snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -40,10 +40,14 @@ def d2_absolute_error_score(
40
40
  gets a :math:`D^2` score of 0.0.
41
41
 
42
42
  Args:
43
- df: Input dataframe.
44
- y_true_col_names: Column name(s) representing actual values.
45
- y_pred_col_names: Column name(s) representing predicted values.
46
- sample_weight_col_name: Column name representing sample weights.
43
+ df: snowpark.DataFrame
44
+ Input dataframe.
45
+ y_true_col_names: string or list of strings
46
+ Column name(s) representing actual values.
47
+ y_pred_col_names: string or list of strings
48
+ Column name(s) representing predicted values.
49
+ sample_weight_col_name: string, default=None
50
+ Column name representing sample weights.
47
51
  multioutput: {'raw_values', 'uniform_average'} or array-like of shape \
48
52
  (n_outputs,), default='uniform_average'
49
53
  Defines aggregating of multiple output values.
@@ -128,11 +132,16 @@ def d2_pinball_score(
128
132
  gets a :math:`D^2` score of 0.0.
129
133
 
130
134
  Args:
131
- df: Input dataframe.
132
- y_true_col_names: Column name(s) representing actual values.
133
- y_pred_col_names: Column name(s) representing predicted values.
134
- sample_weight_col_name: Column name representing sample weights.
135
- alpha: Slope of the pinball deviance. It determines the quantile level
135
+ df: snowpark.DataFrame
136
+ Input dataframe.
137
+ y_true_col_names: string or list of strings
138
+ Column name(s) representing actual values.
139
+ y_pred_col_names: string or list of strings
140
+ Column name(s) representing predicted values.
141
+ sample_weight_col_name: string, default=None
142
+ Column name representing sample weights.
143
+ alpha: float, default=0.5
144
+ Slope of the pinball deviance. It determines the quantile level
136
145
  alpha for which the pinball deviance and also D2 are optimal.
137
146
  The default `alpha=0.5` is equivalent to `d2_absolute_error_score`.
138
147
  multioutput: {'raw_values', 'uniform_average'} or array-like of shape \
@@ -233,10 +242,14 @@ def explained_variance_score(
233
242
  the :func:`R^2 score <r2_score>` should be preferred.
234
243
 
235
244
  Args:
236
- df: Input dataframe.
237
- y_true_col_names: Column name(s) representing actual values.
238
- y_pred_col_names: Column name(s) representing predicted values.
239
- sample_weight_col_name: Column name representing sample weights.
245
+ df: snowpark.DataFrame
246
+ Input dataframe.
247
+ y_true_col_names: string or list of strings
248
+ Column name(s) representing actual values.
249
+ y_pred_col_names: string or list of strings
250
+ Column name(s) representing predicted values.
251
+ sample_weight_col_name: string, default=None
252
+ Column name representing sample weights.
240
253
  multioutput: {'raw_values', 'uniform_average', 'variance_weighted'} or \
241
254
  array-like of shape (n_outputs,), default='uniform_average'
242
255
  Defines aggregating of multiple output values.
@@ -248,7 +261,8 @@ def explained_variance_score(
248
261
  'variance_weighted':
249
262
  Scores of all outputs are averaged, weighted by the variances
250
263
  of each individual output.
251
- force_finite: Flag indicating if ``NaN`` and ``-Inf`` scores resulting
264
+ force_finite: boolean, default=True
265
+ Flag indicating if ``NaN`` and ``-Inf`` scores resulting
252
266
  from constant data should be replaced with real numbers (``1.0`` if
253
267
  prediction is perfect, ``0.0`` otherwise). Default is ``True``, a
254
268
  convenient setting for hyperparameters' search procedures (e.g. grid
@@ -323,10 +337,14 @@ def mean_absolute_error(
323
337
  Mean absolute error regression loss.
324
338
 
325
339
  Args:
326
- df: Input dataframe.
327
- y_true_col_names: Column name(s) representing actual values.
328
- y_pred_col_names: Column name(s) representing predicted values.
329
- sample_weight_col_name: Column name representing sample weights.
340
+ df: snowpark.DataFrame
341
+ Input dataframe.
342
+ y_true_col_names: string or list of strings
343
+ Column name(s) representing actual values.
344
+ y_pred_col_names: string or list of strings
345
+ Column name(s) representing predicted values.
346
+ sample_weight_col_name: string, default=None
347
+ Column name representing sample weights.
330
348
  multioutput: {'raw_values', 'uniform_average'} or array-like of shape \
331
349
  (n_outputs,), default='uniform_average'
332
350
  Defines aggregating of multiple output values.
@@ -398,10 +416,14 @@ def mean_absolute_percentage_error(
398
416
  regression metrics).
399
417
 
400
418
  Args:
401
- df: Input dataframe.
402
- y_true_col_names: Column name(s) representing actual values.
403
- y_pred_col_names: Column name(s) representing predicted values.
404
- sample_weight_col_name: Column name representing sample weights.
419
+ df: snowpark.DataFrame
420
+ Input dataframe.
421
+ y_true_col_names: string or list of strings
422
+ Column name(s) representing actual values.
423
+ y_pred_col_names: string or list of strings
424
+ Column name(s) representing predicted values.
425
+ sample_weight_col_name: string, default=None
426
+ Column name representing sample weights.
405
427
  multioutput: {'raw_values', 'uniform_average'} or array-like of shape \
406
428
  (n_outputs,), default='uniform_average'
407
429
  Defines aggregating of multiple output values.
@@ -472,10 +494,14 @@ def mean_squared_error(
472
494
  Mean squared error regression loss.
473
495
 
474
496
  Args:
475
- df: Input dataframe.
476
- y_true_col_names: Column name(s) representing actual values.
477
- y_pred_col_names: Column name(s) representing predicted values.
478
- sample_weight_col_name: Column name representing sample weights.
497
+ df: snowpark.DataFrame
498
+ Input dataframe.
499
+ y_true_col_names: string or list of strings
500
+ Column name(s) representing actual values.
501
+ y_pred_col_names: string or list of strings
502
+ Column name(s) representing predicted values.
503
+ sample_weight_col_name: string, default=None
504
+ Column name representing sample weights.
479
505
  multioutput: {'raw_values', 'uniform_average'} or array-like of shape \
480
506
  (n_outputs,), default='uniform_average'
481
507
  Defines aggregating of multiple output values.
@@ -484,7 +510,8 @@ def mean_squared_error(
484
510
  Returns a full set of errors in case of multioutput input.
485
511
  'uniform_average':
486
512
  Errors of all outputs are averaged with uniform weight.
487
- squared: If True returns MSE value, if False returns RMSE value.
513
+ squared: boolean, default=True
514
+ If True returns MSE value, if False returns RMSE value.
488
515
 
489
516
  Returns:
490
517
  loss: float or ndarray of floats
@@ -538,12 +565,13 @@ def r2_score(*, df: snowpark.DataFrame, y_true_col_name: str, y_pred_col_name: s
538
565
  non-constant, a constant model that always predicts the average y
539
566
  disregarding the input features would get a :math:`R^2` score of 0.0.
540
567
 
541
- TODO(pdorairaj): Implement other params from sklearn - sample_weight, multi_output, force_finite.
542
-
543
568
  Args:
544
- df: Input dataframe.
545
- y_true_col_name: Column name representing actual values.
546
- y_pred_col_name: Column name representing predicted values.
569
+ df: snowpark.DataFrame
570
+ Input dataframe.
571
+ y_true_col_name: string
572
+ Column name representing actual values.
573
+ y_pred_col_name: string
574
+ Column name representing predicted values.
547
575
 
548
576
  Returns:
549
577
  R squared metric.
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.mixture".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class BayesianGaussianMixture(BaseTransformer):
57
58
  r"""Variational Bayesian estimation of a Gaussian mixture
58
59
  For more details on this class, see [sklearn.mixture.BayesianGaussianMixture]
@@ -60,6 +61,49 @@ class BayesianGaussianMixture(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  n_components: int, default=1
64
108
  The number of mixture components. Depending on the data and the value
65
109
  of the `weight_concentration_prior` the model can decide to not use
@@ -161,35 +205,6 @@ class BayesianGaussianMixture(BaseTransformer):
161
205
 
162
206
  verbose_interval: int, default=10
163
207
  Number of iteration done before the next print.
164
-
165
- input_cols: Optional[Union[str, List[str]]]
166
- A string or list of strings representing column names that contain features.
167
- If this parameter is not specified, all columns in the input DataFrame except
168
- the columns specified by label_cols and sample_weight_col parameters are
169
- considered input columns.
170
-
171
- label_cols: Optional[Union[str, List[str]]]
172
- A string or list of strings representing column names that contain labels.
173
- This is a required param for estimators, as there is no way to infer these
174
- columns. If this parameter is not specified, then object is fitted without
175
- labels (like a transformer).
176
-
177
- output_cols: Optional[Union[str, List[str]]]
178
- A string or list of strings representing column names that will store the
179
- output of predict and transform operations. The length of output_cols must
180
- match the expected number of output columns from the specific estimator or
181
- transformer class used.
182
- If this parameter is not specified, output column names are derived by
183
- adding an OUTPUT_ prefix to the label column names. These inferred output
184
- column names work for estimator's predict() method, but output_cols must
185
- be set explicitly for transformers.
186
-
187
- sample_weight_col: Optional[str]
188
- A string representing the column name containing the sample weights.
189
- This argument is only required when working with weighted datasets.
190
-
191
- drop_input_cols: Optional[bool], default=False
192
- If set, the response of predict(), transform() methods will not contain input columns.
193
208
  """
194
209
 
195
210
  def __init__( # type: ignore[no-untyped-def]
@@ -215,6 +230,7 @@ class BayesianGaussianMixture(BaseTransformer):
215
230
  input_cols: Optional[Union[str, Iterable[str]]] = None,
216
231
  output_cols: Optional[Union[str, Iterable[str]]] = None,
217
232
  label_cols: Optional[Union[str, Iterable[str]]] = None,
233
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
218
234
  drop_input_cols: Optional[bool] = False,
219
235
  sample_weight_col: Optional[str] = None,
220
236
  ) -> None:
@@ -223,9 +239,10 @@ class BayesianGaussianMixture(BaseTransformer):
223
239
  self.set_input_cols(input_cols)
224
240
  self.set_output_cols(output_cols)
225
241
  self.set_label_cols(label_cols)
242
+ self.set_passthrough_cols(passthrough_cols)
226
243
  self.set_drop_input_cols(drop_input_cols)
227
244
  self.set_sample_weight_col(sample_weight_col)
228
- deps = set(SklearnWrapperProvider().dependencies)
245
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
229
246
 
230
247
  self._deps = list(deps)
231
248
 
@@ -250,13 +267,14 @@ class BayesianGaussianMixture(BaseTransformer):
250
267
  args=init_args,
251
268
  klass=sklearn.mixture.BayesianGaussianMixture
252
269
  )
253
- self._sklearn_object = sklearn.mixture.BayesianGaussianMixture(
270
+ self._sklearn_object: Any = sklearn.mixture.BayesianGaussianMixture(
254
271
  **cleaned_up_init_args,
255
272
  )
256
273
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
257
274
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
258
275
  self._snowpark_cols: Optional[List[str]] = self.input_cols
259
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BayesianGaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
276
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=BayesianGaussianMixture.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
277
+ self._autogenerated = True
260
278
 
261
279
  def _get_rand_id(self) -> str:
262
280
  """
@@ -267,24 +285,6 @@ class BayesianGaussianMixture(BaseTransformer):
267
285
  """
268
286
  return str(uuid4()).replace("-", "_").upper()
269
287
 
270
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
271
- """
272
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
273
-
274
- Args:
275
- dataset: Input dataset.
276
- """
277
- if not self.input_cols:
278
- cols = [
279
- c for c in dataset.columns
280
- if c not in self.get_label_cols() and c != self.sample_weight_col
281
- ]
282
- self.set_input_cols(input_cols=cols)
283
-
284
- if not self.output_cols:
285
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
286
- self.set_output_cols(output_cols=cols)
287
-
288
288
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "BayesianGaussianMixture":
289
289
  """
290
290
  Input columns setter.
@@ -330,54 +330,48 @@ class BayesianGaussianMixture(BaseTransformer):
330
330
  self
331
331
  """
332
332
  self._infer_input_output_cols(dataset)
333
- if isinstance(dataset, pd.DataFrame):
334
- assert self._sklearn_object is not None # keep mypy happy
335
- self._sklearn_object = self._handlers.fit_pandas(
336
- dataset,
337
- self._sklearn_object,
338
- self.input_cols,
339
- self.label_cols,
340
- self.sample_weight_col
341
- )
342
- elif isinstance(dataset, DataFrame):
343
- self._fit_snowpark(dataset)
344
- else:
345
- raise TypeError(
346
- f"Unexpected dataset type: {type(dataset)}."
347
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
348
- )
333
+ if isinstance(dataset, DataFrame):
334
+ session = dataset._session
335
+ assert session is not None # keep mypy happy
336
+ # Validate that key package version in user workspace are supported in snowflake conda channel
337
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
338
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
339
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
340
+
341
+ # Specify input columns so column pruning will be enforced
342
+ selected_cols = self._get_active_columns()
343
+ if len(selected_cols) > 0:
344
+ dataset = dataset.select(selected_cols)
345
+
346
+ self._snowpark_cols = dataset.select(self.input_cols).columns
347
+
348
+ # If we are already in a stored procedure, no need to kick off another one.
349
+ if SNOWML_SPROC_ENV in os.environ:
350
+ statement_params = telemetry.get_function_usage_statement_params(
351
+ project=_PROJECT,
352
+ subproject=_SUBPROJECT,
353
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BayesianGaussianMixture.__class__.__name__),
354
+ api_calls=[Session.call],
355
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
356
+ )
357
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
358
+ pd_df.columns = dataset.columns
359
+ dataset = pd_df
360
+
361
+ model_trainer = ModelTrainerBuilder.build(
362
+ estimator=self._sklearn_object,
363
+ dataset=dataset,
364
+ input_cols=self.input_cols,
365
+ label_cols=self.label_cols,
366
+ sample_weight_col=self.sample_weight_col,
367
+ autogenerated=self._autogenerated,
368
+ subproject=_SUBPROJECT
369
+ )
370
+ self._sklearn_object = model_trainer.train()
349
371
  self._is_fitted = True
350
372
  self._get_model_signatures(dataset)
351
373
  return self
352
374
 
353
- def _fit_snowpark(self, dataset: DataFrame) -> None:
354
- session = dataset._session
355
- assert session is not None # keep mypy happy
356
- # Validate that key package version in user workspace are supported in snowflake conda channel
357
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
358
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
359
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
360
-
361
- # Specify input columns so column pruning will be enforced
362
- selected_cols = self._get_active_columns()
363
- if len(selected_cols) > 0:
364
- dataset = dataset.select(selected_cols)
365
-
366
- estimator = self._sklearn_object
367
- assert estimator is not None # Keep mypy happy
368
-
369
- self._snowpark_cols = dataset.select(self.input_cols).columns
370
-
371
- self._sklearn_object = self._handlers.fit_snowpark(
372
- dataset,
373
- session,
374
- estimator,
375
- ["snowflake-snowpark-python"] + self._get_dependencies(),
376
- self.input_cols,
377
- self.label_cols,
378
- self.sample_weight_col,
379
- )
380
-
381
375
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
382
376
  if self._drop_input_cols:
383
377
  return []
@@ -565,11 +559,6 @@ class BayesianGaussianMixture(BaseTransformer):
565
559
  subproject=_SUBPROJECT,
566
560
  custom_tags=dict([("autogen", True)]),
567
561
  )
568
- @telemetry.add_stmt_params_to_df(
569
- project=_PROJECT,
570
- subproject=_SUBPROJECT,
571
- custom_tags=dict([("autogen", True)]),
572
- )
573
562
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
574
563
  """Predict the labels for the data samples in X using trained model
575
564
  For more details on this function, see [sklearn.mixture.BayesianGaussianMixture.predict]
@@ -623,11 +612,6 @@ class BayesianGaussianMixture(BaseTransformer):
623
612
  subproject=_SUBPROJECT,
624
613
  custom_tags=dict([("autogen", True)]),
625
614
  )
626
- @telemetry.add_stmt_params_to_df(
627
- project=_PROJECT,
628
- subproject=_SUBPROJECT,
629
- custom_tags=dict([("autogen", True)]),
630
- )
631
615
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
632
616
  """Method not supported for this class.
633
617
 
@@ -686,7 +670,8 @@ class BayesianGaussianMixture(BaseTransformer):
686
670
  if False:
687
671
  self.fit(dataset)
688
672
  assert self._sklearn_object is not None
689
- return self._sklearn_object.labels_
673
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
674
+ return labels
690
675
  else:
691
676
  raise NotImplementedError
692
677
 
@@ -722,6 +707,7 @@ class BayesianGaussianMixture(BaseTransformer):
722
707
  output_cols = []
723
708
 
724
709
  # Make sure column names are valid snowflake identifiers.
710
+ assert output_cols is not None # Make MyPy happy
725
711
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
726
712
 
727
713
  return rv
@@ -732,11 +718,6 @@ class BayesianGaussianMixture(BaseTransformer):
732
718
  subproject=_SUBPROJECT,
733
719
  custom_tags=dict([("autogen", True)]),
734
720
  )
735
- @telemetry.add_stmt_params_to_df(
736
- project=_PROJECT,
737
- subproject=_SUBPROJECT,
738
- custom_tags=dict([("autogen", True)]),
739
- )
740
721
  def predict_proba(
741
722
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
742
723
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -779,11 +760,6 @@ class BayesianGaussianMixture(BaseTransformer):
779
760
  subproject=_SUBPROJECT,
780
761
  custom_tags=dict([("autogen", True)]),
781
762
  )
782
- @telemetry.add_stmt_params_to_df(
783
- project=_PROJECT,
784
- subproject=_SUBPROJECT,
785
- custom_tags=dict([("autogen", True)]),
786
- )
787
763
  def predict_log_proba(
788
764
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
789
765
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -822,16 +798,6 @@ class BayesianGaussianMixture(BaseTransformer):
822
798
  return output_df
823
799
 
824
800
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
825
- @telemetry.send_api_usage_telemetry(
826
- project=_PROJECT,
827
- subproject=_SUBPROJECT,
828
- custom_tags=dict([("autogen", True)]),
829
- )
830
- @telemetry.add_stmt_params_to_df(
831
- project=_PROJECT,
832
- subproject=_SUBPROJECT,
833
- custom_tags=dict([("autogen", True)]),
834
- )
835
801
  def decision_function(
836
802
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
837
803
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -932,11 +898,6 @@ class BayesianGaussianMixture(BaseTransformer):
932
898
  subproject=_SUBPROJECT,
933
899
  custom_tags=dict([("autogen", True)]),
934
900
  )
935
- @telemetry.add_stmt_params_to_df(
936
- project=_PROJECT,
937
- subproject=_SUBPROJECT,
938
- custom_tags=dict([("autogen", True)]),
939
- )
940
901
  def kneighbors(
941
902
  self,
942
903
  dataset: Union[DataFrame, pd.DataFrame],
@@ -996,18 +957,28 @@ class BayesianGaussianMixture(BaseTransformer):
996
957
  # For classifier, the type of predict is the same as the type of label
997
958
  if self._sklearn_object._estimator_type == 'classifier':
998
959
  # label columns is the desired type for output
999
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
960
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1000
961
  # rename the output columns
1001
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
962
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
963
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
964
+ ([] if self._drop_input_cols else inputs)
965
+ + outputs)
966
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
967
+ # For outlier models, returns -1 for outliers and 1 for inliers.
968
+ # Clusterer returns int64 cluster labels.
969
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
970
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1002
971
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
972
  ([] if self._drop_input_cols else inputs)
1004
973
  + outputs)
974
+
1005
975
  # For regressor, the type of predict is float64
1006
976
  elif self._sklearn_object._estimator_type == 'regressor':
1007
977
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1008
978
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
979
  ([] if self._drop_input_cols else inputs)
1010
980
  + outputs)
981
+
1011
982
  for prob_func in PROB_FUNCTIONS:
1012
983
  if hasattr(self, prob_func):
1013
984
  output_cols_prefix: str = f"{prob_func}_"