snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class SGDOneClassSVM(BaseTransformer):
|
57
58
|
r"""Solves linear One-Class SVM using Stochastic Gradient Descent
|
58
59
|
For more details on this class, see [sklearn.linear_model.SGDOneClassSVM]
|
@@ -60,6 +61,49 @@ class SGDOneClassSVM(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
nu: float, default=0.5
|
64
108
|
The nu parameter of the One Class SVM: an upper bound on the
|
65
109
|
fraction of training errors and a lower bound of the fraction of
|
@@ -132,35 +176,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
132
176
|
averaging will begin once the total number of samples seen reaches
|
133
177
|
average. So ``average=10`` will begin averaging after seeing 10
|
134
178
|
samples.
|
135
|
-
|
136
|
-
input_cols: Optional[Union[str, List[str]]]
|
137
|
-
A string or list of strings representing column names that contain features.
|
138
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
139
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
140
|
-
considered input columns.
|
141
|
-
|
142
|
-
label_cols: Optional[Union[str, List[str]]]
|
143
|
-
A string or list of strings representing column names that contain labels.
|
144
|
-
This is a required param for estimators, as there is no way to infer these
|
145
|
-
columns. If this parameter is not specified, then object is fitted without
|
146
|
-
labels (like a transformer).
|
147
|
-
|
148
|
-
output_cols: Optional[Union[str, List[str]]]
|
149
|
-
A string or list of strings representing column names that will store the
|
150
|
-
output of predict and transform operations. The length of output_cols must
|
151
|
-
match the expected number of output columns from the specific estimator or
|
152
|
-
transformer class used.
|
153
|
-
If this parameter is not specified, output column names are derived by
|
154
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
155
|
-
column names work for estimator's predict() method, but output_cols must
|
156
|
-
be set explicitly for transformers.
|
157
|
-
|
158
|
-
sample_weight_col: Optional[str]
|
159
|
-
A string representing the column name containing the sample weights.
|
160
|
-
This argument is only required when working with weighted datasets.
|
161
|
-
|
162
|
-
drop_input_cols: Optional[bool], default=False
|
163
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
164
179
|
"""
|
165
180
|
|
166
181
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -181,6 +196,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
181
196
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
182
197
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
183
198
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
199
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
184
200
|
drop_input_cols: Optional[bool] = False,
|
185
201
|
sample_weight_col: Optional[str] = None,
|
186
202
|
) -> None:
|
@@ -189,9 +205,10 @@ class SGDOneClassSVM(BaseTransformer):
|
|
189
205
|
self.set_input_cols(input_cols)
|
190
206
|
self.set_output_cols(output_cols)
|
191
207
|
self.set_label_cols(label_cols)
|
208
|
+
self.set_passthrough_cols(passthrough_cols)
|
192
209
|
self.set_drop_input_cols(drop_input_cols)
|
193
210
|
self.set_sample_weight_col(sample_weight_col)
|
194
|
-
deps = set(
|
211
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
195
212
|
|
196
213
|
self._deps = list(deps)
|
197
214
|
|
@@ -211,13 +228,14 @@ class SGDOneClassSVM(BaseTransformer):
|
|
211
228
|
args=init_args,
|
212
229
|
klass=sklearn.linear_model.SGDOneClassSVM
|
213
230
|
)
|
214
|
-
self._sklearn_object = sklearn.linear_model.SGDOneClassSVM(
|
231
|
+
self._sklearn_object: Any = sklearn.linear_model.SGDOneClassSVM(
|
215
232
|
**cleaned_up_init_args,
|
216
233
|
)
|
217
234
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
218
235
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
219
236
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
220
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
237
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
238
|
+
self._autogenerated = True
|
221
239
|
|
222
240
|
def _get_rand_id(self) -> str:
|
223
241
|
"""
|
@@ -228,24 +246,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
228
246
|
"""
|
229
247
|
return str(uuid4()).replace("-", "_").upper()
|
230
248
|
|
231
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
232
|
-
"""
|
233
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
234
|
-
|
235
|
-
Args:
|
236
|
-
dataset: Input dataset.
|
237
|
-
"""
|
238
|
-
if not self.input_cols:
|
239
|
-
cols = [
|
240
|
-
c for c in dataset.columns
|
241
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
242
|
-
]
|
243
|
-
self.set_input_cols(input_cols=cols)
|
244
|
-
|
245
|
-
if not self.output_cols:
|
246
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
247
|
-
self.set_output_cols(output_cols=cols)
|
248
|
-
|
249
249
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SGDOneClassSVM":
|
250
250
|
"""
|
251
251
|
Input columns setter.
|
@@ -291,54 +291,48 @@ class SGDOneClassSVM(BaseTransformer):
|
|
291
291
|
self
|
292
292
|
"""
|
293
293
|
self._infer_input_output_cols(dataset)
|
294
|
-
if isinstance(dataset,
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
self.
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
294
|
+
if isinstance(dataset, DataFrame):
|
295
|
+
session = dataset._session
|
296
|
+
assert session is not None # keep mypy happy
|
297
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
298
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
299
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
300
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
301
|
+
|
302
|
+
# Specify input columns so column pruning will be enforced
|
303
|
+
selected_cols = self._get_active_columns()
|
304
|
+
if len(selected_cols) > 0:
|
305
|
+
dataset = dataset.select(selected_cols)
|
306
|
+
|
307
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
308
|
+
|
309
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
310
|
+
if SNOWML_SPROC_ENV in os.environ:
|
311
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
312
|
+
project=_PROJECT,
|
313
|
+
subproject=_SUBPROJECT,
|
314
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDOneClassSVM.__class__.__name__),
|
315
|
+
api_calls=[Session.call],
|
316
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
317
|
+
)
|
318
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
319
|
+
pd_df.columns = dataset.columns
|
320
|
+
dataset = pd_df
|
321
|
+
|
322
|
+
model_trainer = ModelTrainerBuilder.build(
|
323
|
+
estimator=self._sklearn_object,
|
324
|
+
dataset=dataset,
|
325
|
+
input_cols=self.input_cols,
|
326
|
+
label_cols=self.label_cols,
|
327
|
+
sample_weight_col=self.sample_weight_col,
|
328
|
+
autogenerated=self._autogenerated,
|
329
|
+
subproject=_SUBPROJECT
|
330
|
+
)
|
331
|
+
self._sklearn_object = model_trainer.train()
|
310
332
|
self._is_fitted = True
|
311
333
|
self._get_model_signatures(dataset)
|
312
334
|
return self
|
313
335
|
|
314
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
315
|
-
session = dataset._session
|
316
|
-
assert session is not None # keep mypy happy
|
317
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
318
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
319
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
320
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
321
|
-
|
322
|
-
# Specify input columns so column pruning will be enforced
|
323
|
-
selected_cols = self._get_active_columns()
|
324
|
-
if len(selected_cols) > 0:
|
325
|
-
dataset = dataset.select(selected_cols)
|
326
|
-
|
327
|
-
estimator = self._sklearn_object
|
328
|
-
assert estimator is not None # Keep mypy happy
|
329
|
-
|
330
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
331
|
-
|
332
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
333
|
-
dataset,
|
334
|
-
session,
|
335
|
-
estimator,
|
336
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
337
|
-
self.input_cols,
|
338
|
-
self.label_cols,
|
339
|
-
self.sample_weight_col,
|
340
|
-
)
|
341
|
-
|
342
336
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
343
337
|
if self._drop_input_cols:
|
344
338
|
return []
|
@@ -526,11 +520,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
526
520
|
subproject=_SUBPROJECT,
|
527
521
|
custom_tags=dict([("autogen", True)]),
|
528
522
|
)
|
529
|
-
@telemetry.add_stmt_params_to_df(
|
530
|
-
project=_PROJECT,
|
531
|
-
subproject=_SUBPROJECT,
|
532
|
-
custom_tags=dict([("autogen", True)]),
|
533
|
-
)
|
534
523
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
535
524
|
"""Return labels (1 inlier, -1 outlier) of the samples
|
536
525
|
For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.predict]
|
@@ -584,11 +573,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
584
573
|
subproject=_SUBPROJECT,
|
585
574
|
custom_tags=dict([("autogen", True)]),
|
586
575
|
)
|
587
|
-
@telemetry.add_stmt_params_to_df(
|
588
|
-
project=_PROJECT,
|
589
|
-
subproject=_SUBPROJECT,
|
590
|
-
custom_tags=dict([("autogen", True)]),
|
591
|
-
)
|
592
576
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
593
577
|
"""Method not supported for this class.
|
594
578
|
|
@@ -647,7 +631,8 @@ class SGDOneClassSVM(BaseTransformer):
|
|
647
631
|
if False:
|
648
632
|
self.fit(dataset)
|
649
633
|
assert self._sklearn_object is not None
|
650
|
-
|
634
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
635
|
+
return labels
|
651
636
|
else:
|
652
637
|
raise NotImplementedError
|
653
638
|
|
@@ -683,6 +668,7 @@ class SGDOneClassSVM(BaseTransformer):
|
|
683
668
|
output_cols = []
|
684
669
|
|
685
670
|
# Make sure column names are valid snowflake identifiers.
|
671
|
+
assert output_cols is not None # Make MyPy happy
|
686
672
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
687
673
|
|
688
674
|
return rv
|
@@ -693,11 +679,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
693
679
|
subproject=_SUBPROJECT,
|
694
680
|
custom_tags=dict([("autogen", True)]),
|
695
681
|
)
|
696
|
-
@telemetry.add_stmt_params_to_df(
|
697
|
-
project=_PROJECT,
|
698
|
-
subproject=_SUBPROJECT,
|
699
|
-
custom_tags=dict([("autogen", True)]),
|
700
|
-
)
|
701
682
|
def predict_proba(
|
702
683
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
703
684
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -738,11 +719,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
738
719
|
subproject=_SUBPROJECT,
|
739
720
|
custom_tags=dict([("autogen", True)]),
|
740
721
|
)
|
741
|
-
@telemetry.add_stmt_params_to_df(
|
742
|
-
project=_PROJECT,
|
743
|
-
subproject=_SUBPROJECT,
|
744
|
-
custom_tags=dict([("autogen", True)]),
|
745
|
-
)
|
746
722
|
def predict_log_proba(
|
747
723
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
748
724
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -779,16 +755,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
779
755
|
return output_df
|
780
756
|
|
781
757
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
782
|
-
@telemetry.send_api_usage_telemetry(
|
783
|
-
project=_PROJECT,
|
784
|
-
subproject=_SUBPROJECT,
|
785
|
-
custom_tags=dict([("autogen", True)]),
|
786
|
-
)
|
787
|
-
@telemetry.add_stmt_params_to_df(
|
788
|
-
project=_PROJECT,
|
789
|
-
subproject=_SUBPROJECT,
|
790
|
-
custom_tags=dict([("autogen", True)]),
|
791
|
-
)
|
792
758
|
def decision_function(
|
793
759
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
794
760
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -889,11 +855,6 @@ class SGDOneClassSVM(BaseTransformer):
|
|
889
855
|
subproject=_SUBPROJECT,
|
890
856
|
custom_tags=dict([("autogen", True)]),
|
891
857
|
)
|
892
|
-
@telemetry.add_stmt_params_to_df(
|
893
|
-
project=_PROJECT,
|
894
|
-
subproject=_SUBPROJECT,
|
895
|
-
custom_tags=dict([("autogen", True)]),
|
896
|
-
)
|
897
858
|
def kneighbors(
|
898
859
|
self,
|
899
860
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -953,18 +914,28 @@ class SGDOneClassSVM(BaseTransformer):
|
|
953
914
|
# For classifier, the type of predict is the same as the type of label
|
954
915
|
if self._sklearn_object._estimator_type == 'classifier':
|
955
916
|
# label columns is the desired type for output
|
956
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
917
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
957
918
|
# rename the output columns
|
958
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
919
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
920
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
921
|
+
([] if self._drop_input_cols else inputs)
|
922
|
+
+ outputs)
|
923
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
924
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
925
|
+
# Clusterer returns int64 cluster labels.
|
926
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
927
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
959
928
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
960
929
|
([] if self._drop_input_cols else inputs)
|
961
930
|
+ outputs)
|
931
|
+
|
962
932
|
# For regressor, the type of predict is float64
|
963
933
|
elif self._sklearn_object._estimator_type == 'regressor':
|
964
934
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
965
935
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
966
936
|
([] if self._drop_input_cols else inputs)
|
967
937
|
+ outputs)
|
938
|
+
|
968
939
|
for prob_func in PROB_FUNCTIONS:
|
969
940
|
if hasattr(self, prob_func):
|
970
941
|
output_cols_prefix: str = f"{prob_func}_"
|