snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class Lasso(BaseTransformer):
57
58
  r"""Linear Model trained with L1 prior as regularizer (aka the Lasso)
58
59
  For more details on this class, see [sklearn.linear_model.Lasso]
@@ -60,6 +61,51 @@ class Lasso(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  alpha: float, default=1.0
64
110
  Constant that multiplies the L1 term, controlling regularization
65
111
  strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
@@ -110,35 +156,6 @@ class Lasso(BaseTransformer):
110
156
  rather than looping over features sequentially by default. This
111
157
  (setting to 'random') often leads to significantly faster convergence
112
158
  especially when tol is higher than 1e-4.
113
-
114
- input_cols: Optional[Union[str, List[str]]]
115
- A string or list of strings representing column names that contain features.
116
- If this parameter is not specified, all columns in the input DataFrame except
117
- the columns specified by label_cols and sample_weight_col parameters are
118
- considered input columns.
119
-
120
- label_cols: Optional[Union[str, List[str]]]
121
- A string or list of strings representing column names that contain labels.
122
- This is a required param for estimators, as there is no way to infer these
123
- columns. If this parameter is not specified, then object is fitted without
124
- labels (like a transformer).
125
-
126
- output_cols: Optional[Union[str, List[str]]]
127
- A string or list of strings representing column names that will store the
128
- output of predict and transform operations. The length of output_cols must
129
- match the expected number of output columns from the specific estimator or
130
- transformer class used.
131
- If this parameter is not specified, output column names are derived by
132
- adding an OUTPUT_ prefix to the label column names. These inferred output
133
- column names work for estimator's predict() method, but output_cols must
134
- be set explicitly for transformers.
135
-
136
- sample_weight_col: Optional[str]
137
- A string representing the column name containing the sample weights.
138
- This argument is only required when working with weighted datasets.
139
-
140
- drop_input_cols: Optional[bool], default=False
141
- If set, the response of predict(), transform() methods will not contain input columns.
142
159
  """
143
160
 
144
161
  def __init__( # type: ignore[no-untyped-def]
@@ -157,6 +174,7 @@ class Lasso(BaseTransformer):
157
174
  input_cols: Optional[Union[str, Iterable[str]]] = None,
158
175
  output_cols: Optional[Union[str, Iterable[str]]] = None,
159
176
  label_cols: Optional[Union[str, Iterable[str]]] = None,
177
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
160
178
  drop_input_cols: Optional[bool] = False,
161
179
  sample_weight_col: Optional[str] = None,
162
180
  ) -> None:
@@ -165,9 +183,10 @@ class Lasso(BaseTransformer):
165
183
  self.set_input_cols(input_cols)
166
184
  self.set_output_cols(output_cols)
167
185
  self.set_label_cols(label_cols)
186
+ self.set_passthrough_cols(passthrough_cols)
168
187
  self.set_drop_input_cols(drop_input_cols)
169
188
  self.set_sample_weight_col(sample_weight_col)
170
- deps = set(SklearnWrapperProvider().dependencies)
189
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
171
190
 
172
191
  self._deps = list(deps)
173
192
 
@@ -185,13 +204,14 @@ class Lasso(BaseTransformer):
185
204
  args=init_args,
186
205
  klass=sklearn.linear_model.Lasso
187
206
  )
188
- self._sklearn_object = sklearn.linear_model.Lasso(
207
+ self._sklearn_object: Any = sklearn.linear_model.Lasso(
189
208
  **cleaned_up_init_args,
190
209
  )
191
210
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
192
211
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
193
212
  self._snowpark_cols: Optional[List[str]] = self.input_cols
194
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lasso.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
213
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lasso.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
214
+ self._autogenerated = True
195
215
 
196
216
  def _get_rand_id(self) -> str:
197
217
  """
@@ -202,24 +222,6 @@ class Lasso(BaseTransformer):
202
222
  """
203
223
  return str(uuid4()).replace("-", "_").upper()
204
224
 
205
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
206
- """
207
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
208
-
209
- Args:
210
- dataset: Input dataset.
211
- """
212
- if not self.input_cols:
213
- cols = [
214
- c for c in dataset.columns
215
- if c not in self.get_label_cols() and c != self.sample_weight_col
216
- ]
217
- self.set_input_cols(input_cols=cols)
218
-
219
- if not self.output_cols:
220
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
221
- self.set_output_cols(output_cols=cols)
222
-
223
225
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Lasso":
224
226
  """
225
227
  Input columns setter.
@@ -265,54 +267,48 @@ class Lasso(BaseTransformer):
265
267
  self
266
268
  """
267
269
  self._infer_input_output_cols(dataset)
268
- if isinstance(dataset, pd.DataFrame):
269
- assert self._sklearn_object is not None # keep mypy happy
270
- self._sklearn_object = self._handlers.fit_pandas(
271
- dataset,
272
- self._sklearn_object,
273
- self.input_cols,
274
- self.label_cols,
275
- self.sample_weight_col
276
- )
277
- elif isinstance(dataset, DataFrame):
278
- self._fit_snowpark(dataset)
279
- else:
280
- raise TypeError(
281
- f"Unexpected dataset type: {type(dataset)}."
282
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
283
- )
270
+ if isinstance(dataset, DataFrame):
271
+ session = dataset._session
272
+ assert session is not None # keep mypy happy
273
+ # Validate that key package version in user workspace are supported in snowflake conda channel
274
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
275
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
276
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
277
+
278
+ # Specify input columns so column pruning will be enforced
279
+ selected_cols = self._get_active_columns()
280
+ if len(selected_cols) > 0:
281
+ dataset = dataset.select(selected_cols)
282
+
283
+ self._snowpark_cols = dataset.select(self.input_cols).columns
284
+
285
+ # If we are already in a stored procedure, no need to kick off another one.
286
+ if SNOWML_SPROC_ENV in os.environ:
287
+ statement_params = telemetry.get_function_usage_statement_params(
288
+ project=_PROJECT,
289
+ subproject=_SUBPROJECT,
290
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lasso.__class__.__name__),
291
+ api_calls=[Session.call],
292
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
293
+ )
294
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
295
+ pd_df.columns = dataset.columns
296
+ dataset = pd_df
297
+
298
+ model_trainer = ModelTrainerBuilder.build(
299
+ estimator=self._sklearn_object,
300
+ dataset=dataset,
301
+ input_cols=self.input_cols,
302
+ label_cols=self.label_cols,
303
+ sample_weight_col=self.sample_weight_col,
304
+ autogenerated=self._autogenerated,
305
+ subproject=_SUBPROJECT
306
+ )
307
+ self._sklearn_object = model_trainer.train()
284
308
  self._is_fitted = True
285
309
  self._get_model_signatures(dataset)
286
310
  return self
287
311
 
288
- def _fit_snowpark(self, dataset: DataFrame) -> None:
289
- session = dataset._session
290
- assert session is not None # keep mypy happy
291
- # Validate that key package version in user workspace are supported in snowflake conda channel
292
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
293
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
294
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
295
-
296
- # Specify input columns so column pruning will be enforced
297
- selected_cols = self._get_active_columns()
298
- if len(selected_cols) > 0:
299
- dataset = dataset.select(selected_cols)
300
-
301
- estimator = self._sklearn_object
302
- assert estimator is not None # Keep mypy happy
303
-
304
- self._snowpark_cols = dataset.select(self.input_cols).columns
305
-
306
- self._sklearn_object = self._handlers.fit_snowpark(
307
- dataset,
308
- session,
309
- estimator,
310
- ["snowflake-snowpark-python"] + self._get_dependencies(),
311
- self.input_cols,
312
- self.label_cols,
313
- self.sample_weight_col,
314
- )
315
-
316
312
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
317
313
  if self._drop_input_cols:
318
314
  return []
@@ -500,11 +496,6 @@ class Lasso(BaseTransformer):
500
496
  subproject=_SUBPROJECT,
501
497
  custom_tags=dict([("autogen", True)]),
502
498
  )
503
- @telemetry.add_stmt_params_to_df(
504
- project=_PROJECT,
505
- subproject=_SUBPROJECT,
506
- custom_tags=dict([("autogen", True)]),
507
- )
508
499
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
509
500
  """Predict using the linear model
510
501
  For more details on this function, see [sklearn.linear_model.Lasso.predict]
@@ -558,11 +549,6 @@ class Lasso(BaseTransformer):
558
549
  subproject=_SUBPROJECT,
559
550
  custom_tags=dict([("autogen", True)]),
560
551
  )
561
- @telemetry.add_stmt_params_to_df(
562
- project=_PROJECT,
563
- subproject=_SUBPROJECT,
564
- custom_tags=dict([("autogen", True)]),
565
- )
566
552
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
567
553
  """Method not supported for this class.
568
554
 
@@ -619,7 +605,8 @@ class Lasso(BaseTransformer):
619
605
  if False:
620
606
  self.fit(dataset)
621
607
  assert self._sklearn_object is not None
622
- return self._sklearn_object.labels_
608
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
609
+ return labels
623
610
  else:
624
611
  raise NotImplementedError
625
612
 
@@ -655,6 +642,7 @@ class Lasso(BaseTransformer):
655
642
  output_cols = []
656
643
 
657
644
  # Make sure column names are valid snowflake identifiers.
645
+ assert output_cols is not None # Make MyPy happy
658
646
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
659
647
 
660
648
  return rv
@@ -665,11 +653,6 @@ class Lasso(BaseTransformer):
665
653
  subproject=_SUBPROJECT,
666
654
  custom_tags=dict([("autogen", True)]),
667
655
  )
668
- @telemetry.add_stmt_params_to_df(
669
- project=_PROJECT,
670
- subproject=_SUBPROJECT,
671
- custom_tags=dict([("autogen", True)]),
672
- )
673
656
  def predict_proba(
674
657
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
675
658
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -710,11 +693,6 @@ class Lasso(BaseTransformer):
710
693
  subproject=_SUBPROJECT,
711
694
  custom_tags=dict([("autogen", True)]),
712
695
  )
713
- @telemetry.add_stmt_params_to_df(
714
- project=_PROJECT,
715
- subproject=_SUBPROJECT,
716
- custom_tags=dict([("autogen", True)]),
717
- )
718
696
  def predict_log_proba(
719
697
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
720
698
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -751,16 +729,6 @@ class Lasso(BaseTransformer):
751
729
  return output_df
752
730
 
753
731
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
754
- @telemetry.send_api_usage_telemetry(
755
- project=_PROJECT,
756
- subproject=_SUBPROJECT,
757
- custom_tags=dict([("autogen", True)]),
758
- )
759
- @telemetry.add_stmt_params_to_df(
760
- project=_PROJECT,
761
- subproject=_SUBPROJECT,
762
- custom_tags=dict([("autogen", True)]),
763
- )
764
732
  def decision_function(
765
733
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
766
734
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -861,11 +829,6 @@ class Lasso(BaseTransformer):
861
829
  subproject=_SUBPROJECT,
862
830
  custom_tags=dict([("autogen", True)]),
863
831
  )
864
- @telemetry.add_stmt_params_to_df(
865
- project=_PROJECT,
866
- subproject=_SUBPROJECT,
867
- custom_tags=dict([("autogen", True)]),
868
- )
869
832
  def kneighbors(
870
833
  self,
871
834
  dataset: Union[DataFrame, pd.DataFrame],
@@ -925,18 +888,28 @@ class Lasso(BaseTransformer):
925
888
  # For classifier, the type of predict is the same as the type of label
926
889
  if self._sklearn_object._estimator_type == 'classifier':
927
890
  # label columns is the desired type for output
928
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
891
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
929
892
  # rename the output columns
930
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
893
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
931
894
  self._model_signature_dict["predict"] = ModelSignature(inputs,
932
895
  ([] if self._drop_input_cols else inputs)
933
896
  + outputs)
897
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
898
+ # For outlier models, returns -1 for outliers and 1 for inliers.
899
+ # Clusterer returns int64 cluster labels.
900
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
901
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
902
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
903
+ ([] if self._drop_input_cols else inputs)
904
+ + outputs)
905
+
934
906
  # For regressor, the type of predict is float64
935
907
  elif self._sklearn_object._estimator_type == 'regressor':
936
908
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
937
909
  self._model_signature_dict["predict"] = ModelSignature(inputs,
938
910
  ([] if self._drop_input_cols else inputs)
939
911
  + outputs)
912
+
940
913
  for prob_func in PROB_FUNCTIONS:
941
914
  if hasattr(self, prob_func):
942
915
  output_cols_prefix: str = f"{prob_func}_"