snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GradientBoostingClassifier(BaseTransformer):
57
58
  r"""Gradient Boosting for classification
58
59
  For more details on this class, see [sklearn.ensemble.GradientBoostingClassifier]
@@ -60,6 +61,51 @@ class GradientBoostingClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  loss: {'log_loss', 'exponential'}, default='log_loss'
64
110
  The loss function to be optimized. 'log_loss' refers to binomial and
65
111
  multinomial deviance, the same as used in logistic regression.
@@ -219,35 +265,6 @@ class GradientBoostingClassifier(BaseTransformer):
219
265
  ``ccp_alpha`` will be chosen. By default, no pruning is performed.
220
266
  Values must be in the range `[0.0, inf)`.
221
267
  See :ref:`minimal_cost_complexity_pruning` for details.
222
-
223
- input_cols: Optional[Union[str, List[str]]]
224
- A string or list of strings representing column names that contain features.
225
- If this parameter is not specified, all columns in the input DataFrame except
226
- the columns specified by label_cols and sample_weight_col parameters are
227
- considered input columns.
228
-
229
- label_cols: Optional[Union[str, List[str]]]
230
- A string or list of strings representing column names that contain labels.
231
- This is a required param for estimators, as there is no way to infer these
232
- columns. If this parameter is not specified, then object is fitted without
233
- labels (like a transformer).
234
-
235
- output_cols: Optional[Union[str, List[str]]]
236
- A string or list of strings representing column names that will store the
237
- output of predict and transform operations. The length of output_cols must
238
- match the expected number of output columns from the specific estimator or
239
- transformer class used.
240
- If this parameter is not specified, output column names are derived by
241
- adding an OUTPUT_ prefix to the label column names. These inferred output
242
- column names work for estimator's predict() method, but output_cols must
243
- be set explicitly for transformers.
244
-
245
- sample_weight_col: Optional[str]
246
- A string representing the column name containing the sample weights.
247
- This argument is only required when working with weighted datasets.
248
-
249
- drop_input_cols: Optional[bool], default=False
250
- If set, the response of predict(), transform() methods will not contain input columns.
251
268
  """
252
269
 
253
270
  def __init__( # type: ignore[no-untyped-def]
@@ -276,6 +293,7 @@ class GradientBoostingClassifier(BaseTransformer):
276
293
  input_cols: Optional[Union[str, Iterable[str]]] = None,
277
294
  output_cols: Optional[Union[str, Iterable[str]]] = None,
278
295
  label_cols: Optional[Union[str, Iterable[str]]] = None,
296
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
279
297
  drop_input_cols: Optional[bool] = False,
280
298
  sample_weight_col: Optional[str] = None,
281
299
  ) -> None:
@@ -284,9 +302,10 @@ class GradientBoostingClassifier(BaseTransformer):
284
302
  self.set_input_cols(input_cols)
285
303
  self.set_output_cols(output_cols)
286
304
  self.set_label_cols(label_cols)
305
+ self.set_passthrough_cols(passthrough_cols)
287
306
  self.set_drop_input_cols(drop_input_cols)
288
307
  self.set_sample_weight_col(sample_weight_col)
289
- deps = set(SklearnWrapperProvider().dependencies)
308
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
290
309
 
291
310
  self._deps = list(deps)
292
311
 
@@ -314,13 +333,14 @@ class GradientBoostingClassifier(BaseTransformer):
314
333
  args=init_args,
315
334
  klass=sklearn.ensemble.GradientBoostingClassifier
316
335
  )
317
- self._sklearn_object = sklearn.ensemble.GradientBoostingClassifier(
336
+ self._sklearn_object: Any = sklearn.ensemble.GradientBoostingClassifier(
318
337
  **cleaned_up_init_args,
319
338
  )
320
339
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
321
340
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
322
341
  self._snowpark_cols: Optional[List[str]] = self.input_cols
323
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
342
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
343
+ self._autogenerated = True
324
344
 
325
345
  def _get_rand_id(self) -> str:
326
346
  """
@@ -331,24 +351,6 @@ class GradientBoostingClassifier(BaseTransformer):
331
351
  """
332
352
  return str(uuid4()).replace("-", "_").upper()
333
353
 
334
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
335
- """
336
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
337
-
338
- Args:
339
- dataset: Input dataset.
340
- """
341
- if not self.input_cols:
342
- cols = [
343
- c for c in dataset.columns
344
- if c not in self.get_label_cols() and c != self.sample_weight_col
345
- ]
346
- self.set_input_cols(input_cols=cols)
347
-
348
- if not self.output_cols:
349
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
350
- self.set_output_cols(output_cols=cols)
351
-
352
354
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GradientBoostingClassifier":
353
355
  """
354
356
  Input columns setter.
@@ -394,54 +396,48 @@ class GradientBoostingClassifier(BaseTransformer):
394
396
  self
395
397
  """
396
398
  self._infer_input_output_cols(dataset)
397
- if isinstance(dataset, pd.DataFrame):
398
- assert self._sklearn_object is not None # keep mypy happy
399
- self._sklearn_object = self._handlers.fit_pandas(
400
- dataset,
401
- self._sklearn_object,
402
- self.input_cols,
403
- self.label_cols,
404
- self.sample_weight_col
405
- )
406
- elif isinstance(dataset, DataFrame):
407
- self._fit_snowpark(dataset)
408
- else:
409
- raise TypeError(
410
- f"Unexpected dataset type: {type(dataset)}."
411
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
412
- )
399
+ if isinstance(dataset, DataFrame):
400
+ session = dataset._session
401
+ assert session is not None # keep mypy happy
402
+ # Validate that key package version in user workspace are supported in snowflake conda channel
403
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
404
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
405
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
406
+
407
+ # Specify input columns so column pruning will be enforced
408
+ selected_cols = self._get_active_columns()
409
+ if len(selected_cols) > 0:
410
+ dataset = dataset.select(selected_cols)
411
+
412
+ self._snowpark_cols = dataset.select(self.input_cols).columns
413
+
414
+ # If we are already in a stored procedure, no need to kick off another one.
415
+ if SNOWML_SPROC_ENV in os.environ:
416
+ statement_params = telemetry.get_function_usage_statement_params(
417
+ project=_PROJECT,
418
+ subproject=_SUBPROJECT,
419
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GradientBoostingClassifier.__class__.__name__),
420
+ api_calls=[Session.call],
421
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
422
+ )
423
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
424
+ pd_df.columns = dataset.columns
425
+ dataset = pd_df
426
+
427
+ model_trainer = ModelTrainerBuilder.build(
428
+ estimator=self._sklearn_object,
429
+ dataset=dataset,
430
+ input_cols=self.input_cols,
431
+ label_cols=self.label_cols,
432
+ sample_weight_col=self.sample_weight_col,
433
+ autogenerated=self._autogenerated,
434
+ subproject=_SUBPROJECT
435
+ )
436
+ self._sklearn_object = model_trainer.train()
413
437
  self._is_fitted = True
414
438
  self._get_model_signatures(dataset)
415
439
  return self
416
440
 
417
- def _fit_snowpark(self, dataset: DataFrame) -> None:
418
- session = dataset._session
419
- assert session is not None # keep mypy happy
420
- # Validate that key package version in user workspace are supported in snowflake conda channel
421
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
422
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
423
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
424
-
425
- # Specify input columns so column pruning will be enforced
426
- selected_cols = self._get_active_columns()
427
- if len(selected_cols) > 0:
428
- dataset = dataset.select(selected_cols)
429
-
430
- estimator = self._sklearn_object
431
- assert estimator is not None # Keep mypy happy
432
-
433
- self._snowpark_cols = dataset.select(self.input_cols).columns
434
-
435
- self._sklearn_object = self._handlers.fit_snowpark(
436
- dataset,
437
- session,
438
- estimator,
439
- ["snowflake-snowpark-python"] + self._get_dependencies(),
440
- self.input_cols,
441
- self.label_cols,
442
- self.sample_weight_col,
443
- )
444
-
445
441
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
446
442
  if self._drop_input_cols:
447
443
  return []
@@ -629,11 +625,6 @@ class GradientBoostingClassifier(BaseTransformer):
629
625
  subproject=_SUBPROJECT,
630
626
  custom_tags=dict([("autogen", True)]),
631
627
  )
632
- @telemetry.add_stmt_params_to_df(
633
- project=_PROJECT,
634
- subproject=_SUBPROJECT,
635
- custom_tags=dict([("autogen", True)]),
636
- )
637
628
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
638
629
  """Predict class for X
639
630
  For more details on this function, see [sklearn.ensemble.GradientBoostingClassifier.predict]
@@ -687,11 +678,6 @@ class GradientBoostingClassifier(BaseTransformer):
687
678
  subproject=_SUBPROJECT,
688
679
  custom_tags=dict([("autogen", True)]),
689
680
  )
690
- @telemetry.add_stmt_params_to_df(
691
- project=_PROJECT,
692
- subproject=_SUBPROJECT,
693
- custom_tags=dict([("autogen", True)]),
694
- )
695
681
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
696
682
  """Method not supported for this class.
697
683
 
@@ -748,7 +734,8 @@ class GradientBoostingClassifier(BaseTransformer):
748
734
  if False:
749
735
  self.fit(dataset)
750
736
  assert self._sklearn_object is not None
751
- return self._sklearn_object.labels_
737
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
738
+ return labels
752
739
  else:
753
740
  raise NotImplementedError
754
741
 
@@ -784,6 +771,7 @@ class GradientBoostingClassifier(BaseTransformer):
784
771
  output_cols = []
785
772
 
786
773
  # Make sure column names are valid snowflake identifiers.
774
+ assert output_cols is not None # Make MyPy happy
787
775
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
788
776
 
789
777
  return rv
@@ -794,11 +782,6 @@ class GradientBoostingClassifier(BaseTransformer):
794
782
  subproject=_SUBPROJECT,
795
783
  custom_tags=dict([("autogen", True)]),
796
784
  )
797
- @telemetry.add_stmt_params_to_df(
798
- project=_PROJECT,
799
- subproject=_SUBPROJECT,
800
- custom_tags=dict([("autogen", True)]),
801
- )
802
785
  def predict_proba(
803
786
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
804
787
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -841,11 +824,6 @@ class GradientBoostingClassifier(BaseTransformer):
841
824
  subproject=_SUBPROJECT,
842
825
  custom_tags=dict([("autogen", True)]),
843
826
  )
844
- @telemetry.add_stmt_params_to_df(
845
- project=_PROJECT,
846
- subproject=_SUBPROJECT,
847
- custom_tags=dict([("autogen", True)]),
848
- )
849
827
  def predict_log_proba(
850
828
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
851
829
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -884,16 +862,6 @@ class GradientBoostingClassifier(BaseTransformer):
884
862
  return output_df
885
863
 
886
864
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
887
- @telemetry.send_api_usage_telemetry(
888
- project=_PROJECT,
889
- subproject=_SUBPROJECT,
890
- custom_tags=dict([("autogen", True)]),
891
- )
892
- @telemetry.add_stmt_params_to_df(
893
- project=_PROJECT,
894
- subproject=_SUBPROJECT,
895
- custom_tags=dict([("autogen", True)]),
896
- )
897
865
  def decision_function(
898
866
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
899
867
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -996,11 +964,6 @@ class GradientBoostingClassifier(BaseTransformer):
996
964
  subproject=_SUBPROJECT,
997
965
  custom_tags=dict([("autogen", True)]),
998
966
  )
999
- @telemetry.add_stmt_params_to_df(
1000
- project=_PROJECT,
1001
- subproject=_SUBPROJECT,
1002
- custom_tags=dict([("autogen", True)]),
1003
- )
1004
967
  def kneighbors(
1005
968
  self,
1006
969
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1060,18 +1023,28 @@ class GradientBoostingClassifier(BaseTransformer):
1060
1023
  # For classifier, the type of predict is the same as the type of label
1061
1024
  if self._sklearn_object._estimator_type == 'classifier':
1062
1025
  # label columns is the desired type for output
1063
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1026
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1064
1027
  # rename the output columns
1065
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1028
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1066
1029
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1067
1030
  ([] if self._drop_input_cols else inputs)
1068
1031
  + outputs)
1032
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1033
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1034
+ # Clusterer returns int64 cluster labels.
1035
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1036
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1037
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1038
+ ([] if self._drop_input_cols else inputs)
1039
+ + outputs)
1040
+
1069
1041
  # For regressor, the type of predict is float64
1070
1042
  elif self._sklearn_object._estimator_type == 'regressor':
1071
1043
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1072
1044
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1073
1045
  ([] if self._drop_input_cols else inputs)
1074
1046
  + outputs)
1047
+
1075
1048
  for prob_func in PROB_FUNCTIONS:
1076
1049
  if hasattr(self, prob_func):
1077
1050
  output_cols_prefix: str = f"{prob_func}_"