snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class GraphicalLassoCV(BaseTransformer):
|
57
58
|
r"""Sparse inverse covariance w/ cross-validated choice of the l1 penalty
|
58
59
|
For more details on this class, see [sklearn.covariance.GraphicalLassoCV]
|
@@ -60,6 +61,49 @@ class GraphicalLassoCV(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
alphas: int or array-like of shape (n_alphas,), dtype=float, default=4
|
64
108
|
If an integer is given, it fixes the number of points on the
|
65
109
|
grids of alpha to be used. If a list is given, it gives the
|
@@ -124,35 +168,6 @@ class GraphicalLassoCV(BaseTransformer):
|
|
124
168
|
Useful when working with data whose mean is almost, but not exactly
|
125
169
|
zero.
|
126
170
|
If False, data are centered before computation.
|
127
|
-
|
128
|
-
input_cols: Optional[Union[str, List[str]]]
|
129
|
-
A string or list of strings representing column names that contain features.
|
130
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
131
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
132
|
-
considered input columns.
|
133
|
-
|
134
|
-
label_cols: Optional[Union[str, List[str]]]
|
135
|
-
A string or list of strings representing column names that contain labels.
|
136
|
-
This is a required param for estimators, as there is no way to infer these
|
137
|
-
columns. If this parameter is not specified, then object is fitted without
|
138
|
-
labels (like a transformer).
|
139
|
-
|
140
|
-
output_cols: Optional[Union[str, List[str]]]
|
141
|
-
A string or list of strings representing column names that will store the
|
142
|
-
output of predict and transform operations. The length of output_cols must
|
143
|
-
match the expected number of output columns from the specific estimator or
|
144
|
-
transformer class used.
|
145
|
-
If this parameter is not specified, output column names are derived by
|
146
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
147
|
-
column names work for estimator's predict() method, but output_cols must
|
148
|
-
be set explicitly for transformers.
|
149
|
-
|
150
|
-
sample_weight_col: Optional[str]
|
151
|
-
A string representing the column name containing the sample weights.
|
152
|
-
This argument is only required when working with weighted datasets.
|
153
|
-
|
154
|
-
drop_input_cols: Optional[bool], default=False
|
155
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
156
171
|
"""
|
157
172
|
|
158
173
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -172,6 +187,7 @@ class GraphicalLassoCV(BaseTransformer):
|
|
172
187
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
173
188
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
174
189
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
190
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
175
191
|
drop_input_cols: Optional[bool] = False,
|
176
192
|
sample_weight_col: Optional[str] = None,
|
177
193
|
) -> None:
|
@@ -180,9 +196,10 @@ class GraphicalLassoCV(BaseTransformer):
|
|
180
196
|
self.set_input_cols(input_cols)
|
181
197
|
self.set_output_cols(output_cols)
|
182
198
|
self.set_label_cols(label_cols)
|
199
|
+
self.set_passthrough_cols(passthrough_cols)
|
183
200
|
self.set_drop_input_cols(drop_input_cols)
|
184
201
|
self.set_sample_weight_col(sample_weight_col)
|
185
|
-
deps = set(
|
202
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
186
203
|
|
187
204
|
self._deps = list(deps)
|
188
205
|
|
@@ -201,13 +218,14 @@ class GraphicalLassoCV(BaseTransformer):
|
|
201
218
|
args=init_args,
|
202
219
|
klass=sklearn.covariance.GraphicalLassoCV
|
203
220
|
)
|
204
|
-
self._sklearn_object = sklearn.covariance.GraphicalLassoCV(
|
221
|
+
self._sklearn_object: Any = sklearn.covariance.GraphicalLassoCV(
|
205
222
|
**cleaned_up_init_args,
|
206
223
|
)
|
207
224
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
208
225
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
209
226
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
210
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GraphicalLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
227
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=GraphicalLassoCV.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
228
|
+
self._autogenerated = True
|
211
229
|
|
212
230
|
def _get_rand_id(self) -> str:
|
213
231
|
"""
|
@@ -218,24 +236,6 @@ class GraphicalLassoCV(BaseTransformer):
|
|
218
236
|
"""
|
219
237
|
return str(uuid4()).replace("-", "_").upper()
|
220
238
|
|
221
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
222
|
-
"""
|
223
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
224
|
-
|
225
|
-
Args:
|
226
|
-
dataset: Input dataset.
|
227
|
-
"""
|
228
|
-
if not self.input_cols:
|
229
|
-
cols = [
|
230
|
-
c for c in dataset.columns
|
231
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
232
|
-
]
|
233
|
-
self.set_input_cols(input_cols=cols)
|
234
|
-
|
235
|
-
if not self.output_cols:
|
236
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
237
|
-
self.set_output_cols(output_cols=cols)
|
238
|
-
|
239
239
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "GraphicalLassoCV":
|
240
240
|
"""
|
241
241
|
Input columns setter.
|
@@ -281,54 +281,48 @@ class GraphicalLassoCV(BaseTransformer):
|
|
281
281
|
self
|
282
282
|
"""
|
283
283
|
self._infer_input_output_cols(dataset)
|
284
|
-
if isinstance(dataset,
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
self.
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
284
|
+
if isinstance(dataset, DataFrame):
|
285
|
+
session = dataset._session
|
286
|
+
assert session is not None # keep mypy happy
|
287
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
288
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
289
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
290
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
291
|
+
|
292
|
+
# Specify input columns so column pruning will be enforced
|
293
|
+
selected_cols = self._get_active_columns()
|
294
|
+
if len(selected_cols) > 0:
|
295
|
+
dataset = dataset.select(selected_cols)
|
296
|
+
|
297
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
298
|
+
|
299
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
300
|
+
if SNOWML_SPROC_ENV in os.environ:
|
301
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
302
|
+
project=_PROJECT,
|
303
|
+
subproject=_SUBPROJECT,
|
304
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GraphicalLassoCV.__class__.__name__),
|
305
|
+
api_calls=[Session.call],
|
306
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
307
|
+
)
|
308
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
309
|
+
pd_df.columns = dataset.columns
|
310
|
+
dataset = pd_df
|
311
|
+
|
312
|
+
model_trainer = ModelTrainerBuilder.build(
|
313
|
+
estimator=self._sklearn_object,
|
314
|
+
dataset=dataset,
|
315
|
+
input_cols=self.input_cols,
|
316
|
+
label_cols=self.label_cols,
|
317
|
+
sample_weight_col=self.sample_weight_col,
|
318
|
+
autogenerated=self._autogenerated,
|
319
|
+
subproject=_SUBPROJECT
|
320
|
+
)
|
321
|
+
self._sklearn_object = model_trainer.train()
|
300
322
|
self._is_fitted = True
|
301
323
|
self._get_model_signatures(dataset)
|
302
324
|
return self
|
303
325
|
|
304
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
305
|
-
session = dataset._session
|
306
|
-
assert session is not None # keep mypy happy
|
307
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
308
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
309
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
310
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
311
|
-
|
312
|
-
# Specify input columns so column pruning will be enforced
|
313
|
-
selected_cols = self._get_active_columns()
|
314
|
-
if len(selected_cols) > 0:
|
315
|
-
dataset = dataset.select(selected_cols)
|
316
|
-
|
317
|
-
estimator = self._sklearn_object
|
318
|
-
assert estimator is not None # Keep mypy happy
|
319
|
-
|
320
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
321
|
-
|
322
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
323
|
-
dataset,
|
324
|
-
session,
|
325
|
-
estimator,
|
326
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
327
|
-
self.input_cols,
|
328
|
-
self.label_cols,
|
329
|
-
self.sample_weight_col,
|
330
|
-
)
|
331
|
-
|
332
326
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
333
327
|
if self._drop_input_cols:
|
334
328
|
return []
|
@@ -516,11 +510,6 @@ class GraphicalLassoCV(BaseTransformer):
|
|
516
510
|
subproject=_SUBPROJECT,
|
517
511
|
custom_tags=dict([("autogen", True)]),
|
518
512
|
)
|
519
|
-
@telemetry.add_stmt_params_to_df(
|
520
|
-
project=_PROJECT,
|
521
|
-
subproject=_SUBPROJECT,
|
522
|
-
custom_tags=dict([("autogen", True)]),
|
523
|
-
)
|
524
513
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
525
514
|
"""Method not supported for this class.
|
526
515
|
|
@@ -572,11 +561,6 @@ class GraphicalLassoCV(BaseTransformer):
|
|
572
561
|
subproject=_SUBPROJECT,
|
573
562
|
custom_tags=dict([("autogen", True)]),
|
574
563
|
)
|
575
|
-
@telemetry.add_stmt_params_to_df(
|
576
|
-
project=_PROJECT,
|
577
|
-
subproject=_SUBPROJECT,
|
578
|
-
custom_tags=dict([("autogen", True)]),
|
579
|
-
)
|
580
564
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
581
565
|
"""Method not supported for this class.
|
582
566
|
|
@@ -633,7 +617,8 @@ class GraphicalLassoCV(BaseTransformer):
|
|
633
617
|
if False:
|
634
618
|
self.fit(dataset)
|
635
619
|
assert self._sklearn_object is not None
|
636
|
-
|
620
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
621
|
+
return labels
|
637
622
|
else:
|
638
623
|
raise NotImplementedError
|
639
624
|
|
@@ -669,6 +654,7 @@ class GraphicalLassoCV(BaseTransformer):
|
|
669
654
|
output_cols = []
|
670
655
|
|
671
656
|
# Make sure column names are valid snowflake identifiers.
|
657
|
+
assert output_cols is not None # Make MyPy happy
|
672
658
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
673
659
|
|
674
660
|
return rv
|
@@ -679,11 +665,6 @@ class GraphicalLassoCV(BaseTransformer):
|
|
679
665
|
subproject=_SUBPROJECT,
|
680
666
|
custom_tags=dict([("autogen", True)]),
|
681
667
|
)
|
682
|
-
@telemetry.add_stmt_params_to_df(
|
683
|
-
project=_PROJECT,
|
684
|
-
subproject=_SUBPROJECT,
|
685
|
-
custom_tags=dict([("autogen", True)]),
|
686
|
-
)
|
687
668
|
def predict_proba(
|
688
669
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
689
670
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -724,11 +705,6 @@ class GraphicalLassoCV(BaseTransformer):
|
|
724
705
|
subproject=_SUBPROJECT,
|
725
706
|
custom_tags=dict([("autogen", True)]),
|
726
707
|
)
|
727
|
-
@telemetry.add_stmt_params_to_df(
|
728
|
-
project=_PROJECT,
|
729
|
-
subproject=_SUBPROJECT,
|
730
|
-
custom_tags=dict([("autogen", True)]),
|
731
|
-
)
|
732
708
|
def predict_log_proba(
|
733
709
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
734
710
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -765,16 +741,6 @@ class GraphicalLassoCV(BaseTransformer):
|
|
765
741
|
return output_df
|
766
742
|
|
767
743
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
768
|
-
@telemetry.send_api_usage_telemetry(
|
769
|
-
project=_PROJECT,
|
770
|
-
subproject=_SUBPROJECT,
|
771
|
-
custom_tags=dict([("autogen", True)]),
|
772
|
-
)
|
773
|
-
@telemetry.add_stmt_params_to_df(
|
774
|
-
project=_PROJECT,
|
775
|
-
subproject=_SUBPROJECT,
|
776
|
-
custom_tags=dict([("autogen", True)]),
|
777
|
-
)
|
778
744
|
def decision_function(
|
779
745
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
780
746
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -875,11 +841,6 @@ class GraphicalLassoCV(BaseTransformer):
|
|
875
841
|
subproject=_SUBPROJECT,
|
876
842
|
custom_tags=dict([("autogen", True)]),
|
877
843
|
)
|
878
|
-
@telemetry.add_stmt_params_to_df(
|
879
|
-
project=_PROJECT,
|
880
|
-
subproject=_SUBPROJECT,
|
881
|
-
custom_tags=dict([("autogen", True)]),
|
882
|
-
)
|
883
844
|
def kneighbors(
|
884
845
|
self,
|
885
846
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -939,18 +900,28 @@ class GraphicalLassoCV(BaseTransformer):
|
|
939
900
|
# For classifier, the type of predict is the same as the type of label
|
940
901
|
if self._sklearn_object._estimator_type == 'classifier':
|
941
902
|
# label columns is the desired type for output
|
942
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
903
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
943
904
|
# rename the output columns
|
944
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
905
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
906
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
907
|
+
([] if self._drop_input_cols else inputs)
|
908
|
+
+ outputs)
|
909
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
910
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
911
|
+
# Clusterer returns int64 cluster labels.
|
912
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
913
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
945
914
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
946
915
|
([] if self._drop_input_cols else inputs)
|
947
916
|
+ outputs)
|
917
|
+
|
948
918
|
# For regressor, the type of predict is float64
|
949
919
|
elif self._sklearn_object._estimator_type == 'regressor':
|
950
920
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
951
921
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
952
922
|
([] if self._drop_input_cols else inputs)
|
953
923
|
+ outputs)
|
924
|
+
|
954
925
|
for prob_func in PROB_FUNCTIONS:
|
955
926
|
if hasattr(self, prob_func):
|
956
927
|
output_cols_prefix: str = f"{prob_func}_"
|