snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class LinearSVC(BaseTransformer):
|
57
58
|
r"""Linear Support Vector Classification
|
58
59
|
For more details on this class, see [sklearn.svm.LinearSVC]
|
@@ -60,6 +61,51 @@ class LinearSVC(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
penalty: {'l1', 'l2'}, default='l2'
|
64
110
|
Specifies the norm used in the penalization. The 'l2'
|
65
111
|
penalty is the standard used in SVC. The 'l1' leads to ``coef_``
|
@@ -137,35 +183,6 @@ class LinearSVC(BaseTransformer):
|
|
137
183
|
|
138
184
|
max_iter: int, default=1000
|
139
185
|
The maximum number of iterations to be run.
|
140
|
-
|
141
|
-
input_cols: Optional[Union[str, List[str]]]
|
142
|
-
A string or list of strings representing column names that contain features.
|
143
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
144
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
145
|
-
considered input columns.
|
146
|
-
|
147
|
-
label_cols: Optional[Union[str, List[str]]]
|
148
|
-
A string or list of strings representing column names that contain labels.
|
149
|
-
This is a required param for estimators, as there is no way to infer these
|
150
|
-
columns. If this parameter is not specified, then object is fitted without
|
151
|
-
labels (like a transformer).
|
152
|
-
|
153
|
-
output_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or list of strings representing column names that will store the
|
155
|
-
output of predict and transform operations. The length of output_cols must
|
156
|
-
match the expected number of output columns from the specific estimator or
|
157
|
-
transformer class used.
|
158
|
-
If this parameter is not specified, output column names are derived by
|
159
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
160
|
-
column names work for estimator's predict() method, but output_cols must
|
161
|
-
be set explicitly for transformers.
|
162
|
-
|
163
|
-
sample_weight_col: Optional[str]
|
164
|
-
A string representing the column name containing the sample weights.
|
165
|
-
This argument is only required when working with weighted datasets.
|
166
|
-
|
167
|
-
drop_input_cols: Optional[bool], default=False
|
168
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
169
186
|
"""
|
170
187
|
|
171
188
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -186,6 +203,7 @@ class LinearSVC(BaseTransformer):
|
|
186
203
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
187
204
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
188
205
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
206
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
189
207
|
drop_input_cols: Optional[bool] = False,
|
190
208
|
sample_weight_col: Optional[str] = None,
|
191
209
|
) -> None:
|
@@ -194,9 +212,10 @@ class LinearSVC(BaseTransformer):
|
|
194
212
|
self.set_input_cols(input_cols)
|
195
213
|
self.set_output_cols(output_cols)
|
196
214
|
self.set_label_cols(label_cols)
|
215
|
+
self.set_passthrough_cols(passthrough_cols)
|
197
216
|
self.set_drop_input_cols(drop_input_cols)
|
198
217
|
self.set_sample_weight_col(sample_weight_col)
|
199
|
-
deps = set(
|
218
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
200
219
|
|
201
220
|
self._deps = list(deps)
|
202
221
|
|
@@ -216,13 +235,14 @@ class LinearSVC(BaseTransformer):
|
|
216
235
|
args=init_args,
|
217
236
|
klass=sklearn.svm.LinearSVC
|
218
237
|
)
|
219
|
-
self._sklearn_object = sklearn.svm.LinearSVC(
|
238
|
+
self._sklearn_object: Any = sklearn.svm.LinearSVC(
|
220
239
|
**cleaned_up_init_args,
|
221
240
|
)
|
222
241
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
223
242
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
224
243
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
225
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
244
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearSVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
245
|
+
self._autogenerated = True
|
226
246
|
|
227
247
|
def _get_rand_id(self) -> str:
|
228
248
|
"""
|
@@ -233,24 +253,6 @@ class LinearSVC(BaseTransformer):
|
|
233
253
|
"""
|
234
254
|
return str(uuid4()).replace("-", "_").upper()
|
235
255
|
|
236
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
237
|
-
"""
|
238
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
239
|
-
|
240
|
-
Args:
|
241
|
-
dataset: Input dataset.
|
242
|
-
"""
|
243
|
-
if not self.input_cols:
|
244
|
-
cols = [
|
245
|
-
c for c in dataset.columns
|
246
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
247
|
-
]
|
248
|
-
self.set_input_cols(input_cols=cols)
|
249
|
-
|
250
|
-
if not self.output_cols:
|
251
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
252
|
-
self.set_output_cols(output_cols=cols)
|
253
|
-
|
254
256
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LinearSVC":
|
255
257
|
"""
|
256
258
|
Input columns setter.
|
@@ -296,54 +298,48 @@ class LinearSVC(BaseTransformer):
|
|
296
298
|
self
|
297
299
|
"""
|
298
300
|
self._infer_input_output_cols(dataset)
|
299
|
-
if isinstance(dataset,
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
self.
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
301
|
+
if isinstance(dataset, DataFrame):
|
302
|
+
session = dataset._session
|
303
|
+
assert session is not None # keep mypy happy
|
304
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
305
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
306
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
307
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
308
|
+
|
309
|
+
# Specify input columns so column pruning will be enforced
|
310
|
+
selected_cols = self._get_active_columns()
|
311
|
+
if len(selected_cols) > 0:
|
312
|
+
dataset = dataset.select(selected_cols)
|
313
|
+
|
314
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
315
|
+
|
316
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
317
|
+
if SNOWML_SPROC_ENV in os.environ:
|
318
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
319
|
+
project=_PROJECT,
|
320
|
+
subproject=_SUBPROJECT,
|
321
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVC.__class__.__name__),
|
322
|
+
api_calls=[Session.call],
|
323
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
324
|
+
)
|
325
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
326
|
+
pd_df.columns = dataset.columns
|
327
|
+
dataset = pd_df
|
328
|
+
|
329
|
+
model_trainer = ModelTrainerBuilder.build(
|
330
|
+
estimator=self._sklearn_object,
|
331
|
+
dataset=dataset,
|
332
|
+
input_cols=self.input_cols,
|
333
|
+
label_cols=self.label_cols,
|
334
|
+
sample_weight_col=self.sample_weight_col,
|
335
|
+
autogenerated=self._autogenerated,
|
336
|
+
subproject=_SUBPROJECT
|
337
|
+
)
|
338
|
+
self._sklearn_object = model_trainer.train()
|
315
339
|
self._is_fitted = True
|
316
340
|
self._get_model_signatures(dataset)
|
317
341
|
return self
|
318
342
|
|
319
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
320
|
-
session = dataset._session
|
321
|
-
assert session is not None # keep mypy happy
|
322
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
323
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
324
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
325
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
326
|
-
|
327
|
-
# Specify input columns so column pruning will be enforced
|
328
|
-
selected_cols = self._get_active_columns()
|
329
|
-
if len(selected_cols) > 0:
|
330
|
-
dataset = dataset.select(selected_cols)
|
331
|
-
|
332
|
-
estimator = self._sklearn_object
|
333
|
-
assert estimator is not None # Keep mypy happy
|
334
|
-
|
335
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
336
|
-
|
337
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
338
|
-
dataset,
|
339
|
-
session,
|
340
|
-
estimator,
|
341
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
342
|
-
self.input_cols,
|
343
|
-
self.label_cols,
|
344
|
-
self.sample_weight_col,
|
345
|
-
)
|
346
|
-
|
347
343
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
348
344
|
if self._drop_input_cols:
|
349
345
|
return []
|
@@ -531,11 +527,6 @@ class LinearSVC(BaseTransformer):
|
|
531
527
|
subproject=_SUBPROJECT,
|
532
528
|
custom_tags=dict([("autogen", True)]),
|
533
529
|
)
|
534
|
-
@telemetry.add_stmt_params_to_df(
|
535
|
-
project=_PROJECT,
|
536
|
-
subproject=_SUBPROJECT,
|
537
|
-
custom_tags=dict([("autogen", True)]),
|
538
|
-
)
|
539
530
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
540
531
|
"""Predict class labels for samples in X
|
541
532
|
For more details on this function, see [sklearn.svm.LinearSVC.predict]
|
@@ -589,11 +580,6 @@ class LinearSVC(BaseTransformer):
|
|
589
580
|
subproject=_SUBPROJECT,
|
590
581
|
custom_tags=dict([("autogen", True)]),
|
591
582
|
)
|
592
|
-
@telemetry.add_stmt_params_to_df(
|
593
|
-
project=_PROJECT,
|
594
|
-
subproject=_SUBPROJECT,
|
595
|
-
custom_tags=dict([("autogen", True)]),
|
596
|
-
)
|
597
583
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
598
584
|
"""Method not supported for this class.
|
599
585
|
|
@@ -650,7 +636,8 @@ class LinearSVC(BaseTransformer):
|
|
650
636
|
if False:
|
651
637
|
self.fit(dataset)
|
652
638
|
assert self._sklearn_object is not None
|
653
|
-
|
639
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
640
|
+
return labels
|
654
641
|
else:
|
655
642
|
raise NotImplementedError
|
656
643
|
|
@@ -686,6 +673,7 @@ class LinearSVC(BaseTransformer):
|
|
686
673
|
output_cols = []
|
687
674
|
|
688
675
|
# Make sure column names are valid snowflake identifiers.
|
676
|
+
assert output_cols is not None # Make MyPy happy
|
689
677
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
690
678
|
|
691
679
|
return rv
|
@@ -696,11 +684,6 @@ class LinearSVC(BaseTransformer):
|
|
696
684
|
subproject=_SUBPROJECT,
|
697
685
|
custom_tags=dict([("autogen", True)]),
|
698
686
|
)
|
699
|
-
@telemetry.add_stmt_params_to_df(
|
700
|
-
project=_PROJECT,
|
701
|
-
subproject=_SUBPROJECT,
|
702
|
-
custom_tags=dict([("autogen", True)]),
|
703
|
-
)
|
704
687
|
def predict_proba(
|
705
688
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
706
689
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -741,11 +724,6 @@ class LinearSVC(BaseTransformer):
|
|
741
724
|
subproject=_SUBPROJECT,
|
742
725
|
custom_tags=dict([("autogen", True)]),
|
743
726
|
)
|
744
|
-
@telemetry.add_stmt_params_to_df(
|
745
|
-
project=_PROJECT,
|
746
|
-
subproject=_SUBPROJECT,
|
747
|
-
custom_tags=dict([("autogen", True)]),
|
748
|
-
)
|
749
727
|
def predict_log_proba(
|
750
728
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
751
729
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -782,16 +760,6 @@ class LinearSVC(BaseTransformer):
|
|
782
760
|
return output_df
|
783
761
|
|
784
762
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
785
|
-
@telemetry.send_api_usage_telemetry(
|
786
|
-
project=_PROJECT,
|
787
|
-
subproject=_SUBPROJECT,
|
788
|
-
custom_tags=dict([("autogen", True)]),
|
789
|
-
)
|
790
|
-
@telemetry.add_stmt_params_to_df(
|
791
|
-
project=_PROJECT,
|
792
|
-
subproject=_SUBPROJECT,
|
793
|
-
custom_tags=dict([("autogen", True)]),
|
794
|
-
)
|
795
763
|
def decision_function(
|
796
764
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
797
765
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -894,11 +862,6 @@ class LinearSVC(BaseTransformer):
|
|
894
862
|
subproject=_SUBPROJECT,
|
895
863
|
custom_tags=dict([("autogen", True)]),
|
896
864
|
)
|
897
|
-
@telemetry.add_stmt_params_to_df(
|
898
|
-
project=_PROJECT,
|
899
|
-
subproject=_SUBPROJECT,
|
900
|
-
custom_tags=dict([("autogen", True)]),
|
901
|
-
)
|
902
865
|
def kneighbors(
|
903
866
|
self,
|
904
867
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -958,18 +921,28 @@ class LinearSVC(BaseTransformer):
|
|
958
921
|
# For classifier, the type of predict is the same as the type of label
|
959
922
|
if self._sklearn_object._estimator_type == 'classifier':
|
960
923
|
# label columns is the desired type for output
|
961
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
924
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
962
925
|
# rename the output columns
|
963
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
926
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
964
927
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
965
928
|
([] if self._drop_input_cols else inputs)
|
966
929
|
+ outputs)
|
930
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
931
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
932
|
+
# Clusterer returns int64 cluster labels.
|
933
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
934
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
935
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
936
|
+
([] if self._drop_input_cols else inputs)
|
937
|
+
+ outputs)
|
938
|
+
|
967
939
|
# For regressor, the type of predict is float64
|
968
940
|
elif self._sklearn_object._estimator_type == 'regressor':
|
969
941
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
970
942
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
971
943
|
([] if self._drop_input_cols else inputs)
|
972
944
|
+ outputs)
|
945
|
+
|
973
946
|
for prob_func in PROB_FUNCTIONS:
|
974
947
|
if hasattr(self, prob_func):
|
975
948
|
output_cols_prefix: str = f"{prob_func}_"
|