snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class VarianceThreshold(BaseTransformer):
|
57
58
|
r"""Feature selector that removes all low-variance features
|
58
59
|
For more details on this class, see [sklearn.feature_selection.VarianceThreshold]
|
@@ -60,39 +61,53 @@ class VarianceThreshold(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
threshold: float, default=0
|
64
|
-
Features with a training-set variance lower than this threshold will
|
65
|
-
be removed. The default is to keep all features with non-zero variance,
|
66
|
-
i.e. remove the features that have the same value in all samples.
|
67
64
|
|
68
65
|
input_cols: Optional[Union[str, List[str]]]
|
69
66
|
A string or list of strings representing column names that contain features.
|
70
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
71
|
-
the columns specified by label_cols
|
72
|
-
considered input columns.
|
73
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
74
72
|
label_cols: Optional[Union[str, List[str]]]
|
75
|
-
|
76
|
-
|
77
|
-
columns. If this parameter is not specified, then object is fitted without
|
78
|
-
labels (like a transformer).
|
79
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
80
75
|
output_cols: Optional[Union[str, List[str]]]
|
81
76
|
A string or list of strings representing column names that will store the
|
82
77
|
output of predict and transform operations. The length of output_cols must
|
83
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
84
79
|
transformer class used.
|
85
|
-
If this parameter
|
86
|
-
|
87
|
-
|
88
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
89
|
|
90
90
|
sample_weight_col: Optional[str]
|
91
91
|
A string representing the column name containing the sample weights.
|
92
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
93
103
|
|
94
104
|
drop_input_cols: Optional[bool], default=False
|
95
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
threshold: float, default=0
|
108
|
+
Features with a training-set variance lower than this threshold will
|
109
|
+
be removed. The default is to keep all features with non-zero variance,
|
110
|
+
i.e. remove the features that have the same value in all samples.
|
96
111
|
"""
|
97
112
|
|
98
113
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -102,6 +117,7 @@ class VarianceThreshold(BaseTransformer):
|
|
102
117
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
103
118
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
104
119
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
120
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
105
121
|
drop_input_cols: Optional[bool] = False,
|
106
122
|
sample_weight_col: Optional[str] = None,
|
107
123
|
) -> None:
|
@@ -110,9 +126,10 @@ class VarianceThreshold(BaseTransformer):
|
|
110
126
|
self.set_input_cols(input_cols)
|
111
127
|
self.set_output_cols(output_cols)
|
112
128
|
self.set_label_cols(label_cols)
|
129
|
+
self.set_passthrough_cols(passthrough_cols)
|
113
130
|
self.set_drop_input_cols(drop_input_cols)
|
114
131
|
self.set_sample_weight_col(sample_weight_col)
|
115
|
-
deps = set(
|
132
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
116
133
|
|
117
134
|
self._deps = list(deps)
|
118
135
|
|
@@ -121,13 +138,14 @@ class VarianceThreshold(BaseTransformer):
|
|
121
138
|
args=init_args,
|
122
139
|
klass=sklearn.feature_selection.VarianceThreshold
|
123
140
|
)
|
124
|
-
self._sklearn_object = sklearn.feature_selection.VarianceThreshold(
|
141
|
+
self._sklearn_object: Any = sklearn.feature_selection.VarianceThreshold(
|
125
142
|
**cleaned_up_init_args,
|
126
143
|
)
|
127
144
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
128
145
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
129
146
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
130
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
147
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=VarianceThreshold.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
148
|
+
self._autogenerated = True
|
131
149
|
|
132
150
|
def _get_rand_id(self) -> str:
|
133
151
|
"""
|
@@ -138,24 +156,6 @@ class VarianceThreshold(BaseTransformer):
|
|
138
156
|
"""
|
139
157
|
return str(uuid4()).replace("-", "_").upper()
|
140
158
|
|
141
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
142
|
-
"""
|
143
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
144
|
-
|
145
|
-
Args:
|
146
|
-
dataset: Input dataset.
|
147
|
-
"""
|
148
|
-
if not self.input_cols:
|
149
|
-
cols = [
|
150
|
-
c for c in dataset.columns
|
151
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
152
|
-
]
|
153
|
-
self.set_input_cols(input_cols=cols)
|
154
|
-
|
155
|
-
if not self.output_cols:
|
156
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
157
|
-
self.set_output_cols(output_cols=cols)
|
158
|
-
|
159
159
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "VarianceThreshold":
|
160
160
|
"""
|
161
161
|
Input columns setter.
|
@@ -201,54 +201,48 @@ class VarianceThreshold(BaseTransformer):
|
|
201
201
|
self
|
202
202
|
"""
|
203
203
|
self._infer_input_output_cols(dataset)
|
204
|
-
if isinstance(dataset,
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
self.
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
204
|
+
if isinstance(dataset, DataFrame):
|
205
|
+
session = dataset._session
|
206
|
+
assert session is not None # keep mypy happy
|
207
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
208
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
209
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
210
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
211
|
+
|
212
|
+
# Specify input columns so column pruning will be enforced
|
213
|
+
selected_cols = self._get_active_columns()
|
214
|
+
if len(selected_cols) > 0:
|
215
|
+
dataset = dataset.select(selected_cols)
|
216
|
+
|
217
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
218
|
+
|
219
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
220
|
+
if SNOWML_SPROC_ENV in os.environ:
|
221
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
222
|
+
project=_PROJECT,
|
223
|
+
subproject=_SUBPROJECT,
|
224
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VarianceThreshold.__class__.__name__),
|
225
|
+
api_calls=[Session.call],
|
226
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
227
|
+
)
|
228
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
229
|
+
pd_df.columns = dataset.columns
|
230
|
+
dataset = pd_df
|
231
|
+
|
232
|
+
model_trainer = ModelTrainerBuilder.build(
|
233
|
+
estimator=self._sklearn_object,
|
234
|
+
dataset=dataset,
|
235
|
+
input_cols=self.input_cols,
|
236
|
+
label_cols=self.label_cols,
|
237
|
+
sample_weight_col=self.sample_weight_col,
|
238
|
+
autogenerated=self._autogenerated,
|
239
|
+
subproject=_SUBPROJECT
|
240
|
+
)
|
241
|
+
self._sklearn_object = model_trainer.train()
|
220
242
|
self._is_fitted = True
|
221
243
|
self._get_model_signatures(dataset)
|
222
244
|
return self
|
223
245
|
|
224
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
225
|
-
session = dataset._session
|
226
|
-
assert session is not None # keep mypy happy
|
227
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
228
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
229
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
230
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
231
|
-
|
232
|
-
# Specify input columns so column pruning will be enforced
|
233
|
-
selected_cols = self._get_active_columns()
|
234
|
-
if len(selected_cols) > 0:
|
235
|
-
dataset = dataset.select(selected_cols)
|
236
|
-
|
237
|
-
estimator = self._sklearn_object
|
238
|
-
assert estimator is not None # Keep mypy happy
|
239
|
-
|
240
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
241
|
-
|
242
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
243
|
-
dataset,
|
244
|
-
session,
|
245
|
-
estimator,
|
246
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
247
|
-
self.input_cols,
|
248
|
-
self.label_cols,
|
249
|
-
self.sample_weight_col,
|
250
|
-
)
|
251
|
-
|
252
246
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
253
247
|
if self._drop_input_cols:
|
254
248
|
return []
|
@@ -436,11 +430,6 @@ class VarianceThreshold(BaseTransformer):
|
|
436
430
|
subproject=_SUBPROJECT,
|
437
431
|
custom_tags=dict([("autogen", True)]),
|
438
432
|
)
|
439
|
-
@telemetry.add_stmt_params_to_df(
|
440
|
-
project=_PROJECT,
|
441
|
-
subproject=_SUBPROJECT,
|
442
|
-
custom_tags=dict([("autogen", True)]),
|
443
|
-
)
|
444
433
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
445
434
|
"""Method not supported for this class.
|
446
435
|
|
@@ -492,11 +481,6 @@ class VarianceThreshold(BaseTransformer):
|
|
492
481
|
subproject=_SUBPROJECT,
|
493
482
|
custom_tags=dict([("autogen", True)]),
|
494
483
|
)
|
495
|
-
@telemetry.add_stmt_params_to_df(
|
496
|
-
project=_PROJECT,
|
497
|
-
subproject=_SUBPROJECT,
|
498
|
-
custom_tags=dict([("autogen", True)]),
|
499
|
-
)
|
500
484
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
501
485
|
"""Reduce X to the selected features
|
502
486
|
For more details on this function, see [sklearn.feature_selection.VarianceThreshold.transform]
|
@@ -555,7 +539,8 @@ class VarianceThreshold(BaseTransformer):
|
|
555
539
|
if False:
|
556
540
|
self.fit(dataset)
|
557
541
|
assert self._sklearn_object is not None
|
558
|
-
|
542
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
543
|
+
return labels
|
559
544
|
else:
|
560
545
|
raise NotImplementedError
|
561
546
|
|
@@ -591,6 +576,7 @@ class VarianceThreshold(BaseTransformer):
|
|
591
576
|
output_cols = []
|
592
577
|
|
593
578
|
# Make sure column names are valid snowflake identifiers.
|
579
|
+
assert output_cols is not None # Make MyPy happy
|
594
580
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
595
581
|
|
596
582
|
return rv
|
@@ -601,11 +587,6 @@ class VarianceThreshold(BaseTransformer):
|
|
601
587
|
subproject=_SUBPROJECT,
|
602
588
|
custom_tags=dict([("autogen", True)]),
|
603
589
|
)
|
604
|
-
@telemetry.add_stmt_params_to_df(
|
605
|
-
project=_PROJECT,
|
606
|
-
subproject=_SUBPROJECT,
|
607
|
-
custom_tags=dict([("autogen", True)]),
|
608
|
-
)
|
609
590
|
def predict_proba(
|
610
591
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
611
592
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -646,11 +627,6 @@ class VarianceThreshold(BaseTransformer):
|
|
646
627
|
subproject=_SUBPROJECT,
|
647
628
|
custom_tags=dict([("autogen", True)]),
|
648
629
|
)
|
649
|
-
@telemetry.add_stmt_params_to_df(
|
650
|
-
project=_PROJECT,
|
651
|
-
subproject=_SUBPROJECT,
|
652
|
-
custom_tags=dict([("autogen", True)]),
|
653
|
-
)
|
654
630
|
def predict_log_proba(
|
655
631
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
656
632
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -687,16 +663,6 @@ class VarianceThreshold(BaseTransformer):
|
|
687
663
|
return output_df
|
688
664
|
|
689
665
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
690
|
-
@telemetry.send_api_usage_telemetry(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
|
-
@telemetry.add_stmt_params_to_df(
|
696
|
-
project=_PROJECT,
|
697
|
-
subproject=_SUBPROJECT,
|
698
|
-
custom_tags=dict([("autogen", True)]),
|
699
|
-
)
|
700
666
|
def decision_function(
|
701
667
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
702
668
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -795,11 +761,6 @@ class VarianceThreshold(BaseTransformer):
|
|
795
761
|
subproject=_SUBPROJECT,
|
796
762
|
custom_tags=dict([("autogen", True)]),
|
797
763
|
)
|
798
|
-
@telemetry.add_stmt_params_to_df(
|
799
|
-
project=_PROJECT,
|
800
|
-
subproject=_SUBPROJECT,
|
801
|
-
custom_tags=dict([("autogen", True)]),
|
802
|
-
)
|
803
764
|
def kneighbors(
|
804
765
|
self,
|
805
766
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -859,18 +820,28 @@ class VarianceThreshold(BaseTransformer):
|
|
859
820
|
# For classifier, the type of predict is the same as the type of label
|
860
821
|
if self._sklearn_object._estimator_type == 'classifier':
|
861
822
|
# label columns is the desired type for output
|
862
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
823
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
863
824
|
# rename the output columns
|
864
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
825
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
865
826
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
866
827
|
([] if self._drop_input_cols else inputs)
|
867
828
|
+ outputs)
|
829
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
830
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
831
|
+
# Clusterer returns int64 cluster labels.
|
832
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
833
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
834
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
835
|
+
([] if self._drop_input_cols else inputs)
|
836
|
+
+ outputs)
|
837
|
+
|
868
838
|
# For regressor, the type of predict is float64
|
869
839
|
elif self._sklearn_object._estimator_type == 'regressor':
|
870
840
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
871
841
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
872
842
|
([] if self._drop_input_cols else inputs)
|
873
843
|
+ outputs)
|
844
|
+
|
874
845
|
for prob_func in PROB_FUNCTIONS:
|
875
846
|
if hasattr(self, prob_func):
|
876
847
|
output_cols_prefix: str = f"{prob_func}_"
|
@@ -16,13 +16,16 @@ from snowflake.ml._internal.exceptions import (
|
|
16
16
|
exceptions,
|
17
17
|
modeling_error_messages,
|
18
18
|
)
|
19
|
-
from snowflake.ml._internal.utils import parallelize
|
19
|
+
from snowflake.ml._internal.utils import identifier, parallelize
|
20
20
|
from snowflake.ml.modeling.framework import _utils
|
21
21
|
from snowflake.snowpark import functions as F
|
22
22
|
|
23
23
|
PROJECT = "ModelDevelopment"
|
24
24
|
SUBPROJECT = "Preprocessing"
|
25
25
|
|
26
|
+
SKLEARN_SUPERVISED_ESTIMATORS = ["regressor", "classifier"]
|
27
|
+
SKLEARN_SINGLE_OUTPUT_ESTIMATORS = ["DensityEstimator", "clusterer", "outlier_detector"]
|
28
|
+
|
26
29
|
|
27
30
|
def _process_cols(cols: Optional[Union[str, Iterable[str]]]) -> List[str]:
|
28
31
|
"""Convert cols to a list."""
|
@@ -48,10 +51,13 @@ class Base:
|
|
48
51
|
input_cols: Input columns.
|
49
52
|
output_cols: Output columns.
|
50
53
|
label_cols: Label column(s).
|
54
|
+
passthrough_cols: List columns not to be used or modified by the estimator/trasformers.
|
55
|
+
These columns will be passed through all the estimator/trasformer operations without any modifications.
|
51
56
|
"""
|
52
57
|
self.input_cols: List[str] = []
|
53
58
|
self.output_cols: List[str] = []
|
54
59
|
self.label_cols: List[str] = []
|
60
|
+
self.passthrough_cols: List[str] = []
|
55
61
|
|
56
62
|
def _create_unfitted_sklearn_object(self) -> Any:
|
57
63
|
raise NotImplementedError()
|
@@ -125,6 +131,29 @@ class Base:
|
|
125
131
|
self.label_cols = _process_cols(label_cols)
|
126
132
|
return self
|
127
133
|
|
134
|
+
def get_passthrough_cols(self) -> List[str]:
|
135
|
+
"""
|
136
|
+
Passthrough columns getter.
|
137
|
+
|
138
|
+
Returns:
|
139
|
+
Passthrough column(s).
|
140
|
+
"""
|
141
|
+
return self.passthrough_cols
|
142
|
+
|
143
|
+
def set_passthrough_cols(self, passthrough_cols: Optional[Union[str, Iterable[str]]]) -> "Base":
|
144
|
+
"""
|
145
|
+
Passthrough columns setter.
|
146
|
+
|
147
|
+
Args:
|
148
|
+
passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.
|
149
|
+
Estimator/Transformer just passthrough these columns without any modifications.
|
150
|
+
|
151
|
+
Returns:
|
152
|
+
self
|
153
|
+
"""
|
154
|
+
self.passthrough_cols = _process_cols(passthrough_cols)
|
155
|
+
return self
|
156
|
+
|
128
157
|
def _check_input_cols(self) -> None:
|
129
158
|
"""
|
130
159
|
Check if `self.input_cols` is set.
|
@@ -495,6 +524,59 @@ class BaseTransformer(BaseEstimator):
|
|
495
524
|
),
|
496
525
|
)
|
497
526
|
|
527
|
+
def _infer_input_output_cols(self, dataset: Union[snowpark.DataFrame, pd.DataFrame]) -> None:
|
528
|
+
"""
|
529
|
+
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
530
|
+
|
531
|
+
Args:
|
532
|
+
dataset: Input dataset.
|
533
|
+
|
534
|
+
Raises:
|
535
|
+
SnowflakeMLException: If unable to infer output columns
|
536
|
+
"""
|
537
|
+
if not self.input_cols:
|
538
|
+
cols = [
|
539
|
+
c
|
540
|
+
for c in dataset.columns
|
541
|
+
if (
|
542
|
+
c not in self.get_label_cols()
|
543
|
+
and c not in self.get_passthrough_cols()
|
544
|
+
and c != self.sample_weight_col
|
545
|
+
)
|
546
|
+
]
|
547
|
+
self.set_input_cols(input_cols=cols)
|
548
|
+
|
549
|
+
if not self.output_cols:
|
550
|
+
# keep mypy happy
|
551
|
+
assert self._sklearn_object is not None
|
552
|
+
|
553
|
+
if hasattr(self._sklearn_object, "_estimator_type"):
|
554
|
+
# For supervised estimators, infer the output columns from the label columns
|
555
|
+
if self._sklearn_object._estimator_type in SKLEARN_SUPERVISED_ESTIMATORS:
|
556
|
+
cols = [identifier.concat_names(["OUTPUT_", c]) for c in self.label_cols]
|
557
|
+
self.set_output_cols(output_cols=cols)
|
558
|
+
|
559
|
+
# For density estimators, clusterers, and outlier detectors, there is always exactly one output column.
|
560
|
+
elif self._sklearn_object._estimator_type in SKLEARN_SINGLE_OUTPUT_ESTIMATORS:
|
561
|
+
self.set_output_cols(output_cols=["OUTPUT_0"])
|
562
|
+
|
563
|
+
else:
|
564
|
+
raise exceptions.SnowflakeMLException(
|
565
|
+
error_code=error_codes.INVALID_ARGUMENT,
|
566
|
+
original_exception=ValueError(
|
567
|
+
f"Unable to infer output columns for estimator type {self._sklearn_object._estimator_type}."
|
568
|
+
f"Please include `output_cols` explicitly."
|
569
|
+
),
|
570
|
+
)
|
571
|
+
else:
|
572
|
+
raise exceptions.SnowflakeMLException(
|
573
|
+
error_code=error_codes.INVALID_ARGUMENT,
|
574
|
+
original_exception=ValueError(
|
575
|
+
f"Unable to infer output columns for object {self._sklearn_object}."
|
576
|
+
f"Please include `output_cols` explicitly."
|
577
|
+
),
|
578
|
+
)
|
579
|
+
|
498
580
|
def set_drop_input_cols(self, drop_input_cols: Optional[bool] = False) -> None:
|
499
581
|
self._drop_input_cols = drop_input_cols
|
500
582
|
|