snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class LarsCV(BaseTransformer):
57
58
  r"""Cross-validated Least Angle Regression model
58
59
  For more details on this class, see [sklearn.linear_model.LarsCV]
@@ -60,6 +61,51 @@ class LarsCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  fit_intercept: bool, default=True
64
110
  Whether to calculate the intercept for this model. If set
65
111
  to false, no intercept will be used in calculations
@@ -117,35 +163,6 @@ class LarsCV(BaseTransformer):
117
163
 
118
164
  copy_X: bool, default=True
119
165
  If ``True``, X will be copied; else, it may be overwritten.
120
-
121
- input_cols: Optional[Union[str, List[str]]]
122
- A string or list of strings representing column names that contain features.
123
- If this parameter is not specified, all columns in the input DataFrame except
124
- the columns specified by label_cols and sample_weight_col parameters are
125
- considered input columns.
126
-
127
- label_cols: Optional[Union[str, List[str]]]
128
- A string or list of strings representing column names that contain labels.
129
- This is a required param for estimators, as there is no way to infer these
130
- columns. If this parameter is not specified, then object is fitted without
131
- labels (like a transformer).
132
-
133
- output_cols: Optional[Union[str, List[str]]]
134
- A string or list of strings representing column names that will store the
135
- output of predict and transform operations. The length of output_cols must
136
- match the expected number of output columns from the specific estimator or
137
- transformer class used.
138
- If this parameter is not specified, output column names are derived by
139
- adding an OUTPUT_ prefix to the label column names. These inferred output
140
- column names work for estimator's predict() method, but output_cols must
141
- be set explicitly for transformers.
142
-
143
- sample_weight_col: Optional[str]
144
- A string representing the column name containing the sample weights.
145
- This argument is only required when working with weighted datasets.
146
-
147
- drop_input_cols: Optional[bool], default=False
148
- If set, the response of predict(), transform() methods will not contain input columns.
149
166
  """
150
167
 
151
168
  def __init__( # type: ignore[no-untyped-def]
@@ -164,6 +181,7 @@ class LarsCV(BaseTransformer):
164
181
  input_cols: Optional[Union[str, Iterable[str]]] = None,
165
182
  output_cols: Optional[Union[str, Iterable[str]]] = None,
166
183
  label_cols: Optional[Union[str, Iterable[str]]] = None,
184
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
167
185
  drop_input_cols: Optional[bool] = False,
168
186
  sample_weight_col: Optional[str] = None,
169
187
  ) -> None:
@@ -172,9 +190,10 @@ class LarsCV(BaseTransformer):
172
190
  self.set_input_cols(input_cols)
173
191
  self.set_output_cols(output_cols)
174
192
  self.set_label_cols(label_cols)
193
+ self.set_passthrough_cols(passthrough_cols)
175
194
  self.set_drop_input_cols(drop_input_cols)
176
195
  self.set_sample_weight_col(sample_weight_col)
177
- deps = set(SklearnWrapperProvider().dependencies)
196
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
178
197
 
179
198
  self._deps = list(deps)
180
199
 
@@ -192,13 +211,14 @@ class LarsCV(BaseTransformer):
192
211
  args=init_args,
193
212
  klass=sklearn.linear_model.LarsCV
194
213
  )
195
- self._sklearn_object = sklearn.linear_model.LarsCV(
214
+ self._sklearn_object: Any = sklearn.linear_model.LarsCV(
196
215
  **cleaned_up_init_args,
197
216
  )
198
217
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
199
218
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
200
219
  self._snowpark_cols: Optional[List[str]] = self.input_cols
201
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
220
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=LarsCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
221
+ self._autogenerated = True
202
222
 
203
223
  def _get_rand_id(self) -> str:
204
224
  """
@@ -209,24 +229,6 @@ class LarsCV(BaseTransformer):
209
229
  """
210
230
  return str(uuid4()).replace("-", "_").upper()
211
231
 
212
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
213
- """
214
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
215
-
216
- Args:
217
- dataset: Input dataset.
218
- """
219
- if not self.input_cols:
220
- cols = [
221
- c for c in dataset.columns
222
- if c not in self.get_label_cols() and c != self.sample_weight_col
223
- ]
224
- self.set_input_cols(input_cols=cols)
225
-
226
- if not self.output_cols:
227
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
228
- self.set_output_cols(output_cols=cols)
229
-
230
232
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "LarsCV":
231
233
  """
232
234
  Input columns setter.
@@ -272,54 +274,48 @@ class LarsCV(BaseTransformer):
272
274
  self
273
275
  """
274
276
  self._infer_input_output_cols(dataset)
275
- if isinstance(dataset, pd.DataFrame):
276
- assert self._sklearn_object is not None # keep mypy happy
277
- self._sklearn_object = self._handlers.fit_pandas(
278
- dataset,
279
- self._sklearn_object,
280
- self.input_cols,
281
- self.label_cols,
282
- self.sample_weight_col
283
- )
284
- elif isinstance(dataset, DataFrame):
285
- self._fit_snowpark(dataset)
286
- else:
287
- raise TypeError(
288
- f"Unexpected dataset type: {type(dataset)}."
289
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
290
- )
277
+ if isinstance(dataset, DataFrame):
278
+ session = dataset._session
279
+ assert session is not None # keep mypy happy
280
+ # Validate that key package version in user workspace are supported in snowflake conda channel
281
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
282
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
283
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
284
+
285
+ # Specify input columns so column pruning will be enforced
286
+ selected_cols = self._get_active_columns()
287
+ if len(selected_cols) > 0:
288
+ dataset = dataset.select(selected_cols)
289
+
290
+ self._snowpark_cols = dataset.select(self.input_cols).columns
291
+
292
+ # If we are already in a stored procedure, no need to kick off another one.
293
+ if SNOWML_SPROC_ENV in os.environ:
294
+ statement_params = telemetry.get_function_usage_statement_params(
295
+ project=_PROJECT,
296
+ subproject=_SUBPROJECT,
297
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LarsCV.__class__.__name__),
298
+ api_calls=[Session.call],
299
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
300
+ )
301
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
302
+ pd_df.columns = dataset.columns
303
+ dataset = pd_df
304
+
305
+ model_trainer = ModelTrainerBuilder.build(
306
+ estimator=self._sklearn_object,
307
+ dataset=dataset,
308
+ input_cols=self.input_cols,
309
+ label_cols=self.label_cols,
310
+ sample_weight_col=self.sample_weight_col,
311
+ autogenerated=self._autogenerated,
312
+ subproject=_SUBPROJECT
313
+ )
314
+ self._sklearn_object = model_trainer.train()
291
315
  self._is_fitted = True
292
316
  self._get_model_signatures(dataset)
293
317
  return self
294
318
 
295
- def _fit_snowpark(self, dataset: DataFrame) -> None:
296
- session = dataset._session
297
- assert session is not None # keep mypy happy
298
- # Validate that key package version in user workspace are supported in snowflake conda channel
299
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
300
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
301
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
302
-
303
- # Specify input columns so column pruning will be enforced
304
- selected_cols = self._get_active_columns()
305
- if len(selected_cols) > 0:
306
- dataset = dataset.select(selected_cols)
307
-
308
- estimator = self._sklearn_object
309
- assert estimator is not None # Keep mypy happy
310
-
311
- self._snowpark_cols = dataset.select(self.input_cols).columns
312
-
313
- self._sklearn_object = self._handlers.fit_snowpark(
314
- dataset,
315
- session,
316
- estimator,
317
- ["snowflake-snowpark-python"] + self._get_dependencies(),
318
- self.input_cols,
319
- self.label_cols,
320
- self.sample_weight_col,
321
- )
322
-
323
319
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
324
320
  if self._drop_input_cols:
325
321
  return []
@@ -507,11 +503,6 @@ class LarsCV(BaseTransformer):
507
503
  subproject=_SUBPROJECT,
508
504
  custom_tags=dict([("autogen", True)]),
509
505
  )
510
- @telemetry.add_stmt_params_to_df(
511
- project=_PROJECT,
512
- subproject=_SUBPROJECT,
513
- custom_tags=dict([("autogen", True)]),
514
- )
515
506
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
516
507
  """Predict using the linear model
517
508
  For more details on this function, see [sklearn.linear_model.LarsCV.predict]
@@ -565,11 +556,6 @@ class LarsCV(BaseTransformer):
565
556
  subproject=_SUBPROJECT,
566
557
  custom_tags=dict([("autogen", True)]),
567
558
  )
568
- @telemetry.add_stmt_params_to_df(
569
- project=_PROJECT,
570
- subproject=_SUBPROJECT,
571
- custom_tags=dict([("autogen", True)]),
572
- )
573
559
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
574
560
  """Method not supported for this class.
575
561
 
@@ -626,7 +612,8 @@ class LarsCV(BaseTransformer):
626
612
  if False:
627
613
  self.fit(dataset)
628
614
  assert self._sklearn_object is not None
629
- return self._sklearn_object.labels_
615
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
616
+ return labels
630
617
  else:
631
618
  raise NotImplementedError
632
619
 
@@ -662,6 +649,7 @@ class LarsCV(BaseTransformer):
662
649
  output_cols = []
663
650
 
664
651
  # Make sure column names are valid snowflake identifiers.
652
+ assert output_cols is not None # Make MyPy happy
665
653
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
666
654
 
667
655
  return rv
@@ -672,11 +660,6 @@ class LarsCV(BaseTransformer):
672
660
  subproject=_SUBPROJECT,
673
661
  custom_tags=dict([("autogen", True)]),
674
662
  )
675
- @telemetry.add_stmt_params_to_df(
676
- project=_PROJECT,
677
- subproject=_SUBPROJECT,
678
- custom_tags=dict([("autogen", True)]),
679
- )
680
663
  def predict_proba(
681
664
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
682
665
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -717,11 +700,6 @@ class LarsCV(BaseTransformer):
717
700
  subproject=_SUBPROJECT,
718
701
  custom_tags=dict([("autogen", True)]),
719
702
  )
720
- @telemetry.add_stmt_params_to_df(
721
- project=_PROJECT,
722
- subproject=_SUBPROJECT,
723
- custom_tags=dict([("autogen", True)]),
724
- )
725
703
  def predict_log_proba(
726
704
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
727
705
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -758,16 +736,6 @@ class LarsCV(BaseTransformer):
758
736
  return output_df
759
737
 
760
738
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
761
- @telemetry.send_api_usage_telemetry(
762
- project=_PROJECT,
763
- subproject=_SUBPROJECT,
764
- custom_tags=dict([("autogen", True)]),
765
- )
766
- @telemetry.add_stmt_params_to_df(
767
- project=_PROJECT,
768
- subproject=_SUBPROJECT,
769
- custom_tags=dict([("autogen", True)]),
770
- )
771
739
  def decision_function(
772
740
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
773
741
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -868,11 +836,6 @@ class LarsCV(BaseTransformer):
868
836
  subproject=_SUBPROJECT,
869
837
  custom_tags=dict([("autogen", True)]),
870
838
  )
871
- @telemetry.add_stmt_params_to_df(
872
- project=_PROJECT,
873
- subproject=_SUBPROJECT,
874
- custom_tags=dict([("autogen", True)]),
875
- )
876
839
  def kneighbors(
877
840
  self,
878
841
  dataset: Union[DataFrame, pd.DataFrame],
@@ -932,18 +895,28 @@ class LarsCV(BaseTransformer):
932
895
  # For classifier, the type of predict is the same as the type of label
933
896
  if self._sklearn_object._estimator_type == 'classifier':
934
897
  # label columns is the desired type for output
935
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
898
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
936
899
  # rename the output columns
937
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
900
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
938
901
  self._model_signature_dict["predict"] = ModelSignature(inputs,
939
902
  ([] if self._drop_input_cols else inputs)
940
903
  + outputs)
904
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
905
+ # For outlier models, returns -1 for outliers and 1 for inliers.
906
+ # Clusterer returns int64 cluster labels.
907
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
908
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
909
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
910
+ ([] if self._drop_input_cols else inputs)
911
+ + outputs)
912
+
941
913
  # For regressor, the type of predict is float64
942
914
  elif self._sklearn_object._estimator_type == 'regressor':
943
915
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
944
916
  self._model_signature_dict["predict"] = ModelSignature(inputs,
945
917
  ([] if self._drop_input_cols else inputs)
946
918
  + outputs)
919
+
947
920
  for prob_func in PROB_FUNCTIONS:
948
921
  if hasattr(self, prob_func):
949
922
  output_cols_prefix: str = f"{prob_func}_"