snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LocalOutlierFactor(BaseTransformer):
|
57
58
|
r"""Unsupervised Outlier Detection using the Local Outlier Factor (LOF)
|
58
59
|
For more details on this class, see [sklearn.neighbors.LocalOutlierFactor]
|
@@ -60,6 +61,49 @@ class LocalOutlierFactor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_neighbors: int, default=20
|
64
108
|
Number of neighbors to use by default for :meth:`kneighbors` queries.
|
65
109
|
If n_neighbors is larger than the number of samples provided,
|
@@ -132,35 +176,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
132
176
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
133
177
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
134
178
|
for more details.
|
135
|
-
|
136
|
-
input_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain features.
|
138
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
139
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
140
|
-
considered input columns.
|
141
|
-
|
142
|
-
label_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain labels.
|
144
|
-
This is a required param for estimators, as there is no way to infer these
|
145
|
-
columns. If this parameter is not specified, then object is fitted without
|
146
|
-
labels (like a transformer).
|
147
|
-
|
148
|
-
output_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that will store the
|
150
|
-
output of predict and transform operations. The length of output_cols must
|
151
|
-
match the expected number of output columns from the specific estimator or
|
152
|
-
transformer class used.
|
153
|
-
If this parameter is not specified, output column names are derived by
|
154
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
155
|
-
column names work for estimator's predict() method, but output_cols must
|
156
|
-
be set explicitly for transformers.
|
157
|
-
|
158
|
-
sample_weight_col: Optional[str]
|
159
|
-
A string representing the column name containing the sample weights.
|
160
|
-
This argument is only required when working with weighted datasets.
|
161
|
-
|
162
|
-
drop_input_cols: Optional[bool], default=False
|
163
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
164
179
|
"""
|
165
180
|
|
166
181
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -178,6 +193,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
178
193
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
179
194
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
180
195
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
196
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
181
197
|
drop_input_cols: Optional[bool] = False,
|
182
198
|
sample_weight_col: Optional[str] = None,
|
183
199
|
) -> None:
|
@@ -186,9 +202,10 @@ class LocalOutlierFactor(BaseTransformer):
|
|
186
202
|
self.set_input_cols(input_cols)
|
187
203
|
self.set_output_cols(output_cols)
|
188
204
|
self.set_label_cols(label_cols)
|
205
|
+
self.set_passthrough_cols(passthrough_cols)
|
189
206
|
self.set_drop_input_cols(drop_input_cols)
|
190
207
|
self.set_sample_weight_col(sample_weight_col)
|
191
|
-
deps = set(
|
208
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
192
209
|
|
193
210
|
self._deps = list(deps)
|
194
211
|
|
@@ -205,13 +222,14 @@ class LocalOutlierFactor(BaseTransformer):
|
|
205
222
|
args=init_args,
|
206
223
|
klass=sklearn.neighbors.LocalOutlierFactor
|
207
224
|
)
|
208
|
-
self._sklearn_object = sklearn.neighbors.LocalOutlierFactor(
|
225
|
+
self._sklearn_object: Any = sklearn.neighbors.LocalOutlierFactor(
|
209
226
|
**cleaned_up_init_args,
|
210
227
|
)
|
211
228
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
212
229
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
213
230
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
214
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LocalOutlierFactor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
231
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LocalOutlierFactor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
232
|
+
self._autogenerated = True
|
215
233
|
|
216
234
|
def _get_rand_id(self) -> str:
|
217
235
|
"""
|
@@ -222,24 +240,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
222
240
|
"""
|
223
241
|
return str(uuid4()).replace("-", "_").upper()
|
224
242
|
|
225
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
226
|
-
"""
|
227
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
228
|
-
|
229
|
-
Args:
|
230
|
-
dataset: Input dataset.
|
231
|
-
"""
|
232
|
-
if not self.input_cols:
|
233
|
-
cols = [
|
234
|
-
c for c in dataset.columns
|
235
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
236
|
-
]
|
237
|
-
self.set_input_cols(input_cols=cols)
|
238
|
-
|
239
|
-
if not self.output_cols:
|
240
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
241
|
-
self.set_output_cols(output_cols=cols)
|
242
|
-
|
243
243
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LocalOutlierFactor":
|
244
244
|
"""
|
245
245
|
Input columns setter.
|
@@ -285,54 +285,48 @@ class LocalOutlierFactor(BaseTransformer):
|
|
285
285
|
self
|
286
286
|
"""
|
287
287
|
self._infer_input_output_cols(dataset)
|
288
|
-
if isinstance(dataset,
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
self.
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
288
|
+
if isinstance(dataset, DataFrame):
|
289
|
+
session = dataset._session
|
290
|
+
assert session is not None # keep mypy happy
|
291
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
292
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
293
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
294
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
295
|
+
|
296
|
+
# Specify input columns so column pruning will be enforced
|
297
|
+
selected_cols = self._get_active_columns()
|
298
|
+
if len(selected_cols) > 0:
|
299
|
+
dataset = dataset.select(selected_cols)
|
300
|
+
|
301
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
302
|
+
|
303
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
304
|
+
if SNOWML_SPROC_ENV in os.environ:
|
305
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
306
|
+
project=_PROJECT,
|
307
|
+
subproject=_SUBPROJECT,
|
308
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LocalOutlierFactor.__class__.__name__),
|
309
|
+
api_calls=[Session.call],
|
310
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
311
|
+
)
|
312
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
313
|
+
pd_df.columns = dataset.columns
|
314
|
+
dataset = pd_df
|
315
|
+
|
316
|
+
model_trainer = ModelTrainerBuilder.build(
|
317
|
+
estimator=self._sklearn_object,
|
318
|
+
dataset=dataset,
|
319
|
+
input_cols=self.input_cols,
|
320
|
+
label_cols=self.label_cols,
|
321
|
+
sample_weight_col=self.sample_weight_col,
|
322
|
+
autogenerated=self._autogenerated,
|
323
|
+
subproject=_SUBPROJECT
|
324
|
+
)
|
325
|
+
self._sklearn_object = model_trainer.train()
|
304
326
|
self._is_fitted = True
|
305
327
|
self._get_model_signatures(dataset)
|
306
328
|
return self
|
307
329
|
|
308
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
309
|
-
session = dataset._session
|
310
|
-
assert session is not None # keep mypy happy
|
311
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
312
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
313
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
314
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
315
|
-
|
316
|
-
# Specify input columns so column pruning will be enforced
|
317
|
-
selected_cols = self._get_active_columns()
|
318
|
-
if len(selected_cols) > 0:
|
319
|
-
dataset = dataset.select(selected_cols)
|
320
|
-
|
321
|
-
estimator = self._sklearn_object
|
322
|
-
assert estimator is not None # Keep mypy happy
|
323
|
-
|
324
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
325
|
-
|
326
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
327
|
-
dataset,
|
328
|
-
session,
|
329
|
-
estimator,
|
330
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
331
|
-
self.input_cols,
|
332
|
-
self.label_cols,
|
333
|
-
self.sample_weight_col,
|
334
|
-
)
|
335
|
-
|
336
330
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
337
331
|
if self._drop_input_cols:
|
338
332
|
return []
|
@@ -520,11 +514,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
520
514
|
subproject=_SUBPROJECT,
|
521
515
|
custom_tags=dict([("autogen", True)]),
|
522
516
|
)
|
523
|
-
@telemetry.add_stmt_params_to_df(
|
524
|
-
project=_PROJECT,
|
525
|
-
subproject=_SUBPROJECT,
|
526
|
-
custom_tags=dict([("autogen", True)]),
|
527
|
-
)
|
528
517
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
529
518
|
"""Predict the labels (1 inlier, -1 outlier) of X according to LOF
|
530
519
|
For more details on this function, see [sklearn.neighbors.LocalOutlierFactor.predict]
|
@@ -578,11 +567,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
578
567
|
subproject=_SUBPROJECT,
|
579
568
|
custom_tags=dict([("autogen", True)]),
|
580
569
|
)
|
581
|
-
@telemetry.add_stmt_params_to_df(
|
582
|
-
project=_PROJECT,
|
583
|
-
subproject=_SUBPROJECT,
|
584
|
-
custom_tags=dict([("autogen", True)]),
|
585
|
-
)
|
586
570
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
587
571
|
"""Method not supported for this class.
|
588
572
|
|
@@ -641,7 +625,8 @@ class LocalOutlierFactor(BaseTransformer):
|
|
641
625
|
if False:
|
642
626
|
self.fit(dataset)
|
643
627
|
assert self._sklearn_object is not None
|
644
|
-
|
628
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
629
|
+
return labels
|
645
630
|
else:
|
646
631
|
raise NotImplementedError
|
647
632
|
|
@@ -677,6 +662,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
677
662
|
output_cols = []
|
678
663
|
|
679
664
|
# Make sure column names are valid snowflake identifiers.
|
665
|
+
assert output_cols is not None # Make MyPy happy
|
680
666
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
681
667
|
|
682
668
|
return rv
|
@@ -687,11 +673,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
687
673
|
subproject=_SUBPROJECT,
|
688
674
|
custom_tags=dict([("autogen", True)]),
|
689
675
|
)
|
690
|
-
@telemetry.add_stmt_params_to_df(
|
691
|
-
project=_PROJECT,
|
692
|
-
subproject=_SUBPROJECT,
|
693
|
-
custom_tags=dict([("autogen", True)]),
|
694
|
-
)
|
695
676
|
def predict_proba(
|
696
677
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
697
678
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -732,11 +713,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
732
713
|
subproject=_SUBPROJECT,
|
733
714
|
custom_tags=dict([("autogen", True)]),
|
734
715
|
)
|
735
|
-
@telemetry.add_stmt_params_to_df(
|
736
|
-
project=_PROJECT,
|
737
|
-
subproject=_SUBPROJECT,
|
738
|
-
custom_tags=dict([("autogen", True)]),
|
739
|
-
)
|
740
716
|
def predict_log_proba(
|
741
717
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
742
718
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -773,16 +749,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
773
749
|
return output_df
|
774
750
|
|
775
751
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
776
|
-
@telemetry.send_api_usage_telemetry(
|
777
|
-
project=_PROJECT,
|
778
|
-
subproject=_SUBPROJECT,
|
779
|
-
custom_tags=dict([("autogen", True)]),
|
780
|
-
)
|
781
|
-
@telemetry.add_stmt_params_to_df(
|
782
|
-
project=_PROJECT,
|
783
|
-
subproject=_SUBPROJECT,
|
784
|
-
custom_tags=dict([("autogen", True)]),
|
785
|
-
)
|
786
752
|
def decision_function(
|
787
753
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
788
754
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -883,11 +849,6 @@ class LocalOutlierFactor(BaseTransformer):
|
|
883
849
|
subproject=_SUBPROJECT,
|
884
850
|
custom_tags=dict([("autogen", True)]),
|
885
851
|
)
|
886
|
-
@telemetry.add_stmt_params_to_df(
|
887
|
-
project=_PROJECT,
|
888
|
-
subproject=_SUBPROJECT,
|
889
|
-
custom_tags=dict([("autogen", True)]),
|
890
|
-
)
|
891
852
|
def kneighbors(
|
892
853
|
self,
|
893
854
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -949,18 +910,28 @@ class LocalOutlierFactor(BaseTransformer):
|
|
949
910
|
# For classifier, the type of predict is the same as the type of label
|
950
911
|
if self._sklearn_object._estimator_type == 'classifier':
|
951
912
|
# label columns is the desired type for output
|
952
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
913
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
953
914
|
# rename the output columns
|
954
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
915
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
916
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
917
|
+
([] if self._drop_input_cols else inputs)
|
918
|
+
+ outputs)
|
919
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
920
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
921
|
+
# Clusterer returns int64 cluster labels.
|
922
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
923
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
955
924
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
956
925
|
([] if self._drop_input_cols else inputs)
|
957
926
|
+ outputs)
|
927
|
+
|
958
928
|
# For regressor, the type of predict is float64
|
959
929
|
elif self._sklearn_object._estimator_type == 'regressor':
|
960
930
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
961
931
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
962
932
|
([] if self._drop_input_cols else inputs)
|
963
933
|
+ outputs)
|
934
|
+
|
964
935
|
for prob_func in PROB_FUNCTIONS:
|
965
936
|
if hasattr(self, prob_func):
|
966
937
|
output_cols_prefix: str = f"{prob_func}_"
|