snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class OrthogonalMatchingPursuit(BaseTransformer):
57
58
  r"""Orthogonal Matching Pursuit model (OMP)
58
59
  For more details on this class, see [sklearn.linear_model.OrthogonalMatchingPursuit]
@@ -60,6 +61,51 @@ class OrthogonalMatchingPursuit(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  n_nonzero_coefs: int, default=None
64
110
  Desired number of non-zero entries in the solution. If None (by
65
111
  default) this value is set to 10% of n_features.
@@ -85,35 +131,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
85
131
  calculations. Improves performance when :term:`n_targets` or
86
132
  :term:`n_samples` is very large. Note that if you already have such
87
133
  matrices, you can pass them directly to the fit method.
88
-
89
- input_cols: Optional[Union[str, List[str]]]
90
- A string or list of strings representing column names that contain features.
91
- If this parameter is not specified, all columns in the input DataFrame except
92
- the columns specified by label_cols and sample_weight_col parameters are
93
- considered input columns.
94
-
95
- label_cols: Optional[Union[str, List[str]]]
96
- A string or list of strings representing column names that contain labels.
97
- This is a required param for estimators, as there is no way to infer these
98
- columns. If this parameter is not specified, then object is fitted without
99
- labels (like a transformer).
100
-
101
- output_cols: Optional[Union[str, List[str]]]
102
- A string or list of strings representing column names that will store the
103
- output of predict and transform operations. The length of output_cols must
104
- match the expected number of output columns from the specific estimator or
105
- transformer class used.
106
- If this parameter is not specified, output column names are derived by
107
- adding an OUTPUT_ prefix to the label column names. These inferred output
108
- column names work for estimator's predict() method, but output_cols must
109
- be set explicitly for transformers.
110
-
111
- sample_weight_col: Optional[str]
112
- A string representing the column name containing the sample weights.
113
- This argument is only required when working with weighted datasets.
114
-
115
- drop_input_cols: Optional[bool], default=False
116
- If set, the response of predict(), transform() methods will not contain input columns.
117
134
  """
118
135
 
119
136
  def __init__( # type: ignore[no-untyped-def]
@@ -127,6 +144,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
127
144
  input_cols: Optional[Union[str, Iterable[str]]] = None,
128
145
  output_cols: Optional[Union[str, Iterable[str]]] = None,
129
146
  label_cols: Optional[Union[str, Iterable[str]]] = None,
147
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
130
148
  drop_input_cols: Optional[bool] = False,
131
149
  sample_weight_col: Optional[str] = None,
132
150
  ) -> None:
@@ -135,9 +153,10 @@ class OrthogonalMatchingPursuit(BaseTransformer):
135
153
  self.set_input_cols(input_cols)
136
154
  self.set_output_cols(output_cols)
137
155
  self.set_label_cols(label_cols)
156
+ self.set_passthrough_cols(passthrough_cols)
138
157
  self.set_drop_input_cols(drop_input_cols)
139
158
  self.set_sample_weight_col(sample_weight_col)
140
- deps = set(SklearnWrapperProvider().dependencies)
159
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
141
160
 
142
161
  self._deps = list(deps)
143
162
 
@@ -150,13 +169,14 @@ class OrthogonalMatchingPursuit(BaseTransformer):
150
169
  args=init_args,
151
170
  klass=sklearn.linear_model.OrthogonalMatchingPursuit
152
171
  )
153
- self._sklearn_object = sklearn.linear_model.OrthogonalMatchingPursuit(
172
+ self._sklearn_object: Any = sklearn.linear_model.OrthogonalMatchingPursuit(
154
173
  **cleaned_up_init_args,
155
174
  )
156
175
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
157
176
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
158
177
  self._snowpark_cols: Optional[List[str]] = self.input_cols
159
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=OrthogonalMatchingPursuit.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
178
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=OrthogonalMatchingPursuit.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
179
+ self._autogenerated = True
160
180
 
161
181
  def _get_rand_id(self) -> str:
162
182
  """
@@ -167,24 +187,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
167
187
  """
168
188
  return str(uuid4()).replace("-", "_").upper()
169
189
 
170
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
171
- """
172
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
173
-
174
- Args:
175
- dataset: Input dataset.
176
- """
177
- if not self.input_cols:
178
- cols = [
179
- c for c in dataset.columns
180
- if c not in self.get_label_cols() and c != self.sample_weight_col
181
- ]
182
- self.set_input_cols(input_cols=cols)
183
-
184
- if not self.output_cols:
185
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
186
- self.set_output_cols(output_cols=cols)
187
-
188
190
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "OrthogonalMatchingPursuit":
189
191
  """
190
192
  Input columns setter.
@@ -230,54 +232,48 @@ class OrthogonalMatchingPursuit(BaseTransformer):
230
232
  self
231
233
  """
232
234
  self._infer_input_output_cols(dataset)
233
- if isinstance(dataset, pd.DataFrame):
234
- assert self._sklearn_object is not None # keep mypy happy
235
- self._sklearn_object = self._handlers.fit_pandas(
236
- dataset,
237
- self._sklearn_object,
238
- self.input_cols,
239
- self.label_cols,
240
- self.sample_weight_col
241
- )
242
- elif isinstance(dataset, DataFrame):
243
- self._fit_snowpark(dataset)
244
- else:
245
- raise TypeError(
246
- f"Unexpected dataset type: {type(dataset)}."
247
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
248
- )
235
+ if isinstance(dataset, DataFrame):
236
+ session = dataset._session
237
+ assert session is not None # keep mypy happy
238
+ # Validate that key package version in user workspace are supported in snowflake conda channel
239
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
240
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
241
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
242
+
243
+ # Specify input columns so column pruning will be enforced
244
+ selected_cols = self._get_active_columns()
245
+ if len(selected_cols) > 0:
246
+ dataset = dataset.select(selected_cols)
247
+
248
+ self._snowpark_cols = dataset.select(self.input_cols).columns
249
+
250
+ # If we are already in a stored procedure, no need to kick off another one.
251
+ if SNOWML_SPROC_ENV in os.environ:
252
+ statement_params = telemetry.get_function_usage_statement_params(
253
+ project=_PROJECT,
254
+ subproject=_SUBPROJECT,
255
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OrthogonalMatchingPursuit.__class__.__name__),
256
+ api_calls=[Session.call],
257
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
258
+ )
259
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
260
+ pd_df.columns = dataset.columns
261
+ dataset = pd_df
262
+
263
+ model_trainer = ModelTrainerBuilder.build(
264
+ estimator=self._sklearn_object,
265
+ dataset=dataset,
266
+ input_cols=self.input_cols,
267
+ label_cols=self.label_cols,
268
+ sample_weight_col=self.sample_weight_col,
269
+ autogenerated=self._autogenerated,
270
+ subproject=_SUBPROJECT
271
+ )
272
+ self._sklearn_object = model_trainer.train()
249
273
  self._is_fitted = True
250
274
  self._get_model_signatures(dataset)
251
275
  return self
252
276
 
253
- def _fit_snowpark(self, dataset: DataFrame) -> None:
254
- session = dataset._session
255
- assert session is not None # keep mypy happy
256
- # Validate that key package version in user workspace are supported in snowflake conda channel
257
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
258
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
259
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
260
-
261
- # Specify input columns so column pruning will be enforced
262
- selected_cols = self._get_active_columns()
263
- if len(selected_cols) > 0:
264
- dataset = dataset.select(selected_cols)
265
-
266
- estimator = self._sklearn_object
267
- assert estimator is not None # Keep mypy happy
268
-
269
- self._snowpark_cols = dataset.select(self.input_cols).columns
270
-
271
- self._sklearn_object = self._handlers.fit_snowpark(
272
- dataset,
273
- session,
274
- estimator,
275
- ["snowflake-snowpark-python"] + self._get_dependencies(),
276
- self.input_cols,
277
- self.label_cols,
278
- self.sample_weight_col,
279
- )
280
-
281
277
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
282
278
  if self._drop_input_cols:
283
279
  return []
@@ -465,11 +461,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
465
461
  subproject=_SUBPROJECT,
466
462
  custom_tags=dict([("autogen", True)]),
467
463
  )
468
- @telemetry.add_stmt_params_to_df(
469
- project=_PROJECT,
470
- subproject=_SUBPROJECT,
471
- custom_tags=dict([("autogen", True)]),
472
- )
473
464
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
474
465
  """Predict using the linear model
475
466
  For more details on this function, see [sklearn.linear_model.OrthogonalMatchingPursuit.predict]
@@ -523,11 +514,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
523
514
  subproject=_SUBPROJECT,
524
515
  custom_tags=dict([("autogen", True)]),
525
516
  )
526
- @telemetry.add_stmt_params_to_df(
527
- project=_PROJECT,
528
- subproject=_SUBPROJECT,
529
- custom_tags=dict([("autogen", True)]),
530
- )
531
517
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
532
518
  """Method not supported for this class.
533
519
 
@@ -584,7 +570,8 @@ class OrthogonalMatchingPursuit(BaseTransformer):
584
570
  if False:
585
571
  self.fit(dataset)
586
572
  assert self._sklearn_object is not None
587
- return self._sklearn_object.labels_
573
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
574
+ return labels
588
575
  else:
589
576
  raise NotImplementedError
590
577
 
@@ -620,6 +607,7 @@ class OrthogonalMatchingPursuit(BaseTransformer):
620
607
  output_cols = []
621
608
 
622
609
  # Make sure column names are valid snowflake identifiers.
610
+ assert output_cols is not None # Make MyPy happy
623
611
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
624
612
 
625
613
  return rv
@@ -630,11 +618,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
630
618
  subproject=_SUBPROJECT,
631
619
  custom_tags=dict([("autogen", True)]),
632
620
  )
633
- @telemetry.add_stmt_params_to_df(
634
- project=_PROJECT,
635
- subproject=_SUBPROJECT,
636
- custom_tags=dict([("autogen", True)]),
637
- )
638
621
  def predict_proba(
639
622
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
640
623
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -675,11 +658,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
675
658
  subproject=_SUBPROJECT,
676
659
  custom_tags=dict([("autogen", True)]),
677
660
  )
678
- @telemetry.add_stmt_params_to_df(
679
- project=_PROJECT,
680
- subproject=_SUBPROJECT,
681
- custom_tags=dict([("autogen", True)]),
682
- )
683
661
  def predict_log_proba(
684
662
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
685
663
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -716,16 +694,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
716
694
  return output_df
717
695
 
718
696
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
719
- @telemetry.send_api_usage_telemetry(
720
- project=_PROJECT,
721
- subproject=_SUBPROJECT,
722
- custom_tags=dict([("autogen", True)]),
723
- )
724
- @telemetry.add_stmt_params_to_df(
725
- project=_PROJECT,
726
- subproject=_SUBPROJECT,
727
- custom_tags=dict([("autogen", True)]),
728
- )
729
697
  def decision_function(
730
698
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
731
699
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -826,11 +794,6 @@ class OrthogonalMatchingPursuit(BaseTransformer):
826
794
  subproject=_SUBPROJECT,
827
795
  custom_tags=dict([("autogen", True)]),
828
796
  )
829
- @telemetry.add_stmt_params_to_df(
830
- project=_PROJECT,
831
- subproject=_SUBPROJECT,
832
- custom_tags=dict([("autogen", True)]),
833
- )
834
797
  def kneighbors(
835
798
  self,
836
799
  dataset: Union[DataFrame, pd.DataFrame],
@@ -890,18 +853,28 @@ class OrthogonalMatchingPursuit(BaseTransformer):
890
853
  # For classifier, the type of predict is the same as the type of label
891
854
  if self._sklearn_object._estimator_type == 'classifier':
892
855
  # label columns is the desired type for output
893
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
856
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
894
857
  # rename the output columns
895
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
858
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
896
859
  self._model_signature_dict["predict"] = ModelSignature(inputs,
897
860
  ([] if self._drop_input_cols else inputs)
898
861
  + outputs)
862
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
863
+ # For outlier models, returns -1 for outliers and 1 for inliers.
864
+ # Clusterer returns int64 cluster labels.
865
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
866
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
867
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
868
+ ([] if self._drop_input_cols else inputs)
869
+ + outputs)
870
+
899
871
  # For regressor, the type of predict is float64
900
872
  elif self._sklearn_object._estimator_type == 'regressor':
901
873
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
902
874
  self._model_signature_dict["predict"] = ModelSignature(inputs,
903
875
  ([] if self._drop_input_cols else inputs)
904
876
  + outputs)
877
+
905
878
  for prob_func in PROB_FUNCTIONS:
906
879
  if hasattr(self, prob_func):
907
880
  output_cols_prefix: str = f"{prob_func}_"