snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class KernelPCA(BaseTransformer):
57
58
  r"""Kernel Principal component analysis (KPCA) [1]_
58
59
  For more details on this class, see [sklearn.decomposition.KernelPCA]
@@ -60,6 +61,49 @@ class KernelPCA(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=None
64
108
  Number of components. If None, all non-zero components are kept.
65
109
 
@@ -155,35 +199,6 @@ class KernelPCA(BaseTransformer):
155
199
  ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
156
200
  ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
157
201
  for more details.
158
-
159
- input_cols: Optional[Union[str, List[str]]]
160
- A string or list of strings representing column names that contain features.
161
- If this parameter is not specified, all columns in the input DataFrame except
162
- the columns specified by label_cols and sample_weight_col parameters are
163
- considered input columns.
164
-
165
- label_cols: Optional[Union[str, List[str]]]
166
- A string or list of strings representing column names that contain labels.
167
- This is a required param for estimators, as there is no way to infer these
168
- columns. If this parameter is not specified, then object is fitted without
169
- labels (like a transformer).
170
-
171
- output_cols: Optional[Union[str, List[str]]]
172
- A string or list of strings representing column names that will store the
173
- output of predict and transform operations. The length of output_cols must
174
- match the expected number of output columns from the specific estimator or
175
- transformer class used.
176
- If this parameter is not specified, output column names are derived by
177
- adding an OUTPUT_ prefix to the label column names. These inferred output
178
- column names work for estimator's predict() method, but output_cols must
179
- be set explicitly for transformers.
180
-
181
- sample_weight_col: Optional[str]
182
- A string representing the column name containing the sample weights.
183
- This argument is only required when working with weighted datasets.
184
-
185
- drop_input_cols: Optional[bool], default=False
186
- If set, the response of predict(), transform() methods will not contain input columns.
187
202
  """
188
203
 
189
204
  def __init__( # type: ignore[no-untyped-def]
@@ -208,6 +223,7 @@ class KernelPCA(BaseTransformer):
208
223
  input_cols: Optional[Union[str, Iterable[str]]] = None,
209
224
  output_cols: Optional[Union[str, Iterable[str]]] = None,
210
225
  label_cols: Optional[Union[str, Iterable[str]]] = None,
226
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
211
227
  drop_input_cols: Optional[bool] = False,
212
228
  sample_weight_col: Optional[str] = None,
213
229
  ) -> None:
@@ -216,9 +232,10 @@ class KernelPCA(BaseTransformer):
216
232
  self.set_input_cols(input_cols)
217
233
  self.set_output_cols(output_cols)
218
234
  self.set_label_cols(label_cols)
235
+ self.set_passthrough_cols(passthrough_cols)
219
236
  self.set_drop_input_cols(drop_input_cols)
220
237
  self.set_sample_weight_col(sample_weight_col)
221
- deps = set(SklearnWrapperProvider().dependencies)
238
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
222
239
 
223
240
  self._deps = list(deps)
224
241
 
@@ -242,13 +259,14 @@ class KernelPCA(BaseTransformer):
242
259
  args=init_args,
243
260
  klass=sklearn.decomposition.KernelPCA
244
261
  )
245
- self._sklearn_object = sklearn.decomposition.KernelPCA(
262
+ self._sklearn_object: Any = sklearn.decomposition.KernelPCA(
246
263
  **cleaned_up_init_args,
247
264
  )
248
265
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
249
266
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
250
267
  self._snowpark_cols: Optional[List[str]] = self.input_cols
251
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelPCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
268
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=KernelPCA.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
269
+ self._autogenerated = True
252
270
 
253
271
  def _get_rand_id(self) -> str:
254
272
  """
@@ -259,24 +277,6 @@ class KernelPCA(BaseTransformer):
259
277
  """
260
278
  return str(uuid4()).replace("-", "_").upper()
261
279
 
262
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
263
- """
264
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
265
-
266
- Args:
267
- dataset: Input dataset.
268
- """
269
- if not self.input_cols:
270
- cols = [
271
- c for c in dataset.columns
272
- if c not in self.get_label_cols() and c != self.sample_weight_col
273
- ]
274
- self.set_input_cols(input_cols=cols)
275
-
276
- if not self.output_cols:
277
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
278
- self.set_output_cols(output_cols=cols)
279
-
280
280
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "KernelPCA":
281
281
  """
282
282
  Input columns setter.
@@ -322,54 +322,48 @@ class KernelPCA(BaseTransformer):
322
322
  self
323
323
  """
324
324
  self._infer_input_output_cols(dataset)
325
- if isinstance(dataset, pd.DataFrame):
326
- assert self._sklearn_object is not None # keep mypy happy
327
- self._sklearn_object = self._handlers.fit_pandas(
328
- dataset,
329
- self._sklearn_object,
330
- self.input_cols,
331
- self.label_cols,
332
- self.sample_weight_col
333
- )
334
- elif isinstance(dataset, DataFrame):
335
- self._fit_snowpark(dataset)
336
- else:
337
- raise TypeError(
338
- f"Unexpected dataset type: {type(dataset)}."
339
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
340
- )
325
+ if isinstance(dataset, DataFrame):
326
+ session = dataset._session
327
+ assert session is not None # keep mypy happy
328
+ # Validate that key package version in user workspace are supported in snowflake conda channel
329
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
330
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
331
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
332
+
333
+ # Specify input columns so column pruning will be enforced
334
+ selected_cols = self._get_active_columns()
335
+ if len(selected_cols) > 0:
336
+ dataset = dataset.select(selected_cols)
337
+
338
+ self._snowpark_cols = dataset.select(self.input_cols).columns
339
+
340
+ # If we are already in a stored procedure, no need to kick off another one.
341
+ if SNOWML_SPROC_ENV in os.environ:
342
+ statement_params = telemetry.get_function_usage_statement_params(
343
+ project=_PROJECT,
344
+ subproject=_SUBPROJECT,
345
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelPCA.__class__.__name__),
346
+ api_calls=[Session.call],
347
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
348
+ )
349
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
350
+ pd_df.columns = dataset.columns
351
+ dataset = pd_df
352
+
353
+ model_trainer = ModelTrainerBuilder.build(
354
+ estimator=self._sklearn_object,
355
+ dataset=dataset,
356
+ input_cols=self.input_cols,
357
+ label_cols=self.label_cols,
358
+ sample_weight_col=self.sample_weight_col,
359
+ autogenerated=self._autogenerated,
360
+ subproject=_SUBPROJECT
361
+ )
362
+ self._sklearn_object = model_trainer.train()
341
363
  self._is_fitted = True
342
364
  self._get_model_signatures(dataset)
343
365
  return self
344
366
 
345
- def _fit_snowpark(self, dataset: DataFrame) -> None:
346
- session = dataset._session
347
- assert session is not None # keep mypy happy
348
- # Validate that key package version in user workspace are supported in snowflake conda channel
349
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
350
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
351
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
352
-
353
- # Specify input columns so column pruning will be enforced
354
- selected_cols = self._get_active_columns()
355
- if len(selected_cols) > 0:
356
- dataset = dataset.select(selected_cols)
357
-
358
- estimator = self._sklearn_object
359
- assert estimator is not None # Keep mypy happy
360
-
361
- self._snowpark_cols = dataset.select(self.input_cols).columns
362
-
363
- self._sklearn_object = self._handlers.fit_snowpark(
364
- dataset,
365
- session,
366
- estimator,
367
- ["snowflake-snowpark-python"] + self._get_dependencies(),
368
- self.input_cols,
369
- self.label_cols,
370
- self.sample_weight_col,
371
- )
372
-
373
367
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
374
368
  if self._drop_input_cols:
375
369
  return []
@@ -557,11 +551,6 @@ class KernelPCA(BaseTransformer):
557
551
  subproject=_SUBPROJECT,
558
552
  custom_tags=dict([("autogen", True)]),
559
553
  )
560
- @telemetry.add_stmt_params_to_df(
561
- project=_PROJECT,
562
- subproject=_SUBPROJECT,
563
- custom_tags=dict([("autogen", True)]),
564
- )
565
554
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
566
555
  """Method not supported for this class.
567
556
 
@@ -613,11 +602,6 @@ class KernelPCA(BaseTransformer):
613
602
  subproject=_SUBPROJECT,
614
603
  custom_tags=dict([("autogen", True)]),
615
604
  )
616
- @telemetry.add_stmt_params_to_df(
617
- project=_PROJECT,
618
- subproject=_SUBPROJECT,
619
- custom_tags=dict([("autogen", True)]),
620
- )
621
605
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
622
606
  """Transform X
623
607
  For more details on this function, see [sklearn.decomposition.KernelPCA.transform]
@@ -676,7 +660,8 @@ class KernelPCA(BaseTransformer):
676
660
  if False:
677
661
  self.fit(dataset)
678
662
  assert self._sklearn_object is not None
679
- return self._sklearn_object.labels_
663
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
664
+ return labels
680
665
  else:
681
666
  raise NotImplementedError
682
667
 
@@ -712,6 +697,7 @@ class KernelPCA(BaseTransformer):
712
697
  output_cols = []
713
698
 
714
699
  # Make sure column names are valid snowflake identifiers.
700
+ assert output_cols is not None # Make MyPy happy
715
701
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
716
702
 
717
703
  return rv
@@ -722,11 +708,6 @@ class KernelPCA(BaseTransformer):
722
708
  subproject=_SUBPROJECT,
723
709
  custom_tags=dict([("autogen", True)]),
724
710
  )
725
- @telemetry.add_stmt_params_to_df(
726
- project=_PROJECT,
727
- subproject=_SUBPROJECT,
728
- custom_tags=dict([("autogen", True)]),
729
- )
730
711
  def predict_proba(
731
712
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
732
713
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -767,11 +748,6 @@ class KernelPCA(BaseTransformer):
767
748
  subproject=_SUBPROJECT,
768
749
  custom_tags=dict([("autogen", True)]),
769
750
  )
770
- @telemetry.add_stmt_params_to_df(
771
- project=_PROJECT,
772
- subproject=_SUBPROJECT,
773
- custom_tags=dict([("autogen", True)]),
774
- )
775
751
  def predict_log_proba(
776
752
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
777
753
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -808,16 +784,6 @@ class KernelPCA(BaseTransformer):
808
784
  return output_df
809
785
 
810
786
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
811
- @telemetry.send_api_usage_telemetry(
812
- project=_PROJECT,
813
- subproject=_SUBPROJECT,
814
- custom_tags=dict([("autogen", True)]),
815
- )
816
- @telemetry.add_stmt_params_to_df(
817
- project=_PROJECT,
818
- subproject=_SUBPROJECT,
819
- custom_tags=dict([("autogen", True)]),
820
- )
821
787
  def decision_function(
822
788
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
823
789
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -916,11 +882,6 @@ class KernelPCA(BaseTransformer):
916
882
  subproject=_SUBPROJECT,
917
883
  custom_tags=dict([("autogen", True)]),
918
884
  )
919
- @telemetry.add_stmt_params_to_df(
920
- project=_PROJECT,
921
- subproject=_SUBPROJECT,
922
- custom_tags=dict([("autogen", True)]),
923
- )
924
885
  def kneighbors(
925
886
  self,
926
887
  dataset: Union[DataFrame, pd.DataFrame],
@@ -980,18 +941,28 @@ class KernelPCA(BaseTransformer):
980
941
  # For classifier, the type of predict is the same as the type of label
981
942
  if self._sklearn_object._estimator_type == 'classifier':
982
943
  # label columns is the desired type for output
983
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
944
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
984
945
  # rename the output columns
985
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
946
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
947
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
948
+ ([] if self._drop_input_cols else inputs)
949
+ + outputs)
950
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
951
+ # For outlier models, returns -1 for outliers and 1 for inliers.
952
+ # Clusterer returns int64 cluster labels.
953
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
954
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
986
955
  self._model_signature_dict["predict"] = ModelSignature(inputs,
987
956
  ([] if self._drop_input_cols else inputs)
988
957
  + outputs)
958
+
989
959
  # For regressor, the type of predict is float64
990
960
  elif self._sklearn_object._estimator_type == 'regressor':
991
961
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
992
962
  self._model_signature_dict["predict"] = ModelSignature(inputs,
993
963
  ([] if self._drop_input_cols else inputs)
994
964
  + outputs)
965
+
995
966
  for prob_func in PROB_FUNCTIONS:
996
967
  if hasattr(self, prob_func):
997
968
  output_cols_prefix: str = f"{prob_func}_"