snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class AdaBoostClassifier(BaseTransformer):
|
57
58
|
r"""An AdaBoost classifier
|
58
59
|
For more details on this class, see [sklearn.ensemble.AdaBoostClassifier]
|
@@ -60,6 +61,51 @@ class AdaBoostClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimator: object, default=None
|
64
110
|
The base estimator from which the boosted ensemble is built.
|
65
111
|
Support for sample weighting is required, as well as proper
|
@@ -98,35 +144,6 @@ class AdaBoostClassifier(BaseTransformer):
|
|
98
144
|
``classes_`` and ``n_classes_`` attributes. If ``None``, then
|
99
145
|
the base estimator is :class:`~sklearn.tree.DecisionTreeClassifier`
|
100
146
|
initialized with `max_depth=1`.
|
101
|
-
|
102
|
-
input_cols: Optional[Union[str, List[str]]]
|
103
|
-
A string or list of strings representing column names that contain features.
|
104
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
105
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
106
|
-
considered input columns.
|
107
|
-
|
108
|
-
label_cols: Optional[Union[str, List[str]]]
|
109
|
-
A string or list of strings representing column names that contain labels.
|
110
|
-
This is a required param for estimators, as there is no way to infer these
|
111
|
-
columns. If this parameter is not specified, then object is fitted without
|
112
|
-
labels (like a transformer).
|
113
|
-
|
114
|
-
output_cols: Optional[Union[str, List[str]]]
|
115
|
-
A string or list of strings representing column names that will store the
|
116
|
-
output of predict and transform operations. The length of output_cols must
|
117
|
-
match the expected number of output columns from the specific estimator or
|
118
|
-
transformer class used.
|
119
|
-
If this parameter is not specified, output column names are derived by
|
120
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
121
|
-
column names work for estimator's predict() method, but output_cols must
|
122
|
-
be set explicitly for transformers.
|
123
|
-
|
124
|
-
sample_weight_col: Optional[str]
|
125
|
-
A string representing the column name containing the sample weights.
|
126
|
-
This argument is only required when working with weighted datasets.
|
127
|
-
|
128
|
-
drop_input_cols: Optional[bool], default=False
|
129
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
130
147
|
"""
|
131
148
|
|
132
149
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -141,6 +158,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
141
158
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
142
159
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
143
160
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
161
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
144
162
|
drop_input_cols: Optional[bool] = False,
|
145
163
|
sample_weight_col: Optional[str] = None,
|
146
164
|
) -> None:
|
@@ -149,9 +167,10 @@ class AdaBoostClassifier(BaseTransformer):
|
|
149
167
|
self.set_input_cols(input_cols)
|
150
168
|
self.set_output_cols(output_cols)
|
151
169
|
self.set_label_cols(label_cols)
|
170
|
+
self.set_passthrough_cols(passthrough_cols)
|
152
171
|
self.set_drop_input_cols(drop_input_cols)
|
153
172
|
self.set_sample_weight_col(sample_weight_col)
|
154
|
-
deps = set(
|
173
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
155
174
|
deps = deps | gather_dependencies(estimator)
|
156
175
|
deps = deps | gather_dependencies(base_estimator)
|
157
176
|
self._deps = list(deps)
|
@@ -167,13 +186,14 @@ class AdaBoostClassifier(BaseTransformer):
|
|
167
186
|
args=init_args,
|
168
187
|
klass=sklearn.ensemble.AdaBoostClassifier
|
169
188
|
)
|
170
|
-
self._sklearn_object = sklearn.ensemble.AdaBoostClassifier(
|
189
|
+
self._sklearn_object: Any = sklearn.ensemble.AdaBoostClassifier(
|
171
190
|
**cleaned_up_init_args,
|
172
191
|
)
|
173
192
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
174
193
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
175
194
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
176
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdaBoostClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
195
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdaBoostClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
196
|
+
self._autogenerated = True
|
177
197
|
|
178
198
|
def _get_rand_id(self) -> str:
|
179
199
|
"""
|
@@ -184,24 +204,6 @@ class AdaBoostClassifier(BaseTransformer):
|
|
184
204
|
"""
|
185
205
|
return str(uuid4()).replace("-", "_").upper()
|
186
206
|
|
187
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
188
|
-
"""
|
189
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
190
|
-
|
191
|
-
Args:
|
192
|
-
dataset: Input dataset.
|
193
|
-
"""
|
194
|
-
if not self.input_cols:
|
195
|
-
cols = [
|
196
|
-
c for c in dataset.columns
|
197
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
198
|
-
]
|
199
|
-
self.set_input_cols(input_cols=cols)
|
200
|
-
|
201
|
-
if not self.output_cols:
|
202
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
203
|
-
self.set_output_cols(output_cols=cols)
|
204
|
-
|
205
207
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "AdaBoostClassifier":
|
206
208
|
"""
|
207
209
|
Input columns setter.
|
@@ -247,54 +249,48 @@ class AdaBoostClassifier(BaseTransformer):
|
|
247
249
|
self
|
248
250
|
"""
|
249
251
|
self._infer_input_output_cols(dataset)
|
250
|
-
if isinstance(dataset,
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
self.
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
252
|
+
if isinstance(dataset, DataFrame):
|
253
|
+
session = dataset._session
|
254
|
+
assert session is not None # keep mypy happy
|
255
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
256
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
257
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
258
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
259
|
+
|
260
|
+
# Specify input columns so column pruning will be enforced
|
261
|
+
selected_cols = self._get_active_columns()
|
262
|
+
if len(selected_cols) > 0:
|
263
|
+
dataset = dataset.select(selected_cols)
|
264
|
+
|
265
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
266
|
+
|
267
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
268
|
+
if SNOWML_SPROC_ENV in os.environ:
|
269
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
270
|
+
project=_PROJECT,
|
271
|
+
subproject=_SUBPROJECT,
|
272
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdaBoostClassifier.__class__.__name__),
|
273
|
+
api_calls=[Session.call],
|
274
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
275
|
+
)
|
276
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
277
|
+
pd_df.columns = dataset.columns
|
278
|
+
dataset = pd_df
|
279
|
+
|
280
|
+
model_trainer = ModelTrainerBuilder.build(
|
281
|
+
estimator=self._sklearn_object,
|
282
|
+
dataset=dataset,
|
283
|
+
input_cols=self.input_cols,
|
284
|
+
label_cols=self.label_cols,
|
285
|
+
sample_weight_col=self.sample_weight_col,
|
286
|
+
autogenerated=self._autogenerated,
|
287
|
+
subproject=_SUBPROJECT
|
288
|
+
)
|
289
|
+
self._sklearn_object = model_trainer.train()
|
266
290
|
self._is_fitted = True
|
267
291
|
self._get_model_signatures(dataset)
|
268
292
|
return self
|
269
293
|
|
270
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
271
|
-
session = dataset._session
|
272
|
-
assert session is not None # keep mypy happy
|
273
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
274
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
275
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
276
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
277
|
-
|
278
|
-
# Specify input columns so column pruning will be enforced
|
279
|
-
selected_cols = self._get_active_columns()
|
280
|
-
if len(selected_cols) > 0:
|
281
|
-
dataset = dataset.select(selected_cols)
|
282
|
-
|
283
|
-
estimator = self._sklearn_object
|
284
|
-
assert estimator is not None # Keep mypy happy
|
285
|
-
|
286
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
287
|
-
|
288
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
289
|
-
dataset,
|
290
|
-
session,
|
291
|
-
estimator,
|
292
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
293
|
-
self.input_cols,
|
294
|
-
self.label_cols,
|
295
|
-
self.sample_weight_col,
|
296
|
-
)
|
297
|
-
|
298
294
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
299
295
|
if self._drop_input_cols:
|
300
296
|
return []
|
@@ -482,11 +478,6 @@ class AdaBoostClassifier(BaseTransformer):
|
|
482
478
|
subproject=_SUBPROJECT,
|
483
479
|
custom_tags=dict([("autogen", True)]),
|
484
480
|
)
|
485
|
-
@telemetry.add_stmt_params_to_df(
|
486
|
-
project=_PROJECT,
|
487
|
-
subproject=_SUBPROJECT,
|
488
|
-
custom_tags=dict([("autogen", True)]),
|
489
|
-
)
|
490
481
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
491
482
|
"""Predict classes for X
|
492
483
|
For more details on this function, see [sklearn.ensemble.AdaBoostClassifier.predict]
|
@@ -540,11 +531,6 @@ class AdaBoostClassifier(BaseTransformer):
|
|
540
531
|
subproject=_SUBPROJECT,
|
541
532
|
custom_tags=dict([("autogen", True)]),
|
542
533
|
)
|
543
|
-
@telemetry.add_stmt_params_to_df(
|
544
|
-
project=_PROJECT,
|
545
|
-
subproject=_SUBPROJECT,
|
546
|
-
custom_tags=dict([("autogen", True)]),
|
547
|
-
)
|
548
534
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
549
535
|
"""Method not supported for this class.
|
550
536
|
|
@@ -601,7 +587,8 @@ class AdaBoostClassifier(BaseTransformer):
|
|
601
587
|
if False:
|
602
588
|
self.fit(dataset)
|
603
589
|
assert self._sklearn_object is not None
|
604
|
-
|
590
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
591
|
+
return labels
|
605
592
|
else:
|
606
593
|
raise NotImplementedError
|
607
594
|
|
@@ -637,6 +624,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
637
624
|
output_cols = []
|
638
625
|
|
639
626
|
# Make sure column names are valid snowflake identifiers.
|
627
|
+
assert output_cols is not None # Make MyPy happy
|
640
628
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
641
629
|
|
642
630
|
return rv
|
@@ -647,11 +635,6 @@ class AdaBoostClassifier(BaseTransformer):
|
|
647
635
|
subproject=_SUBPROJECT,
|
648
636
|
custom_tags=dict([("autogen", True)]),
|
649
637
|
)
|
650
|
-
@telemetry.add_stmt_params_to_df(
|
651
|
-
project=_PROJECT,
|
652
|
-
subproject=_SUBPROJECT,
|
653
|
-
custom_tags=dict([("autogen", True)]),
|
654
|
-
)
|
655
638
|
def predict_proba(
|
656
639
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
657
640
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -694,11 +677,6 @@ class AdaBoostClassifier(BaseTransformer):
|
|
694
677
|
subproject=_SUBPROJECT,
|
695
678
|
custom_tags=dict([("autogen", True)]),
|
696
679
|
)
|
697
|
-
@telemetry.add_stmt_params_to_df(
|
698
|
-
project=_PROJECT,
|
699
|
-
subproject=_SUBPROJECT,
|
700
|
-
custom_tags=dict([("autogen", True)]),
|
701
|
-
)
|
702
680
|
def predict_log_proba(
|
703
681
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
704
682
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -737,16 +715,6 @@ class AdaBoostClassifier(BaseTransformer):
|
|
737
715
|
return output_df
|
738
716
|
|
739
717
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
740
|
-
@telemetry.send_api_usage_telemetry(
|
741
|
-
project=_PROJECT,
|
742
|
-
subproject=_SUBPROJECT,
|
743
|
-
custom_tags=dict([("autogen", True)]),
|
744
|
-
)
|
745
|
-
@telemetry.add_stmt_params_to_df(
|
746
|
-
project=_PROJECT,
|
747
|
-
subproject=_SUBPROJECT,
|
748
|
-
custom_tags=dict([("autogen", True)]),
|
749
|
-
)
|
750
718
|
def decision_function(
|
751
719
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
752
720
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -849,11 +817,6 @@ class AdaBoostClassifier(BaseTransformer):
|
|
849
817
|
subproject=_SUBPROJECT,
|
850
818
|
custom_tags=dict([("autogen", True)]),
|
851
819
|
)
|
852
|
-
@telemetry.add_stmt_params_to_df(
|
853
|
-
project=_PROJECT,
|
854
|
-
subproject=_SUBPROJECT,
|
855
|
-
custom_tags=dict([("autogen", True)]),
|
856
|
-
)
|
857
820
|
def kneighbors(
|
858
821
|
self,
|
859
822
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -913,18 +876,28 @@ class AdaBoostClassifier(BaseTransformer):
|
|
913
876
|
# For classifier, the type of predict is the same as the type of label
|
914
877
|
if self._sklearn_object._estimator_type == 'classifier':
|
915
878
|
# label columns is the desired type for output
|
916
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
879
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
917
880
|
# rename the output columns
|
918
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
881
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
919
882
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
920
883
|
([] if self._drop_input_cols else inputs)
|
921
884
|
+ outputs)
|
885
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
886
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
887
|
+
# Clusterer returns int64 cluster labels.
|
888
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
889
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
890
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
891
|
+
([] if self._drop_input_cols else inputs)
|
892
|
+
+ outputs)
|
893
|
+
|
922
894
|
# For regressor, the type of predict is float64
|
923
895
|
elif self._sklearn_object._estimator_type == 'regressor':
|
924
896
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
925
897
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
926
898
|
([] if self._drop_input_cols else inputs)
|
927
899
|
+ outputs)
|
900
|
+
|
928
901
|
for prob_func in PROB_FUNCTIONS:
|
929
902
|
if hasattr(self, prob_func):
|
930
903
|
output_cols_prefix: str = f"{prob_func}_"
|