snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SkewedChi2Sampler(BaseTransformer):
|
57
58
|
r"""Approximate feature map for "skewed chi-squared" kernel
|
58
59
|
For more details on this class, see [sklearn.kernel_approximation.SkewedChi2Sampler]
|
@@ -60,47 +61,61 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
63
|
-
skewedness: float, default=1.0
|
64
|
-
"skewedness" parameter of the kernel. Needs to be cross-validated.
|
65
|
-
|
66
|
-
n_components: int, default=100
|
67
|
-
Number of Monte Carlo samples per original feature.
|
68
|
-
Equals the dimensionality of the computed feature space.
|
69
|
-
|
70
|
-
random_state: int, RandomState instance or None, default=None
|
71
|
-
Pseudo-random number generator to control the generation of the random
|
72
|
-
weights and random offset when fitting the training data.
|
73
|
-
Pass an int for reproducible output across multiple function calls.
|
74
|
-
See :term:`Glossary <random_state>`.
|
75
64
|
|
76
65
|
input_cols: Optional[Union[str, List[str]]]
|
77
66
|
A string or list of strings representing column names that contain features.
|
78
67
|
If this parameter is not specified, all columns in the input DataFrame except
|
79
|
-
the columns specified by label_cols
|
80
|
-
considered input columns.
|
81
|
-
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
82
72
|
label_cols: Optional[Union[str, List[str]]]
|
83
|
-
|
84
|
-
|
85
|
-
columns. If this parameter is not specified, then object is fitted without
|
86
|
-
labels (like a transformer).
|
87
|
-
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
88
75
|
output_cols: Optional[Union[str, List[str]]]
|
89
76
|
A string or list of strings representing column names that will store the
|
90
77
|
output of predict and transform operations. The length of output_cols must
|
91
|
-
match the expected number of output columns from the specific
|
78
|
+
match the expected number of output columns from the specific predictor or
|
92
79
|
transformer class used.
|
93
|
-
If this parameter
|
94
|
-
|
95
|
-
|
96
|
-
be set explicitly for transformers.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
97
89
|
|
98
90
|
sample_weight_col: Optional[str]
|
99
91
|
A string representing the column name containing the sample weights.
|
100
|
-
This argument is only required when working with weighted datasets.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
101
103
|
|
102
104
|
drop_input_cols: Optional[bool], default=False
|
103
105
|
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
107
|
+
skewedness: float, default=1.0
|
108
|
+
"skewedness" parameter of the kernel. Needs to be cross-validated.
|
109
|
+
|
110
|
+
n_components: int, default=100
|
111
|
+
Number of Monte Carlo samples per original feature.
|
112
|
+
Equals the dimensionality of the computed feature space.
|
113
|
+
|
114
|
+
random_state: int, RandomState instance or None, default=None
|
115
|
+
Pseudo-random number generator to control the generation of the random
|
116
|
+
weights and random offset when fitting the training data.
|
117
|
+
Pass an int for reproducible output across multiple function calls.
|
118
|
+
See :term:`Glossary <random_state>`.
|
104
119
|
"""
|
105
120
|
|
106
121
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -112,6 +127,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
112
127
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
113
128
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
114
129
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
130
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
115
131
|
drop_input_cols: Optional[bool] = False,
|
116
132
|
sample_weight_col: Optional[str] = None,
|
117
133
|
) -> None:
|
@@ -120,9 +136,10 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
120
136
|
self.set_input_cols(input_cols)
|
121
137
|
self.set_output_cols(output_cols)
|
122
138
|
self.set_label_cols(label_cols)
|
139
|
+
self.set_passthrough_cols(passthrough_cols)
|
123
140
|
self.set_drop_input_cols(drop_input_cols)
|
124
141
|
self.set_sample_weight_col(sample_weight_col)
|
125
|
-
deps = set(
|
142
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
126
143
|
|
127
144
|
self._deps = list(deps)
|
128
145
|
|
@@ -133,13 +150,14 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
133
150
|
args=init_args,
|
134
151
|
klass=sklearn.kernel_approximation.SkewedChi2Sampler
|
135
152
|
)
|
136
|
-
self._sklearn_object = sklearn.kernel_approximation.SkewedChi2Sampler(
|
153
|
+
self._sklearn_object: Any = sklearn.kernel_approximation.SkewedChi2Sampler(
|
137
154
|
**cleaned_up_init_args,
|
138
155
|
)
|
139
156
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
140
157
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
141
158
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
142
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SkewedChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
159
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SkewedChi2Sampler.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
160
|
+
self._autogenerated = True
|
143
161
|
|
144
162
|
def _get_rand_id(self) -> str:
|
145
163
|
"""
|
@@ -150,24 +168,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
150
168
|
"""
|
151
169
|
return str(uuid4()).replace("-", "_").upper()
|
152
170
|
|
153
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
154
|
-
"""
|
155
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
156
|
-
|
157
|
-
Args:
|
158
|
-
dataset: Input dataset.
|
159
|
-
"""
|
160
|
-
if not self.input_cols:
|
161
|
-
cols = [
|
162
|
-
c for c in dataset.columns
|
163
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
164
|
-
]
|
165
|
-
self.set_input_cols(input_cols=cols)
|
166
|
-
|
167
|
-
if not self.output_cols:
|
168
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
169
|
-
self.set_output_cols(output_cols=cols)
|
170
|
-
|
171
171
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SkewedChi2Sampler":
|
172
172
|
"""
|
173
173
|
Input columns setter.
|
@@ -213,54 +213,48 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
213
213
|
self
|
214
214
|
"""
|
215
215
|
self._infer_input_output_cols(dataset)
|
216
|
-
if isinstance(dataset,
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
self.
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
216
|
+
if isinstance(dataset, DataFrame):
|
217
|
+
session = dataset._session
|
218
|
+
assert session is not None # keep mypy happy
|
219
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
220
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
221
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
222
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
223
|
+
|
224
|
+
# Specify input columns so column pruning will be enforced
|
225
|
+
selected_cols = self._get_active_columns()
|
226
|
+
if len(selected_cols) > 0:
|
227
|
+
dataset = dataset.select(selected_cols)
|
228
|
+
|
229
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
230
|
+
|
231
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
232
|
+
if SNOWML_SPROC_ENV in os.environ:
|
233
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
234
|
+
project=_PROJECT,
|
235
|
+
subproject=_SUBPROJECT,
|
236
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SkewedChi2Sampler.__class__.__name__),
|
237
|
+
api_calls=[Session.call],
|
238
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
239
|
+
)
|
240
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
241
|
+
pd_df.columns = dataset.columns
|
242
|
+
dataset = pd_df
|
243
|
+
|
244
|
+
model_trainer = ModelTrainerBuilder.build(
|
245
|
+
estimator=self._sklearn_object,
|
246
|
+
dataset=dataset,
|
247
|
+
input_cols=self.input_cols,
|
248
|
+
label_cols=self.label_cols,
|
249
|
+
sample_weight_col=self.sample_weight_col,
|
250
|
+
autogenerated=self._autogenerated,
|
251
|
+
subproject=_SUBPROJECT
|
252
|
+
)
|
253
|
+
self._sklearn_object = model_trainer.train()
|
232
254
|
self._is_fitted = True
|
233
255
|
self._get_model_signatures(dataset)
|
234
256
|
return self
|
235
257
|
|
236
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
237
|
-
session = dataset._session
|
238
|
-
assert session is not None # keep mypy happy
|
239
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
240
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
241
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
242
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
243
|
-
|
244
|
-
# Specify input columns so column pruning will be enforced
|
245
|
-
selected_cols = self._get_active_columns()
|
246
|
-
if len(selected_cols) > 0:
|
247
|
-
dataset = dataset.select(selected_cols)
|
248
|
-
|
249
|
-
estimator = self._sklearn_object
|
250
|
-
assert estimator is not None # Keep mypy happy
|
251
|
-
|
252
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
253
|
-
|
254
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
255
|
-
dataset,
|
256
|
-
session,
|
257
|
-
estimator,
|
258
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
259
|
-
self.input_cols,
|
260
|
-
self.label_cols,
|
261
|
-
self.sample_weight_col,
|
262
|
-
)
|
263
|
-
|
264
258
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
265
259
|
if self._drop_input_cols:
|
266
260
|
return []
|
@@ -448,11 +442,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
448
442
|
subproject=_SUBPROJECT,
|
449
443
|
custom_tags=dict([("autogen", True)]),
|
450
444
|
)
|
451
|
-
@telemetry.add_stmt_params_to_df(
|
452
|
-
project=_PROJECT,
|
453
|
-
subproject=_SUBPROJECT,
|
454
|
-
custom_tags=dict([("autogen", True)]),
|
455
|
-
)
|
456
445
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
457
446
|
"""Method not supported for this class.
|
458
447
|
|
@@ -504,11 +493,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
504
493
|
subproject=_SUBPROJECT,
|
505
494
|
custom_tags=dict([("autogen", True)]),
|
506
495
|
)
|
507
|
-
@telemetry.add_stmt_params_to_df(
|
508
|
-
project=_PROJECT,
|
509
|
-
subproject=_SUBPROJECT,
|
510
|
-
custom_tags=dict([("autogen", True)]),
|
511
|
-
)
|
512
496
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
513
497
|
"""Apply the approximate feature map to X
|
514
498
|
For more details on this function, see [sklearn.kernel_approximation.SkewedChi2Sampler.transform]
|
@@ -567,7 +551,8 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
567
551
|
if False:
|
568
552
|
self.fit(dataset)
|
569
553
|
assert self._sklearn_object is not None
|
570
|
-
|
554
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
555
|
+
return labels
|
571
556
|
else:
|
572
557
|
raise NotImplementedError
|
573
558
|
|
@@ -603,6 +588,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
603
588
|
output_cols = []
|
604
589
|
|
605
590
|
# Make sure column names are valid snowflake identifiers.
|
591
|
+
assert output_cols is not None # Make MyPy happy
|
606
592
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
607
593
|
|
608
594
|
return rv
|
@@ -613,11 +599,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
613
599
|
subproject=_SUBPROJECT,
|
614
600
|
custom_tags=dict([("autogen", True)]),
|
615
601
|
)
|
616
|
-
@telemetry.add_stmt_params_to_df(
|
617
|
-
project=_PROJECT,
|
618
|
-
subproject=_SUBPROJECT,
|
619
|
-
custom_tags=dict([("autogen", True)]),
|
620
|
-
)
|
621
602
|
def predict_proba(
|
622
603
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
623
604
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -658,11 +639,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
658
639
|
subproject=_SUBPROJECT,
|
659
640
|
custom_tags=dict([("autogen", True)]),
|
660
641
|
)
|
661
|
-
@telemetry.add_stmt_params_to_df(
|
662
|
-
project=_PROJECT,
|
663
|
-
subproject=_SUBPROJECT,
|
664
|
-
custom_tags=dict([("autogen", True)]),
|
665
|
-
)
|
666
642
|
def predict_log_proba(
|
667
643
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
668
644
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -699,16 +675,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
699
675
|
return output_df
|
700
676
|
|
701
677
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
702
|
-
@telemetry.send_api_usage_telemetry(
|
703
|
-
project=_PROJECT,
|
704
|
-
subproject=_SUBPROJECT,
|
705
|
-
custom_tags=dict([("autogen", True)]),
|
706
|
-
)
|
707
|
-
@telemetry.add_stmt_params_to_df(
|
708
|
-
project=_PROJECT,
|
709
|
-
subproject=_SUBPROJECT,
|
710
|
-
custom_tags=dict([("autogen", True)]),
|
711
|
-
)
|
712
678
|
def decision_function(
|
713
679
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
714
680
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -807,11 +773,6 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
807
773
|
subproject=_SUBPROJECT,
|
808
774
|
custom_tags=dict([("autogen", True)]),
|
809
775
|
)
|
810
|
-
@telemetry.add_stmt_params_to_df(
|
811
|
-
project=_PROJECT,
|
812
|
-
subproject=_SUBPROJECT,
|
813
|
-
custom_tags=dict([("autogen", True)]),
|
814
|
-
)
|
815
776
|
def kneighbors(
|
816
777
|
self,
|
817
778
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -871,18 +832,28 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
871
832
|
# For classifier, the type of predict is the same as the type of label
|
872
833
|
if self._sklearn_object._estimator_type == 'classifier':
|
873
834
|
# label columns is the desired type for output
|
874
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
835
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
875
836
|
# rename the output columns
|
876
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
837
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
838
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
839
|
+
([] if self._drop_input_cols else inputs)
|
840
|
+
+ outputs)
|
841
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
842
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
843
|
+
# Clusterer returns int64 cluster labels.
|
844
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
845
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
877
846
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
878
847
|
([] if self._drop_input_cols else inputs)
|
879
848
|
+ outputs)
|
849
|
+
|
880
850
|
# For regressor, the type of predict is float64
|
881
851
|
elif self._sklearn_object._estimator_type == 'regressor':
|
882
852
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
883
853
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
884
854
|
([] if self._drop_input_cols else inputs)
|
885
855
|
+ outputs)
|
856
|
+
|
886
857
|
for prob_func in PROB_FUNCTIONS:
|
887
858
|
if hasattr(self, prob_func):
|
888
859
|
output_cols_prefix: str = f"{prob_func}_"
|