snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class SGDOneClassSVM(BaseTransformer):
57
58
  r"""Solves linear One-Class SVM using Stochastic Gradient Descent
58
59
  For more details on this class, see [sklearn.linear_model.SGDOneClassSVM]
@@ -60,6 +61,49 @@ class SGDOneClassSVM(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  nu: float, default=0.5
64
108
  The nu parameter of the One Class SVM: an upper bound on the
65
109
  fraction of training errors and a lower bound of the fraction of
@@ -132,35 +176,6 @@ class SGDOneClassSVM(BaseTransformer):
132
176
  averaging will begin once the total number of samples seen reaches
133
177
  average. So ``average=10`` will begin averaging after seeing 10
134
178
  samples.
135
-
136
- input_cols: Optional[Union[str, List[str]]]
137
- A string or list of strings representing column names that contain features.
138
- If this parameter is not specified, all columns in the input DataFrame except
139
- the columns specified by label_cols and sample_weight_col parameters are
140
- considered input columns.
141
-
142
- label_cols: Optional[Union[str, List[str]]]
143
- A string or list of strings representing column names that contain labels.
144
- This is a required param for estimators, as there is no way to infer these
145
- columns. If this parameter is not specified, then object is fitted without
146
- labels (like a transformer).
147
-
148
- output_cols: Optional[Union[str, List[str]]]
149
- A string or list of strings representing column names that will store the
150
- output of predict and transform operations. The length of output_cols must
151
- match the expected number of output columns from the specific estimator or
152
- transformer class used.
153
- If this parameter is not specified, output column names are derived by
154
- adding an OUTPUT_ prefix to the label column names. These inferred output
155
- column names work for estimator's predict() method, but output_cols must
156
- be set explicitly for transformers.
157
-
158
- sample_weight_col: Optional[str]
159
- A string representing the column name containing the sample weights.
160
- This argument is only required when working with weighted datasets.
161
-
162
- drop_input_cols: Optional[bool], default=False
163
- If set, the response of predict(), transform() methods will not contain input columns.
164
179
  """
165
180
 
166
181
  def __init__( # type: ignore[no-untyped-def]
@@ -181,6 +196,7 @@ class SGDOneClassSVM(BaseTransformer):
181
196
  input_cols: Optional[Union[str, Iterable[str]]] = None,
182
197
  output_cols: Optional[Union[str, Iterable[str]]] = None,
183
198
  label_cols: Optional[Union[str, Iterable[str]]] = None,
199
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
184
200
  drop_input_cols: Optional[bool] = False,
185
201
  sample_weight_col: Optional[str] = None,
186
202
  ) -> None:
@@ -189,9 +205,10 @@ class SGDOneClassSVM(BaseTransformer):
189
205
  self.set_input_cols(input_cols)
190
206
  self.set_output_cols(output_cols)
191
207
  self.set_label_cols(label_cols)
208
+ self.set_passthrough_cols(passthrough_cols)
192
209
  self.set_drop_input_cols(drop_input_cols)
193
210
  self.set_sample_weight_col(sample_weight_col)
194
- deps = set(SklearnWrapperProvider().dependencies)
211
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
195
212
 
196
213
  self._deps = list(deps)
197
214
 
@@ -211,13 +228,14 @@ class SGDOneClassSVM(BaseTransformer):
211
228
  args=init_args,
212
229
  klass=sklearn.linear_model.SGDOneClassSVM
213
230
  )
214
- self._sklearn_object = sklearn.linear_model.SGDOneClassSVM(
231
+ self._sklearn_object: Any = sklearn.linear_model.SGDOneClassSVM(
215
232
  **cleaned_up_init_args,
216
233
  )
217
234
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
218
235
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
219
236
  self._snowpark_cols: Optional[List[str]] = self.input_cols
220
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
237
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=SGDOneClassSVM.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
238
+ self._autogenerated = True
221
239
 
222
240
  def _get_rand_id(self) -> str:
223
241
  """
@@ -228,24 +246,6 @@ class SGDOneClassSVM(BaseTransformer):
228
246
  """
229
247
  return str(uuid4()).replace("-", "_").upper()
230
248
 
231
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
232
- """
233
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
234
-
235
- Args:
236
- dataset: Input dataset.
237
- """
238
- if not self.input_cols:
239
- cols = [
240
- c for c in dataset.columns
241
- if c not in self.get_label_cols() and c != self.sample_weight_col
242
- ]
243
- self.set_input_cols(input_cols=cols)
244
-
245
- if not self.output_cols:
246
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
247
- self.set_output_cols(output_cols=cols)
248
-
249
249
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "SGDOneClassSVM":
250
250
  """
251
251
  Input columns setter.
@@ -291,54 +291,48 @@ class SGDOneClassSVM(BaseTransformer):
291
291
  self
292
292
  """
293
293
  self._infer_input_output_cols(dataset)
294
- if isinstance(dataset, pd.DataFrame):
295
- assert self._sklearn_object is not None # keep mypy happy
296
- self._sklearn_object = self._handlers.fit_pandas(
297
- dataset,
298
- self._sklearn_object,
299
- self.input_cols,
300
- self.label_cols,
301
- self.sample_weight_col
302
- )
303
- elif isinstance(dataset, DataFrame):
304
- self._fit_snowpark(dataset)
305
- else:
306
- raise TypeError(
307
- f"Unexpected dataset type: {type(dataset)}."
308
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
309
- )
294
+ if isinstance(dataset, DataFrame):
295
+ session = dataset._session
296
+ assert session is not None # keep mypy happy
297
+ # Validate that key package version in user workspace are supported in snowflake conda channel
298
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
299
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
300
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
301
+
302
+ # Specify input columns so column pruning will be enforced
303
+ selected_cols = self._get_active_columns()
304
+ if len(selected_cols) > 0:
305
+ dataset = dataset.select(selected_cols)
306
+
307
+ self._snowpark_cols = dataset.select(self.input_cols).columns
308
+
309
+ # If we are already in a stored procedure, no need to kick off another one.
310
+ if SNOWML_SPROC_ENV in os.environ:
311
+ statement_params = telemetry.get_function_usage_statement_params(
312
+ project=_PROJECT,
313
+ subproject=_SUBPROJECT,
314
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDOneClassSVM.__class__.__name__),
315
+ api_calls=[Session.call],
316
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
317
+ )
318
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
319
+ pd_df.columns = dataset.columns
320
+ dataset = pd_df
321
+
322
+ model_trainer = ModelTrainerBuilder.build(
323
+ estimator=self._sklearn_object,
324
+ dataset=dataset,
325
+ input_cols=self.input_cols,
326
+ label_cols=self.label_cols,
327
+ sample_weight_col=self.sample_weight_col,
328
+ autogenerated=self._autogenerated,
329
+ subproject=_SUBPROJECT
330
+ )
331
+ self._sklearn_object = model_trainer.train()
310
332
  self._is_fitted = True
311
333
  self._get_model_signatures(dataset)
312
334
  return self
313
335
 
314
- def _fit_snowpark(self, dataset: DataFrame) -> None:
315
- session = dataset._session
316
- assert session is not None # keep mypy happy
317
- # Validate that key package version in user workspace are supported in snowflake conda channel
318
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
319
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
320
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
321
-
322
- # Specify input columns so column pruning will be enforced
323
- selected_cols = self._get_active_columns()
324
- if len(selected_cols) > 0:
325
- dataset = dataset.select(selected_cols)
326
-
327
- estimator = self._sklearn_object
328
- assert estimator is not None # Keep mypy happy
329
-
330
- self._snowpark_cols = dataset.select(self.input_cols).columns
331
-
332
- self._sklearn_object = self._handlers.fit_snowpark(
333
- dataset,
334
- session,
335
- estimator,
336
- ["snowflake-snowpark-python"] + self._get_dependencies(),
337
- self.input_cols,
338
- self.label_cols,
339
- self.sample_weight_col,
340
- )
341
-
342
336
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
343
337
  if self._drop_input_cols:
344
338
  return []
@@ -526,11 +520,6 @@ class SGDOneClassSVM(BaseTransformer):
526
520
  subproject=_SUBPROJECT,
527
521
  custom_tags=dict([("autogen", True)]),
528
522
  )
529
- @telemetry.add_stmt_params_to_df(
530
- project=_PROJECT,
531
- subproject=_SUBPROJECT,
532
- custom_tags=dict([("autogen", True)]),
533
- )
534
523
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
535
524
  """Return labels (1 inlier, -1 outlier) of the samples
536
525
  For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.predict]
@@ -584,11 +573,6 @@ class SGDOneClassSVM(BaseTransformer):
584
573
  subproject=_SUBPROJECT,
585
574
  custom_tags=dict([("autogen", True)]),
586
575
  )
587
- @telemetry.add_stmt_params_to_df(
588
- project=_PROJECT,
589
- subproject=_SUBPROJECT,
590
- custom_tags=dict([("autogen", True)]),
591
- )
592
576
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
593
577
  """Method not supported for this class.
594
578
 
@@ -647,7 +631,8 @@ class SGDOneClassSVM(BaseTransformer):
647
631
  if False:
648
632
  self.fit(dataset)
649
633
  assert self._sklearn_object is not None
650
- return self._sklearn_object.labels_
634
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
635
+ return labels
651
636
  else:
652
637
  raise NotImplementedError
653
638
 
@@ -683,6 +668,7 @@ class SGDOneClassSVM(BaseTransformer):
683
668
  output_cols = []
684
669
 
685
670
  # Make sure column names are valid snowflake identifiers.
671
+ assert output_cols is not None # Make MyPy happy
686
672
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
687
673
 
688
674
  return rv
@@ -693,11 +679,6 @@ class SGDOneClassSVM(BaseTransformer):
693
679
  subproject=_SUBPROJECT,
694
680
  custom_tags=dict([("autogen", True)]),
695
681
  )
696
- @telemetry.add_stmt_params_to_df(
697
- project=_PROJECT,
698
- subproject=_SUBPROJECT,
699
- custom_tags=dict([("autogen", True)]),
700
- )
701
682
  def predict_proba(
702
683
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
703
684
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -738,11 +719,6 @@ class SGDOneClassSVM(BaseTransformer):
738
719
  subproject=_SUBPROJECT,
739
720
  custom_tags=dict([("autogen", True)]),
740
721
  )
741
- @telemetry.add_stmt_params_to_df(
742
- project=_PROJECT,
743
- subproject=_SUBPROJECT,
744
- custom_tags=dict([("autogen", True)]),
745
- )
746
722
  def predict_log_proba(
747
723
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
748
724
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -779,16 +755,6 @@ class SGDOneClassSVM(BaseTransformer):
779
755
  return output_df
780
756
 
781
757
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
782
- @telemetry.send_api_usage_telemetry(
783
- project=_PROJECT,
784
- subproject=_SUBPROJECT,
785
- custom_tags=dict([("autogen", True)]),
786
- )
787
- @telemetry.add_stmt_params_to_df(
788
- project=_PROJECT,
789
- subproject=_SUBPROJECT,
790
- custom_tags=dict([("autogen", True)]),
791
- )
792
758
  def decision_function(
793
759
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
794
760
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -889,11 +855,6 @@ class SGDOneClassSVM(BaseTransformer):
889
855
  subproject=_SUBPROJECT,
890
856
  custom_tags=dict([("autogen", True)]),
891
857
  )
892
- @telemetry.add_stmt_params_to_df(
893
- project=_PROJECT,
894
- subproject=_SUBPROJECT,
895
- custom_tags=dict([("autogen", True)]),
896
- )
897
858
  def kneighbors(
898
859
  self,
899
860
  dataset: Union[DataFrame, pd.DataFrame],
@@ -953,18 +914,28 @@ class SGDOneClassSVM(BaseTransformer):
953
914
  # For classifier, the type of predict is the same as the type of label
954
915
  if self._sklearn_object._estimator_type == 'classifier':
955
916
  # label columns is the desired type for output
956
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
917
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
957
918
  # rename the output columns
958
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
919
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
920
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
921
+ ([] if self._drop_input_cols else inputs)
922
+ + outputs)
923
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
924
+ # For outlier models, returns -1 for outliers and 1 for inliers.
925
+ # Clusterer returns int64 cluster labels.
926
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
927
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
959
928
  self._model_signature_dict["predict"] = ModelSignature(inputs,
960
929
  ([] if self._drop_input_cols else inputs)
961
930
  + outputs)
931
+
962
932
  # For regressor, the type of predict is float64
963
933
  elif self._sklearn_object._estimator_type == 'regressor':
964
934
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
965
935
  self._model_signature_dict["predict"] = ModelSignature(inputs,
966
936
  ([] if self._drop_input_cols else inputs)
967
937
  + outputs)
938
+
968
939
  for prob_func in PROB_FUNCTIONS:
969
940
  if hasattr(self, prob_func):
970
941
  output_cols_prefix: str = f"{prob_func}_"