snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class GraphicalLassoCV(BaseTransformer):
57
58
  r"""Sparse inverse covariance w/ cross-validated choice of the l1 penalty
58
59
  For more details on this class, see [sklearn.covariance.GraphicalLassoCV]
@@ -60,6 +61,49 @@ class GraphicalLassoCV(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
75
+ output_cols: Optional[Union[str, List[str]]]
76
+ A string or list of strings representing column names that will store the
77
+ output of predict and transform operations. The length of output_cols must
78
+ match the expected number of output columns from the specific predictor or
79
+ transformer class used.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
89
+
90
+ sample_weight_col: Optional[str]
91
+ A string representing the column name containing the sample weights.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
103
+
104
+ drop_input_cols: Optional[bool], default=False
105
+ If set, the response of predict(), transform() methods will not contain input columns.
106
+
63
107
  alphas: int or array-like of shape (n_alphas,), dtype=float, default=4
64
108
  If an integer is given, it fixes the number of points on the
65
109
  grids of alpha to be used. If a list is given, it gives the
@@ -124,35 +168,6 @@ class GraphicalLassoCV(BaseTransformer):
124
168
  Useful when working with data whose mean is almost, but not exactly
125
169
  zero.
126
170
  If False, data are centered before computation.
127
-
128
- input_cols: Optional[Union[str, List[str]]]
129
- A string or list of strings representing column names that contain features.
130
- If this parameter is not specified, all columns in the input DataFrame except
131
- the columns specified by label_cols and sample_weight_col parameters are
132
- considered input columns.
133
-
134
- label_cols: Optional[Union[str, List[str]]]
135
- A string or list of strings representing column names that contain labels.
136
- This is a required param for estimators, as there is no way to infer these
137
- columns. If this parameter is not specified, then object is fitted without
138
- labels (like a transformer).
139
-
140
- output_cols: Optional[Union[str, List[str]]]
141
- A string or list of strings representing column names that will store the
142
- output of predict and transform operations. The length of output_cols must
143
- match the expected number of output columns from the specific estimator or
144
- transformer class used.
145
- If this parameter is not specified, output column names are derived by
146
- adding an OUTPUT_ prefix to the label column names. These inferred output
147
- column names work for estimator's predict() method, but output_cols must
148
- be set explicitly for transformers.
149
-
150
- sample_weight_col: Optional[str]
151
- A string representing the column name containing the sample weights.
152
- This argument is only required when working with weighted datasets.
153
-
154
- drop_input_cols: Optional[bool], default=False
155
- If set, the response of predict(), transform() methods will not contain input columns.
156
171
  """
157
172
 
158
173
  def __init__( # type: ignore[no-untyped-def]
@@ -172,6 +187,7 @@ class GraphicalLassoCV(BaseTransformer):
172
187
  input_cols: Optional[Union[str, Iterable[str]]] = None,
173
188
  output_cols: Optional[Union[str, Iterable[str]]] = None,
174
189
  label_cols: Optional[Union[str, Iterable[str]]] = None,
190
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
175
191
  drop_input_cols: Optional[bool] = False,
176
192
  sample_weight_col: Optional[str] = None,
177
193
  ) -> None:
@@ -180,9 +196,10 @@ class GraphicalLassoCV(BaseTransformer):
180
196
  self.set_input_cols(input_cols)
181
197
  self.set_output_cols(output_cols)
182
198
  self.set_label_cols(label_cols)
199
+ self.set_passthrough_cols(passthrough_cols)
183
200
  self.set_drop_input_cols(drop_input_cols)
184
201
  self.set_sample_weight_col(sample_weight_col)
185
- deps = set(SklearnWrapperProvider().dependencies)
202
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
186
203
 
187
204
  self._deps = list(deps)
188
205
 
@@ -201,13 +218,14 @@ class GraphicalLassoCV(BaseTransformer):
201
218
  args=init_args,
202
219
  klass=sklearn.covariance.GraphicalLassoCV
203
220
  )
204
- self._sklearn_object = sklearn.covariance.GraphicalLassoCV(
221
+ self._sklearn_object: Any = sklearn.covariance.GraphicalLassoCV(
205
222
  **cleaned_up_init_args,
206
223
  )
207
224
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
208
225
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
209
226
  self._snowpark_cols: Optional[List[str]] = self.input_cols
210
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GraphicalLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
227
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=GraphicalLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
228
+ self._autogenerated = True
211
229
 
212
230
  def _get_rand_id(self) -> str:
213
231
  """
@@ -218,24 +236,6 @@ class GraphicalLassoCV(BaseTransformer):
218
236
  """
219
237
  return str(uuid4()).replace("-", "_").upper()
220
238
 
221
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
222
- """
223
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
224
-
225
- Args:
226
- dataset: Input dataset.
227
- """
228
- if not self.input_cols:
229
- cols = [
230
- c for c in dataset.columns
231
- if c not in self.get_label_cols() and c != self.sample_weight_col
232
- ]
233
- self.set_input_cols(input_cols=cols)
234
-
235
- if not self.output_cols:
236
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
237
- self.set_output_cols(output_cols=cols)
238
-
239
239
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GraphicalLassoCV":
240
240
  """
241
241
  Input columns setter.
@@ -281,54 +281,48 @@ class GraphicalLassoCV(BaseTransformer):
281
281
  self
282
282
  """
283
283
  self._infer_input_output_cols(dataset)
284
- if isinstance(dataset, pd.DataFrame):
285
- assert self._sklearn_object is not None # keep mypy happy
286
- self._sklearn_object = self._handlers.fit_pandas(
287
- dataset,
288
- self._sklearn_object,
289
- self.input_cols,
290
- self.label_cols,
291
- self.sample_weight_col
292
- )
293
- elif isinstance(dataset, DataFrame):
294
- self._fit_snowpark(dataset)
295
- else:
296
- raise TypeError(
297
- f"Unexpected dataset type: {type(dataset)}."
298
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
299
- )
284
+ if isinstance(dataset, DataFrame):
285
+ session = dataset._session
286
+ assert session is not None # keep mypy happy
287
+ # Validate that key package version in user workspace are supported in snowflake conda channel
288
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
289
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
290
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
291
+
292
+ # Specify input columns so column pruning will be enforced
293
+ selected_cols = self._get_active_columns()
294
+ if len(selected_cols) > 0:
295
+ dataset = dataset.select(selected_cols)
296
+
297
+ self._snowpark_cols = dataset.select(self.input_cols).columns
298
+
299
+ # If we are already in a stored procedure, no need to kick off another one.
300
+ if SNOWML_SPROC_ENV in os.environ:
301
+ statement_params = telemetry.get_function_usage_statement_params(
302
+ project=_PROJECT,
303
+ subproject=_SUBPROJECT,
304
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GraphicalLassoCV.__class__.__name__),
305
+ api_calls=[Session.call],
306
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
307
+ )
308
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
309
+ pd_df.columns = dataset.columns
310
+ dataset = pd_df
311
+
312
+ model_trainer = ModelTrainerBuilder.build(
313
+ estimator=self._sklearn_object,
314
+ dataset=dataset,
315
+ input_cols=self.input_cols,
316
+ label_cols=self.label_cols,
317
+ sample_weight_col=self.sample_weight_col,
318
+ autogenerated=self._autogenerated,
319
+ subproject=_SUBPROJECT
320
+ )
321
+ self._sklearn_object = model_trainer.train()
300
322
  self._is_fitted = True
301
323
  self._get_model_signatures(dataset)
302
324
  return self
303
325
 
304
- def _fit_snowpark(self, dataset: DataFrame) -> None:
305
- session = dataset._session
306
- assert session is not None # keep mypy happy
307
- # Validate that key package version in user workspace are supported in snowflake conda channel
308
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
309
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
310
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
311
-
312
- # Specify input columns so column pruning will be enforced
313
- selected_cols = self._get_active_columns()
314
- if len(selected_cols) > 0:
315
- dataset = dataset.select(selected_cols)
316
-
317
- estimator = self._sklearn_object
318
- assert estimator is not None # Keep mypy happy
319
-
320
- self._snowpark_cols = dataset.select(self.input_cols).columns
321
-
322
- self._sklearn_object = self._handlers.fit_snowpark(
323
- dataset,
324
- session,
325
- estimator,
326
- ["snowflake-snowpark-python"] + self._get_dependencies(),
327
- self.input_cols,
328
- self.label_cols,
329
- self.sample_weight_col,
330
- )
331
-
332
326
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
333
327
  if self._drop_input_cols:
334
328
  return []
@@ -516,11 +510,6 @@ class GraphicalLassoCV(BaseTransformer):
516
510
  subproject=_SUBPROJECT,
517
511
  custom_tags=dict([("autogen", True)]),
518
512
  )
519
- @telemetry.add_stmt_params_to_df(
520
- project=_PROJECT,
521
- subproject=_SUBPROJECT,
522
- custom_tags=dict([("autogen", True)]),
523
- )
524
513
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
525
514
  """Method not supported for this class.
526
515
 
@@ -572,11 +561,6 @@ class GraphicalLassoCV(BaseTransformer):
572
561
  subproject=_SUBPROJECT,
573
562
  custom_tags=dict([("autogen", True)]),
574
563
  )
575
- @telemetry.add_stmt_params_to_df(
576
- project=_PROJECT,
577
- subproject=_SUBPROJECT,
578
- custom_tags=dict([("autogen", True)]),
579
- )
580
564
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
581
565
  """Method not supported for this class.
582
566
 
@@ -633,7 +617,8 @@ class GraphicalLassoCV(BaseTransformer):
633
617
  if False:
634
618
  self.fit(dataset)
635
619
  assert self._sklearn_object is not None
636
- return self._sklearn_object.labels_
620
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
621
+ return labels
637
622
  else:
638
623
  raise NotImplementedError
639
624
 
@@ -669,6 +654,7 @@ class GraphicalLassoCV(BaseTransformer):
669
654
  output_cols = []
670
655
 
671
656
  # Make sure column names are valid snowflake identifiers.
657
+ assert output_cols is not None # Make MyPy happy
672
658
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
673
659
 
674
660
  return rv
@@ -679,11 +665,6 @@ class GraphicalLassoCV(BaseTransformer):
679
665
  subproject=_SUBPROJECT,
680
666
  custom_tags=dict([("autogen", True)]),
681
667
  )
682
- @telemetry.add_stmt_params_to_df(
683
- project=_PROJECT,
684
- subproject=_SUBPROJECT,
685
- custom_tags=dict([("autogen", True)]),
686
- )
687
668
  def predict_proba(
688
669
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
689
670
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -724,11 +705,6 @@ class GraphicalLassoCV(BaseTransformer):
724
705
  subproject=_SUBPROJECT,
725
706
  custom_tags=dict([("autogen", True)]),
726
707
  )
727
- @telemetry.add_stmt_params_to_df(
728
- project=_PROJECT,
729
- subproject=_SUBPROJECT,
730
- custom_tags=dict([("autogen", True)]),
731
- )
732
708
  def predict_log_proba(
733
709
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
734
710
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -765,16 +741,6 @@ class GraphicalLassoCV(BaseTransformer):
765
741
  return output_df
766
742
 
767
743
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
768
- @telemetry.send_api_usage_telemetry(
769
- project=_PROJECT,
770
- subproject=_SUBPROJECT,
771
- custom_tags=dict([("autogen", True)]),
772
- )
773
- @telemetry.add_stmt_params_to_df(
774
- project=_PROJECT,
775
- subproject=_SUBPROJECT,
776
- custom_tags=dict([("autogen", True)]),
777
- )
778
744
  def decision_function(
779
745
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
780
746
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -875,11 +841,6 @@ class GraphicalLassoCV(BaseTransformer):
875
841
  subproject=_SUBPROJECT,
876
842
  custom_tags=dict([("autogen", True)]),
877
843
  )
878
- @telemetry.add_stmt_params_to_df(
879
- project=_PROJECT,
880
- subproject=_SUBPROJECT,
881
- custom_tags=dict([("autogen", True)]),
882
- )
883
844
  def kneighbors(
884
845
  self,
885
846
  dataset: Union[DataFrame, pd.DataFrame],
@@ -939,18 +900,28 @@ class GraphicalLassoCV(BaseTransformer):
939
900
  # For classifier, the type of predict is the same as the type of label
940
901
  if self._sklearn_object._estimator_type == 'classifier':
941
902
  # label columns is the desired type for output
942
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
903
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
943
904
  # rename the output columns
944
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
905
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
906
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
907
+ ([] if self._drop_input_cols else inputs)
908
+ + outputs)
909
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
910
+ # For outlier models, returns -1 for outliers and 1 for inliers.
911
+ # Clusterer returns int64 cluster labels.
912
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
913
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
945
914
  self._model_signature_dict["predict"] = ModelSignature(inputs,
946
915
  ([] if self._drop_input_cols else inputs)
947
916
  + outputs)
917
+
948
918
  # For regressor, the type of predict is float64
949
919
  elif self._sklearn_object._estimator_type == 'regressor':
950
920
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
951
921
  self._model_signature_dict["predict"] = ModelSignature(inputs,
952
922
  ([] if self._drop_input_cols else inputs)
953
923
  + outputs)
924
+
954
925
  for prob_func in PROB_FUNCTIONS:
955
926
  if hasattr(self, prob_func):
956
927
  output_cols_prefix: str = f"{prob_func}_"