223
245
 
224
- def _fit_snowpark(self, dataset: DataFrame) -> None:
225
- session = dataset._session
226
- assert session is not None # keep mypy happy
227
- # Validate that key package version in user workspace are supported in snowflake conda channel
228
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
229
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
230
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
231
-
232
- # Specify input columns so column pruning will be enforced
233
- selected_cols = self._get_active_columns()
234
- if len(selected_cols) > 0:
235
- dataset = dataset.select(selected_cols)
236
-
237
- estimator = self._sklearn_object
238
- assert estimator is not None # Keep mypy happy
239
-
240
- self._snowpark_cols = dataset.select(self.input_cols).columns
241
-
242
- self._sklearn_object = self._handlers.fit_snowpark(
243
- dataset,
244
- session,
245
- estimator,
246
- ["snowflake-snowpark-python"] + self._get_dependencies(),
247
- self.input_cols,
248
- self.label_cols,
249
- self.sample_weight_col,
250
- )
251
-
252
246
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
253
247
  if self._drop_input_cols:
254
248
  return []
@@ -436,11 +430,6 @@ class VarianceThreshold(BaseTransformer):
436
430
  subproject=_SUBPROJECT,
437
431
  custom_tags=dict([("autogen", True)]),
438
432
  )
439
- @telemetry.add_stmt_params_to_df(
440
- project=_PROJECT,
441
- subproject=_SUBPROJECT,
442
- custom_tags=dict([("autogen", True)]),
443
- )
444
433
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
445
434
  """Method not supported for this class.
446
435
 
@@ -492,11 +481,6 @@ class VarianceThreshold(BaseTransformer):
492
481
  subproject=_SUBPROJECT,
493
482
  custom_tags=dict([("autogen", True)]),
494
483
  )
495
- @telemetry.add_stmt_params_to_df(
496
- project=_PROJECT,
497
- subproject=_SUBPROJECT,
498
- custom_tags=dict([("autogen", True)]),
499
- )
500
484
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
501
485
  """Reduce X to the selected features
502
486
  For more details on this function, see [sklearn.feature_selection.VarianceThreshold.transform]
@@ -555,7 +539,8 @@ class VarianceThreshold(BaseTransformer):
555
539
  if False:
556
540
  self.fit(dataset)
557
541
  assert self._sklearn_object is not None
558
- return self._sklearn_object.labels_
542
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
543
+ return labels
559
544
  else:
560
545
  raise NotImplementedError
561
546
 
@@ -591,6 +576,7 @@ class VarianceThreshold(BaseTransformer):
591
576
  output_cols = []
592
577
 
593
578
  # Make sure column names are valid snowflake identifiers.
579
+ assert output_cols is not None # Make MyPy happy
594
580
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
595
581
 
596
582
  return rv
@@ -601,11 +587,6 @@ class VarianceThreshold(BaseTransformer):
601
587
  subproject=_SUBPROJECT,
602
588
  custom_tags=dict([("autogen", True)]),
603
589
  )
604
- @telemetry.add_stmt_params_to_df(
605
- project=_PROJECT,
606
- subproject=_SUBPROJECT,
607
- custom_tags=dict([("autogen", True)]),
608
- )
609
590
  def predict_proba(
610
591
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
611
592
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -646,11 +627,6 @@ class VarianceThreshold(BaseTransformer):
646
627
  subproject=_SUBPROJECT,
647
628
  custom_tags=dict([("autogen", True)]),
648
629
  )
649
- @telemetry.add_stmt_params_to_df(
650
- project=_PROJECT,
651
- subproject=_SUBPROJECT,
652
- custom_tags=dict([("autogen", True)]),
653
- )
654
630
  def predict_log_proba(
655
631
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
656
632
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -687,16 +663,6 @@ class VarianceThreshold(BaseTransformer):
687
663
  return output_df
688
664
 
689
665
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
690
- @telemetry.send_api_usage_telemetry(
691
- project=_PROJECT,
692
- subproject=_SUBPROJECT,
693
- custom_tags=dict([("autogen", True)]),
694
- )
695
- @telemetry.add_stmt_params_to_df(
696
- project=_PROJECT,
697
- subproject=_SUBPROJECT,
698
- custom_tags=dict([("autogen", True)]),
699
- )
700
666
  def decision_function(
701
667
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
702
668
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -795,11 +761,6 @@ class VarianceThreshold(BaseTransformer):
795
761
  subproject=_SUBPROJECT,
796
762
  custom_tags=dict([("autogen", True)]),
797
763
  )
798
- @telemetry.add_stmt_params_to_df(
799
- project=_PROJECT,
800
- subproject=_SUBPROJECT,
801
- custom_tags=dict([("autogen", True)]),
802
- )
803
764
  def kneighbors(
804
765
  self,
805
766
  dataset: Union[DataFrame, pd.DataFrame],
@@ -859,18 +820,28 @@ class VarianceThreshold(BaseTransformer):
859
820
  # For classifier, the type of predict is the same as the type of label
860
821
  if self._sklearn_object._estimator_type == 'classifier':
861
822
  # label columns is the desired type for output
862
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
823
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
863
824
  # rename the output columns
864
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
825
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
865
826
  self._model_signature_dict["predict"] = ModelSignature(inputs,
866
827
  ([] if self._drop_input_cols else inputs)
867
828
  + outputs)
829
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
830
+ # For outlier models, returns -1 for outliers and 1 for inliers.
831
+ # Clusterer returns int64 cluster labels.
832
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
833
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
834
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
835
+ ([] if self._drop_input_cols else inputs)
836
+ + outputs)
837
+
868
838
  # For regressor, the type of predict is float64
869
839
  elif self._sklearn_object._estimator_type == 'regressor':
870
840
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
871
841
  self._model_signature_dict["predict"] = ModelSignature(inputs,
872
842
  ([] if self._drop_input_cols else inputs)
873
843
  + outputs)
844
+
874
845
  for prob_func in PROB_FUNCTIONS:
875
846
  if hasattr(self, prob_func):
876
847
  output_cols_prefix: str = f"{prob_func}_"
@@ -16,13 +16,16 @@ from snowflake.ml._internal.exceptions import (
16
16
  exceptions,
17
17
  modeling_error_messages,
18
18
  )
19
- from snowflake.ml._internal.utils import parallelize
19
+ from snowflake.ml._internal.utils import identifier, parallelize
20
20
  from snowflake.ml.modeling.framework import _utils
21
21
  from snowflake.snowpark import functions as F
22
22
 
23
23
  PROJECT = "ModelDevelopment"
24
24
  SUBPROJECT = "Preprocessing"
25
25
 
26
+ SKLEARN_SUPERVISED_ESTIMATORS = ["regressor", "classifier"]
27
+ SKLEARN_SINGLE_OUTPUT_ESTIMATORS = ["DensityEstimator", "clusterer", "outlier_detector"]
28
+
26
29
 
27
30
  def _process_cols(cols: Optional[Union[str, Iterable[str]]]) -> List[str]:
28
31
  """Convert cols to a list."""
@@ -48,10 +51,13 @@ class Base:
48
51
  input_cols: Input columns.
49
52
  output_cols: Output columns.
50
53
  label_cols: Label column(s).
54
+ passthrough_cols: List columns not to be used or modified by the estimator/trasformers.
55
+ These columns will be passed through all the estimator/trasformer operations without any modifications.
51
56
  """
52
57
  self.input_cols: List[str] = []
53
58
  self.output_cols: List[str] = []
54
59
  self.label_cols: List[str] = []
60
+ self.passthrough_cols: List[str] = []
55
61
 
56
62
  def _create_unfitted_sklearn_object(self) -> Any:
57
63
  raise NotImplementedError()
@@ -125,6 +131,29 @@ class Base:
125
131
  self.label_cols = _process_cols(label_cols)
126
132
  return self
127
133
 
134
+ def get_passthrough_cols(self) -> List[str]:
135
+ """
136
+ Passthrough columns getter.
137
+
138
+ Returns:
139
+ Passthrough column(s).
140
+ """
141
+ return self.passthrough_cols
142
+
143
+ def set_passthrough_cols(self, passthrough_cols: Optional[Union[str, Iterable[str]]]) -> "Base":
144
+ """
145
+ Passthrough columns setter.
146
+
147
+ Args:
148
+ passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.
149
+ Estimator/Transformer just passthrough these columns without any modifications.
150
+
151
+ Returns:
152
+ self
153
+ """
154
+ self.passthrough_cols = _process_cols(passthrough_cols)
155
+ return self
156
+
128
157
  def _check_input_cols(self) -> None:
129
158
  """
130
159
  Check if `self.input_cols` is set.
@@ -495,6 +524,59 @@ class BaseTransformer(BaseEstimator):
495
524
  ),
496
525
  )
497
526
 
527
+ def _infer_input_output_cols(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> None:
528
+ """
529
+ Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
530
+
531
+ Args:
532
+ dataset: Input dataset.
533
+
534
+ Raises:
535
+ SnowflakeMLException: If unable to infer output columns
536
+ """
537
+ if not self.input_cols:
538
+ cols = [
539
+ c
540
+ for c in dataset.columns
541
+ if (
542
+ c not in self.get_label_cols()
543
+ and c not in self.get_passthrough_cols()
544
+ and c != self.sample_weight_col
545
+ )
546
+ ]
547
+ self.set_input_cols(input_cols=cols)
548
+
549
+ if not self.output_cols:
550
+ # keep mypy happy
551
+ assert self._sklearn_object is not None
552
+
553
+ if hasattr(self._sklearn_object, "_estimator_type"):
554
+ # For supervised estimators, infer the output columns from the label columns
555
+ if self._sklearn_object._estimator_type in SKLEARN_SUPERVISED_ESTIMATORS:
556
+ cols = [identifier.concat_names(["OUTPUT_", c]) for c in self.label_cols]
557
+ self.set_output_cols(output_cols=cols)
558
+
559
+ # For density estimators, clusterers, and outlier detectors, there is always exactly one output column.
560
+ elif self._sklearn_object._estimator_type in SKLEARN_SINGLE_OUTPUT_ESTIMATORS:
561
+ self.set_output_cols(output_cols=["OUTPUT_0"])
562
+
563
+ else:
564
+ raise exceptions.SnowflakeMLException(
565
+ error_code=error_codes.INVALID_ARGUMENT,
566
+ original_exception=ValueError(
567
+ f"Unable to infer output columns for estimator type {self._sklearn_object._estimator_type}."
568
+ f"Please include `output_cols` explicitly."
569
+ ),
570
+ )
571
+ else:
572
+ raise exceptions.SnowflakeMLException(
573
+ error_code=error_codes.INVALID_ARGUMENT,
574
+ original_exception=ValueError(
575
+ f"Unable to infer output columns for object {self._sklearn_object}."
576
+ f"Please include `output_cols` explicitly."
577
+ ),
578
+ )
579
+
498
580
  def set_drop_input_cols(self, drop_input_cols: Optional[bool] = False) -> None:
499
581
  self._drop_input_cols = drop_input_cols
500
582