snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -23,17 +23,19 @@ from sklearn.utils.metaestimators import available_if
23
23
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
24
24
  from snowflake.ml._internal import telemetry
25
25
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
26
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
- from snowflake.snowpark import DataFrame
28
+ from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
30
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
30
33
  from snowflake.ml.modeling._internal.estimator_utils import (
31
34
  gather_dependencies,
32
35
  original_estimator_has_callable,
33
36
  transform_snowml_obj_to_sklearn_obj,
34
37
  validate_sklearn_args,
35
38
  )
36
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
37
39
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
40
 
39
41
  from snowflake.ml.model.model_signature import (
@@ -53,7 +55,6 @@ _PROJECT = "ModelDevelopment"
53
55
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".replace("sklearn.", "").split("_")])
54
56
 
55
57
 
56
-
57
58
  class SelectFpr(BaseTransformer):
58
59
  r"""Filter: Select the pvalues below alpha based on a FPR test
59
60
  For more details on this class, see [sklearn.feature_selection.SelectFpr]
@@ -61,43 +62,59 @@ class SelectFpr(BaseTransformer):
61
62
 
62
63
  Parameters
63
64
  ----------
64
- score_func: callable, default=f_classif
65
- Function taking two arrays X and y, and returning a pair of arrays
66
- (scores, pvalues).
67
- Default is f_classif (see below "See Also"). The default function only
68
- works with classification tasks.
69
-
70
- alpha: float, default=5e-2
71
- Features with p-values less than `alpha` are selected.
72
65
 
73
66
  input_cols: Optional[Union[str, List[str]]]
74
67
  A string or list of strings representing column names that contain features.
75
68
  If this parameter is not specified, all columns in the input DataFrame except
76
- the columns specified by label_cols and sample_weight_col parameters are
77
- considered input columns.
78
-
69
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
70
+ parameters are considered input columns. Input columns can also be set after
71
+ initialization with the `set_input_cols` method.
72
+
79
73
  label_cols: Optional[Union[str, List[str]]]
80
74
  A string or list of strings representing column names that contain labels.
81
- This is a required param for estimators, as there is no way to infer these
82
- columns. If this parameter is not specified, then object is fitted without
83
- labels (like a transformer).
75
+ Label columns must be specified with this parameter during initialization
76
+ or with the `set_label_cols` method before fitting.
84
77
 
85
78
  output_cols: Optional[Union[str, List[str]]]
86
79
  A string or list of strings representing column names that will store the
87
80
  output of predict and transform operations. The length of output_cols must
88
- match the expected number of output columns from the specific estimator or
81
+ match the expected number of output columns from the specific predictor or
89
82
  transformer class used.
90
- If this parameter is not specified, output column names are derived by
91
- adding an OUTPUT_ prefix to the label column names. These inferred output
92
- column names work for estimator's predict() method, but output_cols must
93
- be set explicitly for transformers.
83
+ If you omit this parameter, output column names are derived by adding an
84
+ OUTPUT_ prefix to the label column names for supervised estimators, or
85
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
86
+ work for predictors, but output_cols must be set explicitly for transformers.
87
+ In general, explicitly specifying output column names is clearer, especially
88
+ if you don’t specify the input column names.
89
+ To transform in place, pass the same names for input_cols and output_cols.
90
+ be set explicitly for transformers. Output columns can also be set after
91
+ initialization with the `set_output_cols` method.
94
92
 
95
93
  sample_weight_col: Optional[str]
96
94
  A string representing the column name containing the sample weights.
97
- This argument is only required when working with weighted datasets.
95
+ This argument is only required when working with weighted datasets. Sample
96
+ weight column can also be set after initialization with the
97
+ `set_sample_weight_col` method.
98
+
99
+ passthrough_cols: Optional[Union[str, List[str]]]
100
+ A string or a list of strings indicating column names to be excluded from any
101
+ operations (such as train, transform, or inference). These specified column(s)
102
+ will remain untouched throughout the process. This option is helpful in scenarios
103
+ requiring automatic input_cols inference, but need to avoid using specific
104
+ columns, like index columns, during training or inference. Passthrough columns
105
+ can also be set after initialization with the `set_passthrough_cols` method.
98
106
 
99
107
  drop_input_cols: Optional[bool], default=False
100
108
  If set, the response of predict(), transform() methods will not contain input columns.
109
+
110
+ score_func: callable, default=f_classif
111
+ Function taking two arrays X and y, and returning a pair of arrays
112
+ (scores, pvalues).
113
+ Default is f_classif (see below "See Also"). The default function only
114
+ works with classification tasks.
115
+
116
+ alpha: float, default=5e-2
117
+ Features with p-values less than `alpha` are selected.
101
118
  """
102
119
 
103
120
  def __init__( # type: ignore[no-untyped-def]
@@ -108,6 +125,7 @@ class SelectFpr(BaseTransformer):
108
125
  input_cols: Optional[Union[str, Iterable[str]]] = None,
109
126
  output_cols: Optional[Union[str, Iterable[str]]] = None,
110
127
  label_cols: Optional[Union[str, Iterable[str]]] = None,
128
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
111
129
  drop_input_cols: Optional[bool] = False,
112
130
  sample_weight_col: Optional[str] = None,
113
131
  ) -> None:
@@ -116,9 +134,10 @@ class SelectFpr(BaseTransformer):
116
134
  self.set_input_cols(input_cols)
117
135
  self.set_output_cols(output_cols)
118
136
  self.set_label_cols(label_cols)
137
+ self.set_passthrough_cols(passthrough_cols)
119
138
  self.set_drop_input_cols(drop_input_cols)
120
139
  self.set_sample_weight_col(sample_weight_col)
121
- deps = set(SklearnWrapperProvider().dependencies)
140
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
122
141
 
123
142
  self._deps = list(deps)
124
143
 
@@ -128,13 +147,14 @@ class SelectFpr(BaseTransformer):
128
147
  args=init_args,
129
148
  klass=sklearn.feature_selection.SelectFpr
130
149
  )
131
- self._sklearn_object = sklearn.feature_selection.SelectFpr(
150
+ self._sklearn_object: Any = sklearn.feature_selection.SelectFpr(
132
151
  **cleaned_up_init_args,
133
152
  )
134
153
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
135
154
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
136
155
  self._snowpark_cols: Optional[List[str]] = self.input_cols
137
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectFpr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
156
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectFpr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
157
+ self._autogenerated = True
138
158
 
139
159
  def _get_rand_id(self) -> str:
140
160
  """
@@ -145,24 +165,6 @@ class SelectFpr(BaseTransformer):
145
165
  """
146
166
  return str(uuid4()).replace("-", "_").upper()
147
167
 
148
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
149
- """
150
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
151
-
152
- Args:
153
- dataset: Input dataset.
154
- """
155
- if not self.input_cols:
156
- cols = [
157
- c for c in dataset.columns
158
- if c not in self.get_label_cols() and c != self.sample_weight_col
159
- ]
160
- self.set_input_cols(input_cols=cols)
161
-
162
- if not self.output_cols:
163
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
164
- self.set_output_cols(output_cols=cols)
165
-
166
168
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SelectFpr":
167
169
  """
168
170
  Input columns setter.
@@ -208,54 +210,48 @@ class SelectFpr(BaseTransformer):
208
210
  self
209
211
  """
210
212
  self._infer_input_output_cols(dataset)
211
- if isinstance(dataset, pd.DataFrame):
212
- assert self._sklearn_object is not None # keep mypy happy
213
- self._sklearn_object = self._handlers.fit_pandas(
214
- dataset,
215
- self._sklearn_object,
216
- self.input_cols,
217
- self.label_cols,
218
- self.sample_weight_col
219
- )
220
- elif isinstance(dataset, DataFrame):
221
- self._fit_snowpark(dataset)
222
- else:
223
- raise TypeError(
224
- f"Unexpected dataset type: {type(dataset)}."
225
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
226
- )
213
+ if isinstance(dataset, DataFrame):
214
+ session = dataset._session
215
+ assert session is not None # keep mypy happy
216
+ # Validate that key package version in user workspace are supported in snowflake conda channel
217
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
218
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
219
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
220
+
221
+ # Specify input columns so column pruning will be enforced
222
+ selected_cols = self._get_active_columns()
223
+ if len(selected_cols) > 0:
224
+ dataset = dataset.select(selected_cols)
225
+
226
+ self._snowpark_cols = dataset.select(self.input_cols).columns
227
+
228
+ # If we are already in a stored procedure, no need to kick off another one.
229
+ if SNOWML_SPROC_ENV in os.environ:
230
+ statement_params = telemetry.get_function_usage_statement_params(
231
+ project=_PROJECT,
232
+ subproject=_SUBPROJECT,
233
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SelectFpr.__class__.__name__),
234
+ api_calls=[Session.call],
235
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
236
+ )
237
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
238
+ pd_df.columns = dataset.columns
239
+ dataset = pd_df
240
+
241
+ model_trainer = ModelTrainerBuilder.build(
242
+ estimator=self._sklearn_object,
243
+ dataset=dataset,
244
+ input_cols=self.input_cols,
245
+ label_cols=self.label_cols,
246
+ sample_weight_col=self.sample_weight_col,
247
+ autogenerated=self._autogenerated,
248
+ subproject=_SUBPROJECT
249
+ )
250
+ self._sklearn_object = model_trainer.train()
227
251
  self._is_fitted = True
228
252
  self._get_model_signatures(dataset)
229
253
  return self
230
254
 
231
- def _fit_snowpark(self, dataset: DataFrame) -> None:
232
- session = dataset._session
233
- assert session is not None # keep mypy happy
234
- # Validate that key package version in user workspace are supported in snowflake conda channel
235
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
236
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
237
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
238
-
239
- # Specify input columns so column pruning will be enforced
240
- selected_cols = self._get_active_columns()
241
- if len(selected_cols) > 0:
242
- dataset = dataset.select(selected_cols)
243
-
244
- estimator = self._sklearn_object
245
- assert estimator is not None # Keep mypy happy
246
-
247
- self._snowpark_cols = dataset.select(self.input_cols).columns
248
-
249
- self._sklearn_object = self._handlers.fit_snowpark(
250
- dataset,
251
- session,
252
- estimator,
253
- ["snowflake-snowpark-python"] + self._get_dependencies(),
254
- self.input_cols,
255
- self.label_cols,
256
- self.sample_weight_col,
257
- )
258
-
259
255
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
260
256
  if self._drop_input_cols:
261
257
  return []
@@ -443,11 +439,6 @@ class SelectFpr(BaseTransformer):
443
439
  subproject=_SUBPROJECT,
444
440
  custom_tags=dict([("autogen", True)]),
445
441
  )
446
- @telemetry.add_stmt_params_to_df(
447
- project=_PROJECT,
448
- subproject=_SUBPROJECT,
449
- custom_tags=dict([("autogen", True)]),
450
- )
451
442
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
452
443
  """Method not supported for this class.
453
444
 
@@ -499,11 +490,6 @@ class SelectFpr(BaseTransformer):
499
490
  subproject=_SUBPROJECT,
500
491
  custom_tags=dict([("autogen", True)]),
501
492
  )
502
- @telemetry.add_stmt_params_to_df(
503
- project=_PROJECT,
504
- subproject=_SUBPROJECT,
505
- custom_tags=dict([("autogen", True)]),
506
- )
507
493
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
508
494
  """Reduce X to the selected features
509
495
  For more details on this function, see [sklearn.feature_selection.SelectFpr.transform]
@@ -562,7 +548,8 @@ class SelectFpr(BaseTransformer):
562
548
  if False:
563
549
  self.fit(dataset)
564
550
  assert self._sklearn_object is not None
565
- return self._sklearn_object.labels_
551
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
552
+ return labels
566
553
  else:
567
554
  raise NotImplementedError
568
555
 
@@ -598,6 +585,7 @@ class SelectFpr(BaseTransformer):
598
585
  output_cols = []
599
586
 
600
587
  # Make sure column names are valid snowflake identifiers.
588
+ assert output_cols is not None # Make MyPy happy
601
589
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
602
590
 
603
591
  return rv
@@ -608,11 +596,6 @@ class SelectFpr(BaseTransformer):
608
596
  subproject=_SUBPROJECT,
609
597
  custom_tags=dict([("autogen", True)]),
610
598
  )
611
- @telemetry.add_stmt_params_to_df(
612
- project=_PROJECT,
613
- subproject=_SUBPROJECT,
614
- custom_tags=dict([("autogen", True)]),
615
- )
616
599
  def predict_proba(
617
600
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
618
601
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -653,11 +636,6 @@ class SelectFpr(BaseTransformer):
653
636
  subproject=_SUBPROJECT,
654
637
  custom_tags=dict([("autogen", True)]),
655
638
  )
656
- @telemetry.add_stmt_params_to_df(
657
- project=_PROJECT,
658
- subproject=_SUBPROJECT,
659
- custom_tags=dict([("autogen", True)]),
660
- )
661
639
  def predict_log_proba(
662
640
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
663
641
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -694,16 +672,6 @@ class SelectFpr(BaseTransformer):
694
672
  return output_df
695
673
 
696
674
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
697
- @telemetry.send_api_usage_telemetry(
698
- project=_PROJECT,
699
- subproject=_SUBPROJECT,
700
- custom_tags=dict([("autogen", True)]),
701
- )
702
- @telemetry.add_stmt_params_to_df(
703
- project=_PROJECT,
704
- subproject=_SUBPROJECT,
705
- custom_tags=dict([("autogen", True)]),
706
- )
707
675
  def decision_function(
708
676
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
709
677
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -802,11 +770,6 @@ class SelectFpr(BaseTransformer):
802
770
  subproject=_SUBPROJECT,
803
771
  custom_tags=dict([("autogen", True)]),
804
772
  )
805
- @telemetry.add_stmt_params_to_df(
806
- project=_PROJECT,
807
- subproject=_SUBPROJECT,
808
- custom_tags=dict([("autogen", True)]),
809
- )
810
773
  def kneighbors(
811
774
  self,
812
775
  dataset: Union[DataFrame, pd.DataFrame],
@@ -866,18 +829,28 @@ class SelectFpr(BaseTransformer):
866
829
  # For classifier, the type of predict is the same as the type of label
867
830
  if self._sklearn_object._estimator_type == 'classifier':
868
831
  # label columns is the desired type for output
869
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
832
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
870
833
  # rename the output columns
871
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
834
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
872
835
  self._model_signature_dict["predict"] = ModelSignature(inputs,
873
836
  ([] if self._drop_input_cols else inputs)
874
837
  + outputs)
838
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
839
+ # For outlier models, returns -1 for outliers and 1 for inliers.
840
+ # Clusterer returns int64 cluster labels.
841
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
842
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
843
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
844
+ ([] if self._drop_input_cols else inputs)
845
+ + outputs)
846
+
875
847
  # For regressor, the type of predict is float64
876
848
  elif self._sklearn_object._estimator_type == 'regressor':
877
849
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
878
850
  self._model_signature_dict["predict"] = ModelSignature(inputs,
879
851
  ([] if self._drop_input_cols else inputs)
880
852
  + outputs)
853
+
881
854
  for prob_func in PROB_FUNCTIONS:
882
855
  if hasattr(self, prob_func):
883
856
  output_cols_prefix: str = f"{prob_func}_"