snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class KernelPCA(BaseTransformer):
|
57
58
|
r"""Kernel Principal component analysis (KPCA) [1]_
|
58
59
|
For more details on this class, see [sklearn.decomposition.KernelPCA]
|
@@ -60,6 +61,49 @@ class KernelPCA(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of components. If None, all non-zero components are kept.
|
65
109
|
|
@@ -155,35 +199,6 @@ class KernelPCA(BaseTransformer):
|
|
155
199
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
156
200
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
157
201
|
for more details.
|
158
|
-
|
159
|
-
input_cols: Optional[Union[str, List[str]]]
|
160
|
-
A string or list of strings representing column names that contain features.
|
161
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
162
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
163
|
-
considered input columns.
|
164
|
-
|
165
|
-
label_cols: Optional[Union[str, List[str]]]
|
166
|
-
A string or list of strings representing column names that contain labels.
|
167
|
-
This is a required param for estimators, as there is no way to infer these
|
168
|
-
columns. If this parameter is not specified, then object is fitted without
|
169
|
-
labels (like a transformer).
|
170
|
-
|
171
|
-
output_cols: Optional[Union[str, List[str]]]
|
172
|
-
A string or list of strings representing column names that will store the
|
173
|
-
output of predict and transform operations. The length of output_cols must
|
174
|
-
match the expected number of output columns from the specific estimator or
|
175
|
-
transformer class used.
|
176
|
-
If this parameter is not specified, output column names are derived by
|
177
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
178
|
-
column names work for estimator's predict() method, but output_cols must
|
179
|
-
be set explicitly for transformers.
|
180
|
-
|
181
|
-
sample_weight_col: Optional[str]
|
182
|
-
A string representing the column name containing the sample weights.
|
183
|
-
This argument is only required when working with weighted datasets.
|
184
|
-
|
185
|
-
drop_input_cols: Optional[bool], default=False
|
186
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
187
202
|
"""
|
188
203
|
|
189
204
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -208,6 +223,7 @@ class KernelPCA(BaseTransformer):
|
|
208
223
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
209
224
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
210
225
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
226
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
211
227
|
drop_input_cols: Optional[bool] = False,
|
212
228
|
sample_weight_col: Optional[str] = None,
|
213
229
|
) -> None:
|
@@ -216,9 +232,10 @@ class KernelPCA(BaseTransformer):
|
|
216
232
|
self.set_input_cols(input_cols)
|
217
233
|
self.set_output_cols(output_cols)
|
218
234
|
self.set_label_cols(label_cols)
|
235
|
+
self.set_passthrough_cols(passthrough_cols)
|
219
236
|
self.set_drop_input_cols(drop_input_cols)
|
220
237
|
self.set_sample_weight_col(sample_weight_col)
|
221
|
-
deps = set(
|
238
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
222
239
|
|
223
240
|
self._deps = list(deps)
|
224
241
|
|
@@ -242,13 +259,14 @@ class KernelPCA(BaseTransformer):
|
|
242
259
|
args=init_args,
|
243
260
|
klass=sklearn.decomposition.KernelPCA
|
244
261
|
)
|
245
|
-
self._sklearn_object = sklearn.decomposition.KernelPCA(
|
262
|
+
self._sklearn_object: Any = sklearn.decomposition.KernelPCA(
|
246
263
|
**cleaned_up_init_args,
|
247
264
|
)
|
248
265
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
249
266
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
250
267
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
251
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelPCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
268
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelPCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
269
|
+
self._autogenerated = True
|
252
270
|
|
253
271
|
def _get_rand_id(self) -> str:
|
254
272
|
"""
|
@@ -259,24 +277,6 @@ class KernelPCA(BaseTransformer):
|
|
259
277
|
"""
|
260
278
|
return str(uuid4()).replace("-", "_").upper()
|
261
279
|
|
262
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
263
|
-
"""
|
264
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
265
|
-
|
266
|
-
Args:
|
267
|
-
dataset: Input dataset.
|
268
|
-
"""
|
269
|
-
if not self.input_cols:
|
270
|
-
cols = [
|
271
|
-
c for c in dataset.columns
|
272
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
273
|
-
]
|
274
|
-
self.set_input_cols(input_cols=cols)
|
275
|
-
|
276
|
-
if not self.output_cols:
|
277
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
278
|
-
self.set_output_cols(output_cols=cols)
|
279
|
-
|
280
280
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KernelPCA":
|
281
281
|
"""
|
282
282
|
Input columns setter.
|
@@ -322,54 +322,48 @@ class KernelPCA(BaseTransformer):
|
|
322
322
|
self
|
323
323
|
"""
|
324
324
|
self._infer_input_output_cols(dataset)
|
325
|
-
if isinstance(dataset,
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
self.
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
325
|
+
if isinstance(dataset, DataFrame):
|
326
|
+
session = dataset._session
|
327
|
+
assert session is not None # keep mypy happy
|
328
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
329
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
330
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
331
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
332
|
+
|
333
|
+
# Specify input columns so column pruning will be enforced
|
334
|
+
selected_cols = self._get_active_columns()
|
335
|
+
if len(selected_cols) > 0:
|
336
|
+
dataset = dataset.select(selected_cols)
|
337
|
+
|
338
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
339
|
+
|
340
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
341
|
+
if SNOWML_SPROC_ENV in os.environ:
|
342
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
343
|
+
project=_PROJECT,
|
344
|
+
subproject=_SUBPROJECT,
|
345
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelPCA.__class__.__name__),
|
346
|
+
api_calls=[Session.call],
|
347
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
348
|
+
)
|
349
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
350
|
+
pd_df.columns = dataset.columns
|
351
|
+
dataset = pd_df
|
352
|
+
|
353
|
+
model_trainer = ModelTrainerBuilder.build(
|
354
|
+
estimator=self._sklearn_object,
|
355
|
+
dataset=dataset,
|
356
|
+
input_cols=self.input_cols,
|
357
|
+
label_cols=self.label_cols,
|
358
|
+
sample_weight_col=self.sample_weight_col,
|
359
|
+
autogenerated=self._autogenerated,
|
360
|
+
subproject=_SUBPROJECT
|
361
|
+
)
|
362
|
+
self._sklearn_object = model_trainer.train()
|
341
363
|
self._is_fitted = True
|
342
364
|
self._get_model_signatures(dataset)
|
343
365
|
return self
|
344
366
|
|
345
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
346
|
-
session = dataset._session
|
347
|
-
assert session is not None # keep mypy happy
|
348
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
349
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
350
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
351
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
352
|
-
|
353
|
-
# Specify input columns so column pruning will be enforced
|
354
|
-
selected_cols = self._get_active_columns()
|
355
|
-
if len(selected_cols) > 0:
|
356
|
-
dataset = dataset.select(selected_cols)
|
357
|
-
|
358
|
-
estimator = self._sklearn_object
|
359
|
-
assert estimator is not None # Keep mypy happy
|
360
|
-
|
361
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
362
|
-
|
363
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
364
|
-
dataset,
|
365
|
-
session,
|
366
|
-
estimator,
|
367
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
368
|
-
self.input_cols,
|
369
|
-
self.label_cols,
|
370
|
-
self.sample_weight_col,
|
371
|
-
)
|
372
|
-
|
373
367
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
374
368
|
if self._drop_input_cols:
|
375
369
|
return []
|
@@ -557,11 +551,6 @@ class KernelPCA(BaseTransformer):
|
|
557
551
|
subproject=_SUBPROJECT,
|
558
552
|
custom_tags=dict([("autogen", True)]),
|
559
553
|
)
|
560
|
-
@telemetry.add_stmt_params_to_df(
|
561
|
-
project=_PROJECT,
|
562
|
-
subproject=_SUBPROJECT,
|
563
|
-
custom_tags=dict([("autogen", True)]),
|
564
|
-
)
|
565
554
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
566
555
|
"""Method not supported for this class.
|
567
556
|
|
@@ -613,11 +602,6 @@ class KernelPCA(BaseTransformer):
|
|
613
602
|
subproject=_SUBPROJECT,
|
614
603
|
custom_tags=dict([("autogen", True)]),
|
615
604
|
)
|
616
|
-
@telemetry.add_stmt_params_to_df(
|
617
|
-
project=_PROJECT,
|
618
|
-
subproject=_SUBPROJECT,
|
619
|
-
custom_tags=dict([("autogen", True)]),
|
620
|
-
)
|
621
605
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
622
606
|
"""Transform X
|
623
607
|
For more details on this function, see [sklearn.decomposition.KernelPCA.transform]
|
@@ -676,7 +660,8 @@ class KernelPCA(BaseTransformer):
|
|
676
660
|
if False:
|
677
661
|
self.fit(dataset)
|
678
662
|
assert self._sklearn_object is not None
|
679
|
-
|
663
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
664
|
+
return labels
|
680
665
|
else:
|
681
666
|
raise NotImplementedError
|
682
667
|
|
@@ -712,6 +697,7 @@ class KernelPCA(BaseTransformer):
|
|
712
697
|
output_cols = []
|
713
698
|
|
714
699
|
# Make sure column names are valid snowflake identifiers.
|
700
|
+
assert output_cols is not None # Make MyPy happy
|
715
701
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
716
702
|
|
717
703
|
return rv
|
@@ -722,11 +708,6 @@ class KernelPCA(BaseTransformer):
|
|
722
708
|
subproject=_SUBPROJECT,
|
723
709
|
custom_tags=dict([("autogen", True)]),
|
724
710
|
)
|
725
|
-
@telemetry.add_stmt_params_to_df(
|
726
|
-
project=_PROJECT,
|
727
|
-
subproject=_SUBPROJECT,
|
728
|
-
custom_tags=dict([("autogen", True)]),
|
729
|
-
)
|
730
711
|
def predict_proba(
|
731
712
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
732
713
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -767,11 +748,6 @@ class KernelPCA(BaseTransformer):
|
|
767
748
|
subproject=_SUBPROJECT,
|
768
749
|
custom_tags=dict([("autogen", True)]),
|
769
750
|
)
|
770
|
-
@telemetry.add_stmt_params_to_df(
|
771
|
-
project=_PROJECT,
|
772
|
-
subproject=_SUBPROJECT,
|
773
|
-
custom_tags=dict([("autogen", True)]),
|
774
|
-
)
|
775
751
|
def predict_log_proba(
|
776
752
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
777
753
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -808,16 +784,6 @@ class KernelPCA(BaseTransformer):
|
|
808
784
|
return output_df
|
809
785
|
|
810
786
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
811
|
-
@telemetry.send_api_usage_telemetry(
|
812
|
-
project=_PROJECT,
|
813
|
-
subproject=_SUBPROJECT,
|
814
|
-
custom_tags=dict([("autogen", True)]),
|
815
|
-
)
|
816
|
-
@telemetry.add_stmt_params_to_df(
|
817
|
-
project=_PROJECT,
|
818
|
-
subproject=_SUBPROJECT,
|
819
|
-
custom_tags=dict([("autogen", True)]),
|
820
|
-
)
|
821
787
|
def decision_function(
|
822
788
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
823
789
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -916,11 +882,6 @@ class KernelPCA(BaseTransformer):
|
|
916
882
|
subproject=_SUBPROJECT,
|
917
883
|
custom_tags=dict([("autogen", True)]),
|
918
884
|
)
|
919
|
-
@telemetry.add_stmt_params_to_df(
|
920
|
-
project=_PROJECT,
|
921
|
-
subproject=_SUBPROJECT,
|
922
|
-
custom_tags=dict([("autogen", True)]),
|
923
|
-
)
|
924
885
|
def kneighbors(
|
925
886
|
self,
|
926
887
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -980,18 +941,28 @@ class KernelPCA(BaseTransformer):
|
|
980
941
|
# For classifier, the type of predict is the same as the type of label
|
981
942
|
if self._sklearn_object._estimator_type == 'classifier':
|
982
943
|
# label columns is the desired type for output
|
983
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
944
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
984
945
|
# rename the output columns
|
985
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
946
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
947
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
948
|
+
([] if self._drop_input_cols else inputs)
|
949
|
+
+ outputs)
|
950
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
951
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
952
|
+
# Clusterer returns int64 cluster labels.
|
953
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
954
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
986
955
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
987
956
|
([] if self._drop_input_cols else inputs)
|
988
957
|
+ outputs)
|
958
|
+
|
989
959
|
# For regressor, the type of predict is float64
|
990
960
|
elif self._sklearn_object._estimator_type == 'regressor':
|
991
961
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
992
962
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
993
963
|
([] if self._drop_input_cols else inputs)
|
994
964
|
+ outputs)
|
965
|
+
|
995
966
|
for prob_func in PROB_FUNCTIONS:
|
996
967
|
if hasattr(self, prob_func):
|
997
968
|
output_cols_prefix: str = f"{prob_func}_"
|