snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class Lasso(BaseTransformer):
|
57
58
|
r"""Linear Model trained with L1 prior as regularizer (aka the Lasso)
|
58
59
|
For more details on this class, see [sklearn.linear_model.Lasso]
|
@@ -60,6 +61,51 @@ class Lasso(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1.0
|
64
110
|
Constant that multiplies the L1 term, controlling regularization
|
65
111
|
strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
|
@@ -110,35 +156,6 @@ class Lasso(BaseTransformer):
|
|
110
156
|
rather than looping over features sequentially by default. This
|
111
157
|
(setting to 'random') often leads to significantly faster convergence
|
112
158
|
especially when tol is higher than 1e-4.
|
113
|
-
|
114
|
-
input_cols: Optional[Union[str, List[str]]]
|
115
|
-
A string or list of strings representing column names that contain features.
|
116
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
117
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
118
|
-
considered input columns.
|
119
|
-
|
120
|
-
label_cols: Optional[Union[str, List[str]]]
|
121
|
-
A string or list of strings representing column names that contain labels.
|
122
|
-
This is a required param for estimators, as there is no way to infer these
|
123
|
-
columns. If this parameter is not specified, then object is fitted without
|
124
|
-
labels (like a transformer).
|
125
|
-
|
126
|
-
output_cols: Optional[Union[str, List[str]]]
|
127
|
-
A string or list of strings representing column names that will store the
|
128
|
-
output of predict and transform operations. The length of output_cols must
|
129
|
-
match the expected number of output columns from the specific estimator or
|
130
|
-
transformer class used.
|
131
|
-
If this parameter is not specified, output column names are derived by
|
132
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
133
|
-
column names work for estimator's predict() method, but output_cols must
|
134
|
-
be set explicitly for transformers.
|
135
|
-
|
136
|
-
sample_weight_col: Optional[str]
|
137
|
-
A string representing the column name containing the sample weights.
|
138
|
-
This argument is only required when working with weighted datasets.
|
139
|
-
|
140
|
-
drop_input_cols: Optional[bool], default=False
|
141
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
142
159
|
"""
|
143
160
|
|
144
161
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -157,6 +174,7 @@ class Lasso(BaseTransformer):
|
|
157
174
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
158
175
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
159
176
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
177
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
160
178
|
drop_input_cols: Optional[bool] = False,
|
161
179
|
sample_weight_col: Optional[str] = None,
|
162
180
|
) -> None:
|
@@ -165,9 +183,10 @@ class Lasso(BaseTransformer):
|
|
165
183
|
self.set_input_cols(input_cols)
|
166
184
|
self.set_output_cols(output_cols)
|
167
185
|
self.set_label_cols(label_cols)
|
186
|
+
self.set_passthrough_cols(passthrough_cols)
|
168
187
|
self.set_drop_input_cols(drop_input_cols)
|
169
188
|
self.set_sample_weight_col(sample_weight_col)
|
170
|
-
deps = set(
|
189
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
171
190
|
|
172
191
|
self._deps = list(deps)
|
173
192
|
|
@@ -185,13 +204,14 @@ class Lasso(BaseTransformer):
|
|
185
204
|
args=init_args,
|
186
205
|
klass=sklearn.linear_model.Lasso
|
187
206
|
)
|
188
|
-
self._sklearn_object = sklearn.linear_model.Lasso(
|
207
|
+
self._sklearn_object: Any = sklearn.linear_model.Lasso(
|
189
208
|
**cleaned_up_init_args,
|
190
209
|
)
|
191
210
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
192
211
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
193
212
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
194
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lasso.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
213
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=Lasso.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
214
|
+
self._autogenerated = True
|
195
215
|
|
196
216
|
def _get_rand_id(self) -> str:
|
197
217
|
"""
|
@@ -202,24 +222,6 @@ class Lasso(BaseTransformer):
|
|
202
222
|
"""
|
203
223
|
return str(uuid4()).replace("-", "_").upper()
|
204
224
|
|
205
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
206
|
-
"""
|
207
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
208
|
-
|
209
|
-
Args:
|
210
|
-
dataset: Input dataset.
|
211
|
-
"""
|
212
|
-
if not self.input_cols:
|
213
|
-
cols = [
|
214
|
-
c for c in dataset.columns
|
215
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
216
|
-
]
|
217
|
-
self.set_input_cols(input_cols=cols)
|
218
|
-
|
219
|
-
if not self.output_cols:
|
220
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
221
|
-
self.set_output_cols(output_cols=cols)
|
222
|
-
|
223
225
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "Lasso":
|
224
226
|
"""
|
225
227
|
Input columns setter.
|
@@ -265,54 +267,48 @@ class Lasso(BaseTransformer):
|
|
265
267
|
self
|
266
268
|
"""
|
267
269
|
self._infer_input_output_cols(dataset)
|
268
|
-
if isinstance(dataset,
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
self.
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
270
|
+
if isinstance(dataset, DataFrame):
|
271
|
+
session = dataset._session
|
272
|
+
assert session is not None # keep mypy happy
|
273
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
274
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
275
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
276
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
277
|
+
|
278
|
+
# Specify input columns so column pruning will be enforced
|
279
|
+
selected_cols = self._get_active_columns()
|
280
|
+
if len(selected_cols) > 0:
|
281
|
+
dataset = dataset.select(selected_cols)
|
282
|
+
|
283
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
284
|
+
|
285
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
286
|
+
if SNOWML_SPROC_ENV in os.environ:
|
287
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
288
|
+
project=_PROJECT,
|
289
|
+
subproject=_SUBPROJECT,
|
290
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lasso.__class__.__name__),
|
291
|
+
api_calls=[Session.call],
|
292
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
293
|
+
)
|
294
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
295
|
+
pd_df.columns = dataset.columns
|
296
|
+
dataset = pd_df
|
297
|
+
|
298
|
+
model_trainer = ModelTrainerBuilder.build(
|
299
|
+
estimator=self._sklearn_object,
|
300
|
+
dataset=dataset,
|
301
|
+
input_cols=self.input_cols,
|
302
|
+
label_cols=self.label_cols,
|
303
|
+
sample_weight_col=self.sample_weight_col,
|
304
|
+
autogenerated=self._autogenerated,
|
305
|
+
subproject=_SUBPROJECT
|
306
|
+
)
|
307
|
+
self._sklearn_object = model_trainer.train()
|
284
308
|
self._is_fitted = True
|
285
309
|
self._get_model_signatures(dataset)
|
286
310
|
return self
|
287
311
|
|
288
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
289
|
-
session = dataset._session
|
290
|
-
assert session is not None # keep mypy happy
|
291
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
292
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
293
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
294
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
295
|
-
|
296
|
-
# Specify input columns so column pruning will be enforced
|
297
|
-
selected_cols = self._get_active_columns()
|
298
|
-
if len(selected_cols) > 0:
|
299
|
-
dataset = dataset.select(selected_cols)
|
300
|
-
|
301
|
-
estimator = self._sklearn_object
|
302
|
-
assert estimator is not None # Keep mypy happy
|
303
|
-
|
304
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
305
|
-
|
306
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
307
|
-
dataset,
|
308
|
-
session,
|
309
|
-
estimator,
|
310
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
311
|
-
self.input_cols,
|
312
|
-
self.label_cols,
|
313
|
-
self.sample_weight_col,
|
314
|
-
)
|
315
|
-
|
316
312
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
317
313
|
if self._drop_input_cols:
|
318
314
|
return []
|
@@ -500,11 +496,6 @@ class Lasso(BaseTransformer):
|
|
500
496
|
subproject=_SUBPROJECT,
|
501
497
|
custom_tags=dict([("autogen", True)]),
|
502
498
|
)
|
503
|
-
@telemetry.add_stmt_params_to_df(
|
504
|
-
project=_PROJECT,
|
505
|
-
subproject=_SUBPROJECT,
|
506
|
-
custom_tags=dict([("autogen", True)]),
|
507
|
-
)
|
508
499
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
509
500
|
"""Predict using the linear model
|
510
501
|
For more details on this function, see [sklearn.linear_model.Lasso.predict]
|
@@ -558,11 +549,6 @@ class Lasso(BaseTransformer):
|
|
558
549
|
subproject=_SUBPROJECT,
|
559
550
|
custom_tags=dict([("autogen", True)]),
|
560
551
|
)
|
561
|
-
@telemetry.add_stmt_params_to_df(
|
562
|
-
project=_PROJECT,
|
563
|
-
subproject=_SUBPROJECT,
|
564
|
-
custom_tags=dict([("autogen", True)]),
|
565
|
-
)
|
566
552
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
567
553
|
"""Method not supported for this class.
|
568
554
|
|
@@ -619,7 +605,8 @@ class Lasso(BaseTransformer):
|
|
619
605
|
if False:
|
620
606
|
self.fit(dataset)
|
621
607
|
assert self._sklearn_object is not None
|
622
|
-
|
608
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
609
|
+
return labels
|
623
610
|
else:
|
624
611
|
raise NotImplementedError
|
625
612
|
|
@@ -655,6 +642,7 @@ class Lasso(BaseTransformer):
|
|
655
642
|
output_cols = []
|
656
643
|
|
657
644
|
# Make sure column names are valid snowflake identifiers.
|
645
|
+
assert output_cols is not None # Make MyPy happy
|
658
646
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
659
647
|
|
660
648
|
return rv
|
@@ -665,11 +653,6 @@ class Lasso(BaseTransformer):
|
|
665
653
|
subproject=_SUBPROJECT,
|
666
654
|
custom_tags=dict([("autogen", True)]),
|
667
655
|
)
|
668
|
-
@telemetry.add_stmt_params_to_df(
|
669
|
-
project=_PROJECT,
|
670
|
-
subproject=_SUBPROJECT,
|
671
|
-
custom_tags=dict([("autogen", True)]),
|
672
|
-
)
|
673
656
|
def predict_proba(
|
674
657
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
675
658
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -710,11 +693,6 @@ class Lasso(BaseTransformer):
|
|
710
693
|
subproject=_SUBPROJECT,
|
711
694
|
custom_tags=dict([("autogen", True)]),
|
712
695
|
)
|
713
|
-
@telemetry.add_stmt_params_to_df(
|
714
|
-
project=_PROJECT,
|
715
|
-
subproject=_SUBPROJECT,
|
716
|
-
custom_tags=dict([("autogen", True)]),
|
717
|
-
)
|
718
696
|
def predict_log_proba(
|
719
697
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
720
698
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -751,16 +729,6 @@ class Lasso(BaseTransformer):
|
|
751
729
|
return output_df
|
752
730
|
|
753
731
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
754
|
-
@telemetry.send_api_usage_telemetry(
|
755
|
-
project=_PROJECT,
|
756
|
-
subproject=_SUBPROJECT,
|
757
|
-
custom_tags=dict([("autogen", True)]),
|
758
|
-
)
|
759
|
-
@telemetry.add_stmt_params_to_df(
|
760
|
-
project=_PROJECT,
|
761
|
-
subproject=_SUBPROJECT,
|
762
|
-
custom_tags=dict([("autogen", True)]),
|
763
|
-
)
|
764
732
|
def decision_function(
|
765
733
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
766
734
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -861,11 +829,6 @@ class Lasso(BaseTransformer):
|
|
861
829
|
subproject=_SUBPROJECT,
|
862
830
|
custom_tags=dict([("autogen", True)]),
|
863
831
|
)
|
864
|
-
@telemetry.add_stmt_params_to_df(
|
865
|
-
project=_PROJECT,
|
866
|
-
subproject=_SUBPROJECT,
|
867
|
-
custom_tags=dict([("autogen", True)]),
|
868
|
-
)
|
869
832
|
def kneighbors(
|
870
833
|
self,
|
871
834
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -925,18 +888,28 @@ class Lasso(BaseTransformer):
|
|
925
888
|
# For classifier, the type of predict is the same as the type of label
|
926
889
|
if self._sklearn_object._estimator_type == 'classifier':
|
927
890
|
# label columns is the desired type for output
|
928
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
891
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
929
892
|
# rename the output columns
|
930
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
893
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
931
894
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
932
895
|
([] if self._drop_input_cols else inputs)
|
933
896
|
+ outputs)
|
897
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
898
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
899
|
+
# Clusterer returns int64 cluster labels.
|
900
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
901
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
902
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
903
|
+
([] if self._drop_input_cols else inputs)
|
904
|
+
+ outputs)
|
905
|
+
|
934
906
|
# For regressor, the type of predict is float64
|
935
907
|
elif self._sklearn_object._estimator_type == 'regressor':
|
936
908
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
937
909
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
938
910
|
([] if self._drop_input_cols else inputs)
|
939
911
|
+ outputs)
|
912
|
+
|
940
913
|
for prob_func in PROB_FUNCTIONS:
|
941
914
|
if hasattr(self, prob_func):
|
942
915
|
output_cols_prefix: str = f"{prob_func}_"
|