snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class VotingClassifier(BaseTransformer):
57
58
  r"""Soft Voting/Majority Rule classifier for unfitted estimators
58
59
  For more details on this class, see [sklearn.ensemble.VotingClassifier]
@@ -60,6 +61,51 @@ class VotingClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimators: list of (str, estimator) tuples
64
110
  Invoking the ``fit`` method on the ``VotingClassifier`` will fit clones
65
111
  of those original estimators that will be stored in the class attribute
@@ -93,35 +139,6 @@ class VotingClassifier(BaseTransformer):
93
139
  verbose: bool, default=False
94
140
  If True, the time elapsed while fitting will be printed as it
95
141
  is completed.
96
-
97
- input_cols: Optional[Union[str, List[str]]]
98
- A string or list of strings representing column names that contain features.
99
- If this parameter is not specified, all columns in the input DataFrame except
100
- the columns specified by label_cols and sample_weight_col parameters are
101
- considered input columns.
102
-
103
- label_cols: Optional[Union[str, List[str]]]
104
- A string or list of strings representing column names that contain labels.
105
- This is a required param for estimators, as there is no way to infer these
106
- columns. If this parameter is not specified, then object is fitted without
107
- labels (like a transformer).
108
-
109
- output_cols: Optional[Union[str, List[str]]]
110
- A string or list of strings representing column names that will store the
111
- output of predict and transform operations. The length of output_cols must
112
- match the expected number of output columns from the specific estimator or
113
- transformer class used.
114
- If this parameter is not specified, output column names are derived by
115
- adding an OUTPUT_ prefix to the label column names. These inferred output
116
- column names work for estimator's predict() method, but output_cols must
117
- be set explicitly for transformers.
118
-
119
- sample_weight_col: Optional[str]
120
- A string representing the column name containing the sample weights.
121
- This argument is only required when working with weighted datasets.
122
-
123
- drop_input_cols: Optional[bool], default=False
124
- If set, the response of predict(), transform() methods will not contain input columns.
125
142
  """
126
143
 
127
144
  def __init__( # type: ignore[no-untyped-def]
@@ -136,6 +153,7 @@ class VotingClassifier(BaseTransformer):
136
153
  input_cols: Optional[Union[str, Iterable[str]]] = None,
137
154
  output_cols: Optional[Union[str, Iterable[str]]] = None,
138
155
  label_cols: Optional[Union[str, Iterable[str]]] = None,
156
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
139
157
  drop_input_cols: Optional[bool] = False,
140
158
  sample_weight_col: Optional[str] = None,
141
159
  ) -> None:
@@ -144,9 +162,10 @@ class VotingClassifier(BaseTransformer):
144
162
  self.set_input_cols(input_cols)
145
163
  self.set_output_cols(output_cols)
146
164
  self.set_label_cols(label_cols)
165
+ self.set_passthrough_cols(passthrough_cols)
147
166
  self.set_drop_input_cols(drop_input_cols)
148
167
  self.set_sample_weight_col(sample_weight_col)
149
- deps = set(SklearnWrapperProvider().dependencies)
168
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
150
169
  deps = deps | gather_dependencies(estimators)
151
170
  self._deps = list(deps)
152
171
  estimators = transform_snowml_obj_to_sklearn_obj(estimators)
@@ -160,13 +179,14 @@ class VotingClassifier(BaseTransformer):
160
179
  args=init_args,
161
180
  klass=sklearn.ensemble.VotingClassifier
162
181
  )
163
- self._sklearn_object = sklearn.ensemble.VotingClassifier(
182
+ self._sklearn_object: Any = sklearn.ensemble.VotingClassifier(
164
183
  **cleaned_up_init_args,
165
184
  )
166
185
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
167
186
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
168
187
  self._snowpark_cols: Optional[List[str]] = self.input_cols
169
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
188
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
189
+ self._autogenerated = True
170
190
 
171
191
  def _get_rand_id(self) -> str:
172
192
  """
@@ -177,24 +197,6 @@ class VotingClassifier(BaseTransformer):
177
197
  """
178
198
  return str(uuid4()).replace("-", "_").upper()
179
199
 
180
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
181
- """
182
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
183
-
184
- Args:
185
- dataset: Input dataset.
186
- """
187
- if not self.input_cols:
188
- cols = [
189
- c for c in dataset.columns
190
- if c not in self.get_label_cols() and c != self.sample_weight_col
191
- ]
192
- self.set_input_cols(input_cols=cols)
193
-
194
- if not self.output_cols:
195
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
196
- self.set_output_cols(output_cols=cols)
197
-
198
200
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "VotingClassifier":
199
201
  """
200
202
  Input columns setter.
@@ -240,54 +242,48 @@ class VotingClassifier(BaseTransformer):
240
242
  self
241
243
  """
242
244
  self._infer_input_output_cols(dataset)
243
- if isinstance(dataset, pd.DataFrame):
244
- assert self._sklearn_object is not None # keep mypy happy
245
- self._sklearn_object = self._handlers.fit_pandas(
246
- dataset,
247
- self._sklearn_object,
248
- self.input_cols,
249
- self.label_cols,
250
- self.sample_weight_col
251
- )
252
- elif isinstance(dataset, DataFrame):
253
- self._fit_snowpark(dataset)
254
- else:
255
- raise TypeError(
256
- f"Unexpected dataset type: {type(dataset)}."
257
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
258
- )
245
+ if isinstance(dataset, DataFrame):
246
+ session = dataset._session
247
+ assert session is not None # keep mypy happy
248
+ # Validate that key package version in user workspace are supported in snowflake conda channel
249
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
250
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
251
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
252
+
253
+ # Specify input columns so column pruning will be enforced
254
+ selected_cols = self._get_active_columns()
255
+ if len(selected_cols) > 0:
256
+ dataset = dataset.select(selected_cols)
257
+
258
+ self._snowpark_cols = dataset.select(self.input_cols).columns
259
+
260
+ # If we are already in a stored procedure, no need to kick off another one.
261
+ if SNOWML_SPROC_ENV in os.environ:
262
+ statement_params = telemetry.get_function_usage_statement_params(
263
+ project=_PROJECT,
264
+ subproject=_SUBPROJECT,
265
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VotingClassifier.__class__.__name__),
266
+ api_calls=[Session.call],
267
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
268
+ )
269
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
270
+ pd_df.columns = dataset.columns
271
+ dataset = pd_df
272
+
273
+ model_trainer = ModelTrainerBuilder.build(
274
+ estimator=self._sklearn_object,
275
+ dataset=dataset,
276
+ input_cols=self.input_cols,
277
+ label_cols=self.label_cols,
278
+ sample_weight_col=self.sample_weight_col,
279
+ autogenerated=self._autogenerated,
280
+ subproject=_SUBPROJECT
281
+ )
282
+ self._sklearn_object = model_trainer.train()
259
283
  self._is_fitted = True
260
284
  self._get_model_signatures(dataset)
261
285
  return self
262
286
 
263
- def _fit_snowpark(self, dataset: DataFrame) -> None:
264
- session = dataset._session
265
- assert session is not None # keep mypy happy
266
- # Validate that key package version in user workspace are supported in snowflake conda channel
267
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
268
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
269
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
270
-
271
- # Specify input columns so column pruning will be enforced
272
- selected_cols = self._get_active_columns()
273
- if len(selected_cols) > 0:
274
- dataset = dataset.select(selected_cols)
275
-
276
- estimator = self._sklearn_object
277
- assert estimator is not None # Keep mypy happy
278
-
279
- self._snowpark_cols = dataset.select(self.input_cols).columns
280
-
281
- self._sklearn_object = self._handlers.fit_snowpark(
282
- dataset,
283
- session,
284
- estimator,
285
- ["snowflake-snowpark-python"] + self._get_dependencies(),
286
- self.input_cols,
287
- self.label_cols,
288
- self.sample_weight_col,
289
- )
290
-
291
287
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
292
288
  if self._drop_input_cols:
293
289
  return []
@@ -475,11 +471,6 @@ class VotingClassifier(BaseTransformer):
475
471
  subproject=_SUBPROJECT,
476
472
  custom_tags=dict([("autogen", True)]),
477
473
  )
478
- @telemetry.add_stmt_params_to_df(
479
- project=_PROJECT,
480
- subproject=_SUBPROJECT,
481
- custom_tags=dict([("autogen", True)]),
482
- )
483
474
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
484
475
  """Predict class labels for X
485
476
  For more details on this function, see [sklearn.ensemble.VotingClassifier.predict]
@@ -533,11 +524,6 @@ class VotingClassifier(BaseTransformer):
533
524
  subproject=_SUBPROJECT,
534
525
  custom_tags=dict([("autogen", True)]),
535
526
  )
536
- @telemetry.add_stmt_params_to_df(
537
- project=_PROJECT,
538
- subproject=_SUBPROJECT,
539
- custom_tags=dict([("autogen", True)]),
540
- )
541
527
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
542
528
  """Return class labels or probabilities for X for each estimator
543
529
  For more details on this function, see [sklearn.ensemble.VotingClassifier.transform]
@@ -596,7 +582,8 @@ class VotingClassifier(BaseTransformer):
596
582
  if False:
597
583
  self.fit(dataset)
598
584
  assert self._sklearn_object is not None
599
- return self._sklearn_object.labels_
585
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
586
+ return labels
600
587
  else:
601
588
  raise NotImplementedError
602
589
 
@@ -632,6 +619,7 @@ class VotingClassifier(BaseTransformer):
632
619
  output_cols = []
633
620
 
634
621
  # Make sure column names are valid snowflake identifiers.
622
+ assert output_cols is not None # Make MyPy happy
635
623
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
636
624
 
637
625
  return rv
@@ -642,11 +630,6 @@ class VotingClassifier(BaseTransformer):
642
630
  subproject=_SUBPROJECT,
643
631
  custom_tags=dict([("autogen", True)]),
644
632
  )
645
- @telemetry.add_stmt_params_to_df(
646
- project=_PROJECT,
647
- subproject=_SUBPROJECT,
648
- custom_tags=dict([("autogen", True)]),
649
- )
650
633
  def predict_proba(
651
634
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
652
635
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -689,11 +672,6 @@ class VotingClassifier(BaseTransformer):
689
672
  subproject=_SUBPROJECT,
690
673
  custom_tags=dict([("autogen", True)]),
691
674
  )
692
- @telemetry.add_stmt_params_to_df(
693
- project=_PROJECT,
694
- subproject=_SUBPROJECT,
695
- custom_tags=dict([("autogen", True)]),
696
- )
697
675
  def predict_log_proba(
698
676
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
699
677
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -732,16 +710,6 @@ class VotingClassifier(BaseTransformer):
732
710
  return output_df
733
711
 
734
712
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
735
- @telemetry.send_api_usage_telemetry(
736
- project=_PROJECT,
737
- subproject=_SUBPROJECT,
738
- custom_tags=dict([("autogen", True)]),
739
- )
740
- @telemetry.add_stmt_params_to_df(
741
- project=_PROJECT,
742
- subproject=_SUBPROJECT,
743
- custom_tags=dict([("autogen", True)]),
744
- )
745
713
  def decision_function(
746
714
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
747
715
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -842,11 +810,6 @@ class VotingClassifier(BaseTransformer):
842
810
  subproject=_SUBPROJECT,
843
811
  custom_tags=dict([("autogen", True)]),
844
812
  )
845
- @telemetry.add_stmt_params_to_df(
846
- project=_PROJECT,
847
- subproject=_SUBPROJECT,
848
- custom_tags=dict([("autogen", True)]),
849
- )
850
813
  def kneighbors(
851
814
  self,
852
815
  dataset: Union[DataFrame, pd.DataFrame],
@@ -906,18 +869,28 @@ class VotingClassifier(BaseTransformer):
906
869
  # For classifier, the type of predict is the same as the type of label
907
870
  if self._sklearn_object._estimator_type == 'classifier':
908
871
  # label columns is the desired type for output
909
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
872
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
910
873
  # rename the output columns
911
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
874
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
912
875
  self._model_signature_dict["predict"] = ModelSignature(inputs,
913
876
  ([] if self._drop_input_cols else inputs)
914
877
  + outputs)
878
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
879
+ # For outlier models, returns -1 for outliers and 1 for inliers.
880
+ # Clusterer returns int64 cluster labels.
881
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
882
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
883
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
884
+ ([] if self._drop_input_cols else inputs)
885
+ + outputs)
886
+
915
887
  # For regressor, the type of predict is float64
916
888
  elif self._sklearn_object._estimator_type == 'regressor':
917
889
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
918
890
  self._model_signature_dict["predict"] = ModelSignature(inputs,
919
891
  ([] if self._drop_input_cols else inputs)
920
892
  + outputs)
893
+
921
894
  for prob_func in PROB_FUNCTIONS:
922
895
  if hasattr(self, prob_func):
923
896
  output_cols_prefix: str = f"{prob_func}_"