snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class OAS(BaseTransformer):
57
58
  r"""Oracle Approximating Shrinkage Estimator as proposed in [1]_
58
59
  For more details on this class, see [sklearn.covariance.OAS]
@@ -60,43 +61,57 @@ class OAS(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- store_precision: bool, default=True
64
- Specify if the estimated precision is stored.
65
-
66
- assume_centered: bool, default=False
67
- If True, data will not be centered before computation.
68
- Useful when working with data whose mean is almost, but not exactly
69
- zero.
70
- If False (default), data will be centered before computation.
71
64
 
72
65
  input_cols: Optional[Union[str, List[str]]]
73
66
  A string or list of strings representing column names that contain features.
74
67
  If this parameter is not specified, all columns in the input DataFrame except
75
- the columns specified by label_cols and sample_weight_col parameters are
76
- considered input columns.
77
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
78
72
  label_cols: Optional[Union[str, List[str]]]
79
- A string or list of strings representing column names that contain labels.
80
- This is a required param for estimators, as there is no way to infer these
81
- columns. If this parameter is not specified, then object is fitted without
82
- labels (like a transformer).
83
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
84
75
  output_cols: Optional[Union[str, List[str]]]
85
76
  A string or list of strings representing column names that will store the
86
77
  output of predict and transform operations. The length of output_cols must
87
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
88
79
  transformer class used.
89
- If this parameter is not specified, output column names are derived by
90
- adding an OUTPUT_ prefix to the label column names. These inferred output
91
- column names work for estimator's predict() method, but output_cols must
92
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
93
89
 
94
90
  sample_weight_col: Optional[str]
95
91
  A string representing the column name containing the sample weights.
96
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
97
103
 
98
104
  drop_input_cols: Optional[bool], default=False
99
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ store_precision: bool, default=True
108
+ Specify if the estimated precision is stored.
109
+
110
+ assume_centered: bool, default=False
111
+ If True, data will not be centered before computation.
112
+ Useful when working with data whose mean is almost, but not exactly
113
+ zero.
114
+ If False (default), data will be centered before computation.
100
115
  """
101
116
 
102
117
  def __init__( # type: ignore[no-untyped-def]
@@ -107,6 +122,7 @@ class OAS(BaseTransformer):
107
122
  input_cols: Optional[Union[str, Iterable[str]]] = None,
108
123
  output_cols: Optional[Union[str, Iterable[str]]] = None,
109
124
  label_cols: Optional[Union[str, Iterable[str]]] = None,
125
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
110
126
  drop_input_cols: Optional[bool] = False,
111
127
  sample_weight_col: Optional[str] = None,
112
128
  ) -> None:
@@ -115,9 +131,10 @@ class OAS(BaseTransformer):
115
131
  self.set_input_cols(input_cols)
116
132
  self.set_output_cols(output_cols)
117
133
  self.set_label_cols(label_cols)
134
+ self.set_passthrough_cols(passthrough_cols)
118
135
  self.set_drop_input_cols(drop_input_cols)
119
136
  self.set_sample_weight_col(sample_weight_col)
120
- deps = set(SklearnWrapperProvider().dependencies)
137
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
121
138
 
122
139
  self._deps = list(deps)
123
140
 
@@ -127,13 +144,14 @@ class OAS(BaseTransformer):
127
144
  args=init_args,
128
145
  klass=sklearn.covariance.OAS
129
146
  )
130
- self._sklearn_object = sklearn.covariance.OAS(
147
+ self._sklearn_object: Any = sklearn.covariance.OAS(
131
148
  **cleaned_up_init_args,
132
149
  )
133
150
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
134
151
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
135
152
  self._snowpark_cols: Optional[List[str]] = self.input_cols
136
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=OAS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
153
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=OAS.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
154
+ self._autogenerated = True
137
155
 
138
156
  def _get_rand_id(self) -> str:
139
157
  """
@@ -144,24 +162,6 @@ class OAS(BaseTransformer):
144
162
  """
145
163
  return str(uuid4()).replace("-", "_").upper()
146
164
 
147
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
148
- """
149
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
150
-
151
- Args:
152
- dataset: Input dataset.
153
- """
154
- if not self.input_cols:
155
- cols = [
156
- c for c in dataset.columns
157
- if c not in self.get_label_cols() and c != self.sample_weight_col
158
- ]
159
- self.set_input_cols(input_cols=cols)
160
-
161
- if not self.output_cols:
162
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
163
- self.set_output_cols(output_cols=cols)
164
-
165
165
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "OAS":
166
166
  """
167
167
  Input columns setter.
@@ -207,54 +207,48 @@ class OAS(BaseTransformer):
207
207
  self
208
208
  """
209
209
  self._infer_input_output_cols(dataset)
210
- if isinstance(dataset, pd.DataFrame):
211
- assert self._sklearn_object is not None # keep mypy happy
212
- self._sklearn_object = self._handlers.fit_pandas(
213
- dataset,
214
- self._sklearn_object,
215
- self.input_cols,
216
- self.label_cols,
217
- self.sample_weight_col
218
- )
219
- elif isinstance(dataset, DataFrame):
220
- self._fit_snowpark(dataset)
221
- else:
222
- raise TypeError(
223
- f"Unexpected dataset type: {type(dataset)}."
224
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
225
- )
210
+ if isinstance(dataset, DataFrame):
211
+ session = dataset._session
212
+ assert session is not None # keep mypy happy
213
+ # Validate that key package version in user workspace are supported in snowflake conda channel
214
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
215
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
216
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
217
+
218
+ # Specify input columns so column pruning will be enforced
219
+ selected_cols = self._get_active_columns()
220
+ if len(selected_cols) > 0:
221
+ dataset = dataset.select(selected_cols)
222
+
223
+ self._snowpark_cols = dataset.select(self.input_cols).columns
224
+
225
+ # If we are already in a stored procedure, no need to kick off another one.
226
+ if SNOWML_SPROC_ENV in os.environ:
227
+ statement_params = telemetry.get_function_usage_statement_params(
228
+ project=_PROJECT,
229
+ subproject=_SUBPROJECT,
230
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OAS.__class__.__name__),
231
+ api_calls=[Session.call],
232
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
233
+ )
234
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
235
+ pd_df.columns = dataset.columns
236
+ dataset = pd_df
237
+
238
+ model_trainer = ModelTrainerBuilder.build(
239
+ estimator=self._sklearn_object,
240
+ dataset=dataset,
241
+ input_cols=self.input_cols,
242
+ label_cols=self.label_cols,
243
+ sample_weight_col=self.sample_weight_col,
244
+ autogenerated=self._autogenerated,
245
+ subproject=_SUBPROJECT
246
+ )
247
+ self._sklearn_object = model_trainer.train()
226
248
  self._is_fitted = True
227
249
  self._get_model_signatures(dataset)
228
250
  return self
229
251
 
230
- def _fit_snowpark(self, dataset: DataFrame) -> None:
231
- session = dataset._session
232
- assert session is not None # keep mypy happy
233
- # Validate that key package version in user workspace are supported in snowflake conda channel
234
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
235
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
236
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
237
-
238
- # Specify input columns so column pruning will be enforced
239
- selected_cols = self._get_active_columns()
240
- if len(selected_cols) > 0:
241
- dataset = dataset.select(selected_cols)
242
-
243
- estimator = self._sklearn_object
244
- assert estimator is not None # Keep mypy happy
245
-
246
- self._snowpark_cols = dataset.select(self.input_cols).columns
247
-
248
- self._sklearn_object = self._handlers.fit_snowpark(
249
- dataset,
250
- session,
251
- estimator,
252
- ["snowflake-snowpark-python"] + self._get_dependencies(),
253
- self.input_cols,
254
- self.label_cols,
255
- self.sample_weight_col,
256
- )
257
-
258
252
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
259
253
  if self._drop_input_cols:
260
254
  return []
@@ -442,11 +436,6 @@ class OAS(BaseTransformer):
442
436
  subproject=_SUBPROJECT,
443
437
  custom_tags=dict([("autogen", True)]),
444
438
  )
445
- @telemetry.add_stmt_params_to_df(
446
- project=_PROJECT,
447
- subproject=_SUBPROJECT,
448
- custom_tags=dict([("autogen", True)]),
449
- )
450
439
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
451
440
  """Method not supported for this class.
452
441
 
@@ -498,11 +487,6 @@ class OAS(BaseTransformer):
498
487
  subproject=_SUBPROJECT,
499
488
  custom_tags=dict([("autogen", True)]),
500
489
  )
501
- @telemetry.add_stmt_params_to_df(
502
- project=_PROJECT,
503
- subproject=_SUBPROJECT,
504
- custom_tags=dict([("autogen", True)]),
505
- )
506
490
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
507
491
  """Method not supported for this class.
508
492
 
@@ -559,7 +543,8 @@ class OAS(BaseTransformer):
559
543
  if False:
560
544
  self.fit(dataset)
561
545
  assert self._sklearn_object is not None
562
- return self._sklearn_object.labels_
546
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
547
+ return labels
563
548
  else:
564
549
  raise NotImplementedError
565
550
 
@@ -595,6 +580,7 @@ class OAS(BaseTransformer):
595
580
  output_cols = []
596
581
 
597
582
  # Make sure column names are valid snowflake identifiers.
583
+ assert output_cols is not None # Make MyPy happy
598
584
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
599
585
 
600
586
  return rv
@@ -605,11 +591,6 @@ class OAS(BaseTransformer):
605
591
  subproject=_SUBPROJECT,
606
592
  custom_tags=dict([("autogen", True)]),
607
593
  )
608
- @telemetry.add_stmt_params_to_df(
609
- project=_PROJECT,
610
- subproject=_SUBPROJECT,
611
- custom_tags=dict([("autogen", True)]),
612
- )
613
594
  def predict_proba(
614
595
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
615
596
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -650,11 +631,6 @@ class OAS(BaseTransformer):
650
631
  subproject=_SUBPROJECT,
651
632
  custom_tags=dict([("autogen", True)]),
652
633
  )
653
- @telemetry.add_stmt_params_to_df(
654
- project=_PROJECT,
655
- subproject=_SUBPROJECT,
656
- custom_tags=dict([("autogen", True)]),
657
- )
658
634
  def predict_log_proba(
659
635
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
660
636
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -691,16 +667,6 @@ class OAS(BaseTransformer):
691
667
  return output_df
692
668
 
693
669
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
694
- @telemetry.send_api_usage_telemetry(
695
- project=_PROJECT,
696
- subproject=_SUBPROJECT,
697
- custom_tags=dict([("autogen", True)]),
698
- )
699
- @telemetry.add_stmt_params_to_df(
700
- project=_PROJECT,
701
- subproject=_SUBPROJECT,
702
- custom_tags=dict([("autogen", True)]),
703
- )
704
670
  def decision_function(
705
671
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
706
672
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -801,11 +767,6 @@ class OAS(BaseTransformer):
801
767
  subproject=_SUBPROJECT,
802
768
  custom_tags=dict([("autogen", True)]),
803
769
  )
804
- @telemetry.add_stmt_params_to_df(
805
- project=_PROJECT,
806
- subproject=_SUBPROJECT,
807
- custom_tags=dict([("autogen", True)]),
808
- )
809
770
  def kneighbors(
810
771
  self,
811
772
  dataset: Union[DataFrame, pd.DataFrame],
@@ -865,18 +826,28 @@ class OAS(BaseTransformer):
865
826
  # For classifier, the type of predict is the same as the type of label
866
827
  if self._sklearn_object._estimator_type == 'classifier':
867
828
  # label columns is the desired type for output
868
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
829
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
869
830
  # rename the output columns
870
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
831
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
871
832
  self._model_signature_dict["predict"] = ModelSignature(inputs,
872
833
  ([] if self._drop_input_cols else inputs)
873
834
  + outputs)
835
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
836
+ # For outlier models, returns -1 for outliers and 1 for inliers.
837
+ # Clusterer returns int64 cluster labels.
838
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
839
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
840
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
841
+ ([] if self._drop_input_cols else inputs)
842
+ + outputs)
843
+
874
844
  # For regressor, the type of predict is float64
875
845
  elif self._sklearn_object._estimator_type == 'regressor':
876
846
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
877
847
  self._model_signature_dict["predict"] = ModelSignature(inputs,
878
848
  ([] if self._drop_input_cols else inputs)
879
849
  + outputs)
850
+
880
851
  for prob_func in PROB_FUNCTIONS:
881
852
  if hasattr(self, prob_func):
882
853
  output_cols_prefix: str = f"{prob_func}_"