snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class OrthogonalMatchingPursuit(BaseTransformer):
|
57
58
|
r"""Orthogonal Matching Pursuit model (OMP)
|
58
59
|
For more details on this class, see [sklearn.linear_model.OrthogonalMatchingPursuit]
|
@@ -60,6 +61,51 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
n_nonzero_coefs: int, default=None
|
64
110
|
Desired number of non-zero entries in the solution. If None (by
|
65
111
|
default) this value is set to 10% of n_features.
|
@@ -85,35 +131,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
85
131
|
calculations. Improves performance when :term:`n_targets` or
|
86
132
|
:term:`n_samples` is very large. Note that if you already have such
|
87
133
|
matrices, you can pass them directly to the fit method.
|
88
|
-
|
89
|
-
input_cols: Optional[Union[str, List[str]]]
|
90
|
-
A string or list of strings representing column names that contain features.
|
91
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
92
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
93
|
-
considered input columns.
|
94
|
-
|
95
|
-
label_cols: Optional[Union[str, List[str]]]
|
96
|
-
A string or list of strings representing column names that contain labels.
|
97
|
-
This is a required param for estimators, as there is no way to infer these
|
98
|
-
columns. If this parameter is not specified, then object is fitted without
|
99
|
-
labels (like a transformer).
|
100
|
-
|
101
|
-
output_cols: Optional[Union[str, List[str]]]
|
102
|
-
A string or list of strings representing column names that will store the
|
103
|
-
output of predict and transform operations. The length of output_cols must
|
104
|
-
match the expected number of output columns from the specific estimator or
|
105
|
-
transformer class used.
|
106
|
-
If this parameter is not specified, output column names are derived by
|
107
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
108
|
-
column names work for estimator's predict() method, but output_cols must
|
109
|
-
be set explicitly for transformers.
|
110
|
-
|
111
|
-
sample_weight_col: Optional[str]
|
112
|
-
A string representing the column name containing the sample weights.
|
113
|
-
This argument is only required when working with weighted datasets.
|
114
|
-
|
115
|
-
drop_input_cols: Optional[bool], default=False
|
116
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
117
134
|
"""
|
118
135
|
|
119
136
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -127,6 +144,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
127
144
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
128
145
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
129
146
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
147
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
130
148
|
drop_input_cols: Optional[bool] = False,
|
131
149
|
sample_weight_col: Optional[str] = None,
|
132
150
|
) -> None:
|
@@ -135,9 +153,10 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
135
153
|
self.set_input_cols(input_cols)
|
136
154
|
self.set_output_cols(output_cols)
|
137
155
|
self.set_label_cols(label_cols)
|
156
|
+
self.set_passthrough_cols(passthrough_cols)
|
138
157
|
self.set_drop_input_cols(drop_input_cols)
|
139
158
|
self.set_sample_weight_col(sample_weight_col)
|
140
|
-
deps = set(
|
159
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
141
160
|
|
142
161
|
self._deps = list(deps)
|
143
162
|
|
@@ -150,13 +169,14 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
150
169
|
args=init_args,
|
151
170
|
klass=sklearn.linear_model.OrthogonalMatchingPursuit
|
152
171
|
)
|
153
|
-
self._sklearn_object = sklearn.linear_model.OrthogonalMatchingPursuit(
|
172
|
+
self._sklearn_object: Any = sklearn.linear_model.OrthogonalMatchingPursuit(
|
154
173
|
**cleaned_up_init_args,
|
155
174
|
)
|
156
175
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
157
176
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
158
177
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
159
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OrthogonalMatchingPursuit.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
178
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OrthogonalMatchingPursuit.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
179
|
+
self._autogenerated = True
|
160
180
|
|
161
181
|
def _get_rand_id(self) -> str:
|
162
182
|
"""
|
@@ -167,24 +187,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
167
187
|
"""
|
168
188
|
return str(uuid4()).replace("-", "_").upper()
|
169
189
|
|
170
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
171
|
-
"""
|
172
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
173
|
-
|
174
|
-
Args:
|
175
|
-
dataset: Input dataset.
|
176
|
-
"""
|
177
|
-
if not self.input_cols:
|
178
|
-
cols = [
|
179
|
-
c for c in dataset.columns
|
180
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
181
|
-
]
|
182
|
-
self.set_input_cols(input_cols=cols)
|
183
|
-
|
184
|
-
if not self.output_cols:
|
185
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
186
|
-
self.set_output_cols(output_cols=cols)
|
187
|
-
|
188
190
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "OrthogonalMatchingPursuit":
|
189
191
|
"""
|
190
192
|
Input columns setter.
|
@@ -230,54 +232,48 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
230
232
|
self
|
231
233
|
"""
|
232
234
|
self._infer_input_output_cols(dataset)
|
233
|
-
if isinstance(dataset,
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
self.
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
235
|
+
if isinstance(dataset, DataFrame):
|
236
|
+
session = dataset._session
|
237
|
+
assert session is not None # keep mypy happy
|
238
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
239
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
240
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
241
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
242
|
+
|
243
|
+
# Specify input columns so column pruning will be enforced
|
244
|
+
selected_cols = self._get_active_columns()
|
245
|
+
if len(selected_cols) > 0:
|
246
|
+
dataset = dataset.select(selected_cols)
|
247
|
+
|
248
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
249
|
+
|
250
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
251
|
+
if SNOWML_SPROC_ENV in os.environ:
|
252
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
253
|
+
project=_PROJECT,
|
254
|
+
subproject=_SUBPROJECT,
|
255
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OrthogonalMatchingPursuit.__class__.__name__),
|
256
|
+
api_calls=[Session.call],
|
257
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
258
|
+
)
|
259
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
260
|
+
pd_df.columns = dataset.columns
|
261
|
+
dataset = pd_df
|
262
|
+
|
263
|
+
model_trainer = ModelTrainerBuilder.build(
|
264
|
+
estimator=self._sklearn_object,
|
265
|
+
dataset=dataset,
|
266
|
+
input_cols=self.input_cols,
|
267
|
+
label_cols=self.label_cols,
|
268
|
+
sample_weight_col=self.sample_weight_col,
|
269
|
+
autogenerated=self._autogenerated,
|
270
|
+
subproject=_SUBPROJECT
|
271
|
+
)
|
272
|
+
self._sklearn_object = model_trainer.train()
|
249
273
|
self._is_fitted = True
|
250
274
|
self._get_model_signatures(dataset)
|
251
275
|
return self
|
252
276
|
|
253
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
254
|
-
session = dataset._session
|
255
|
-
assert session is not None # keep mypy happy
|
256
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
257
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
258
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
259
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
260
|
-
|
261
|
-
# Specify input columns so column pruning will be enforced
|
262
|
-
selected_cols = self._get_active_columns()
|
263
|
-
if len(selected_cols) > 0:
|
264
|
-
dataset = dataset.select(selected_cols)
|
265
|
-
|
266
|
-
estimator = self._sklearn_object
|
267
|
-
assert estimator is not None # Keep mypy happy
|
268
|
-
|
269
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
270
|
-
|
271
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
272
|
-
dataset,
|
273
|
-
session,
|
274
|
-
estimator,
|
275
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
276
|
-
self.input_cols,
|
277
|
-
self.label_cols,
|
278
|
-
self.sample_weight_col,
|
279
|
-
)
|
280
|
-
|
281
277
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
282
278
|
if self._drop_input_cols:
|
283
279
|
return []
|
@@ -465,11 +461,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
465
461
|
subproject=_SUBPROJECT,
|
466
462
|
custom_tags=dict([("autogen", True)]),
|
467
463
|
)
|
468
|
-
@telemetry.add_stmt_params_to_df(
|
469
|
-
project=_PROJECT,
|
470
|
-
subproject=_SUBPROJECT,
|
471
|
-
custom_tags=dict([("autogen", True)]),
|
472
|
-
)
|
473
464
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
474
465
|
"""Predict using the linear model
|
475
466
|
For more details on this function, see [sklearn.linear_model.OrthogonalMatchingPursuit.predict]
|
@@ -523,11 +514,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
523
514
|
subproject=_SUBPROJECT,
|
524
515
|
custom_tags=dict([("autogen", True)]),
|
525
516
|
)
|
526
|
-
@telemetry.add_stmt_params_to_df(
|
527
|
-
project=_PROJECT,
|
528
|
-
subproject=_SUBPROJECT,
|
529
|
-
custom_tags=dict([("autogen", True)]),
|
530
|
-
)
|
531
517
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
532
518
|
"""Method not supported for this class.
|
533
519
|
|
@@ -584,7 +570,8 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
584
570
|
if False:
|
585
571
|
self.fit(dataset)
|
586
572
|
assert self._sklearn_object is not None
|
587
|
-
|
573
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
574
|
+
return labels
|
588
575
|
else:
|
589
576
|
raise NotImplementedError
|
590
577
|
|
@@ -620,6 +607,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
620
607
|
output_cols = []
|
621
608
|
|
622
609
|
# Make sure column names are valid snowflake identifiers.
|
610
|
+
assert output_cols is not None # Make MyPy happy
|
623
611
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
624
612
|
|
625
613
|
return rv
|
@@ -630,11 +618,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
630
618
|
subproject=_SUBPROJECT,
|
631
619
|
custom_tags=dict([("autogen", True)]),
|
632
620
|
)
|
633
|
-
@telemetry.add_stmt_params_to_df(
|
634
|
-
project=_PROJECT,
|
635
|
-
subproject=_SUBPROJECT,
|
636
|
-
custom_tags=dict([("autogen", True)]),
|
637
|
-
)
|
638
621
|
def predict_proba(
|
639
622
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
640
623
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -675,11 +658,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
675
658
|
subproject=_SUBPROJECT,
|
676
659
|
custom_tags=dict([("autogen", True)]),
|
677
660
|
)
|
678
|
-
@telemetry.add_stmt_params_to_df(
|
679
|
-
project=_PROJECT,
|
680
|
-
subproject=_SUBPROJECT,
|
681
|
-
custom_tags=dict([("autogen", True)]),
|
682
|
-
)
|
683
661
|
def predict_log_proba(
|
684
662
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
685
663
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -716,16 +694,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
716
694
|
return output_df
|
717
695
|
|
718
696
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
719
|
-
@telemetry.send_api_usage_telemetry(
|
720
|
-
project=_PROJECT,
|
721
|
-
subproject=_SUBPROJECT,
|
722
|
-
custom_tags=dict([("autogen", True)]),
|
723
|
-
)
|
724
|
-
@telemetry.add_stmt_params_to_df(
|
725
|
-
project=_PROJECT,
|
726
|
-
subproject=_SUBPROJECT,
|
727
|
-
custom_tags=dict([("autogen", True)]),
|
728
|
-
)
|
729
697
|
def decision_function(
|
730
698
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
731
699
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -826,11 +794,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
826
794
|
subproject=_SUBPROJECT,
|
827
795
|
custom_tags=dict([("autogen", True)]),
|
828
796
|
)
|
829
|
-
@telemetry.add_stmt_params_to_df(
|
830
|
-
project=_PROJECT,
|
831
|
-
subproject=_SUBPROJECT,
|
832
|
-
custom_tags=dict([("autogen", True)]),
|
833
|
-
)
|
834
797
|
def kneighbors(
|
835
798
|
self,
|
836
799
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -890,18 +853,28 @@ class OrthogonalMatchingPursuit(BaseTransformer):
|
|
890
853
|
# For classifier, the type of predict is the same as the type of label
|
891
854
|
if self._sklearn_object._estimator_type == 'classifier':
|
892
855
|
# label columns is the desired type for output
|
893
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
856
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
894
857
|
# rename the output columns
|
895
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
858
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
896
859
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
897
860
|
([] if self._drop_input_cols else inputs)
|
898
861
|
+ outputs)
|
862
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
863
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
864
|
+
# Clusterer returns int64 cluster labels.
|
865
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
866
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
867
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
868
|
+
([] if self._drop_input_cols else inputs)
|
869
|
+
+ outputs)
|
870
|
+
|
899
871
|
# For regressor, the type of predict is float64
|
900
872
|
elif self._sklearn_object._estimator_type == 'regressor':
|
901
873
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
902
874
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
903
875
|
([] if self._drop_input_cols else inputs)
|
904
876
|
+ outputs)
|
877
|
+
|
905
878
|
for prob_func in PROB_FUNCTIONS:
|
906
879
|
if hasattr(self, prob_func):
|
907
880
|
output_cols_prefix: str = f"{prob_func}_"
|