snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class OutputCodeClassifier(BaseTransformer):
|
57
58
|
r"""(Error-Correcting) Output-Code multiclass strategy
|
58
59
|
For more details on this class, see [sklearn.multiclass.OutputCodeClassifier]
|
@@ -60,6 +61,51 @@ class OutputCodeClassifier(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimator: estimator object
|
64
110
|
An estimator object implementing :term:`fit` and one of
|
65
111
|
:term:`decision_function` or :term:`predict_proba`.
|
@@ -82,35 +128,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
82
128
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
83
129
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
84
130
|
for more details.
|
85
|
-
|
86
|
-
input_cols: Optional[Union[str, List[str]]]
|
87
|
-
A string or list of strings representing column names that contain features.
|
88
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
89
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
90
|
-
considered input columns.
|
91
|
-
|
92
|
-
label_cols: Optional[Union[str, List[str]]]
|
93
|
-
A string or list of strings representing column names that contain labels.
|
94
|
-
This is a required param for estimators, as there is no way to infer these
|
95
|
-
columns. If this parameter is not specified, then object is fitted without
|
96
|
-
labels (like a transformer).
|
97
|
-
|
98
|
-
output_cols: Optional[Union[str, List[str]]]
|
99
|
-
A string or list of strings representing column names that will store the
|
100
|
-
output of predict and transform operations. The length of output_cols must
|
101
|
-
match the expected number of output columns from the specific estimator or
|
102
|
-
transformer class used.
|
103
|
-
If this parameter is not specified, output column names are derived by
|
104
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
105
|
-
column names work for estimator's predict() method, but output_cols must
|
106
|
-
be set explicitly for transformers.
|
107
|
-
|
108
|
-
sample_weight_col: Optional[str]
|
109
|
-
A string representing the column name containing the sample weights.
|
110
|
-
This argument is only required when working with weighted datasets.
|
111
|
-
|
112
|
-
drop_input_cols: Optional[bool], default=False
|
113
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
114
131
|
"""
|
115
132
|
|
116
133
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -123,6 +140,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
123
140
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
124
141
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
125
142
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
143
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
126
144
|
drop_input_cols: Optional[bool] = False,
|
127
145
|
sample_weight_col: Optional[str] = None,
|
128
146
|
) -> None:
|
@@ -131,9 +149,10 @@ class OutputCodeClassifier(BaseTransformer):
|
|
131
149
|
self.set_input_cols(input_cols)
|
132
150
|
self.set_output_cols(output_cols)
|
133
151
|
self.set_label_cols(label_cols)
|
152
|
+
self.set_passthrough_cols(passthrough_cols)
|
134
153
|
self.set_drop_input_cols(drop_input_cols)
|
135
154
|
self.set_sample_weight_col(sample_weight_col)
|
136
|
-
deps = set(
|
155
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
137
156
|
deps = deps | gather_dependencies(estimator)
|
138
157
|
self._deps = list(deps)
|
139
158
|
estimator = transform_snowml_obj_to_sklearn_obj(estimator)
|
@@ -145,13 +164,14 @@ class OutputCodeClassifier(BaseTransformer):
|
|
145
164
|
args=init_args,
|
146
165
|
klass=sklearn.multiclass.OutputCodeClassifier
|
147
166
|
)
|
148
|
-
self._sklearn_object = sklearn.multiclass.OutputCodeClassifier(
|
167
|
+
self._sklearn_object: Any = sklearn.multiclass.OutputCodeClassifier(
|
149
168
|
**cleaned_up_init_args,
|
150
169
|
)
|
151
170
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
152
171
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
153
172
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
154
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OutputCodeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
173
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=OutputCodeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
174
|
+
self._autogenerated = True
|
155
175
|
|
156
176
|
def _get_rand_id(self) -> str:
|
157
177
|
"""
|
@@ -162,24 +182,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
162
182
|
"""
|
163
183
|
return str(uuid4()).replace("-", "_").upper()
|
164
184
|
|
165
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
166
|
-
"""
|
167
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
168
|
-
|
169
|
-
Args:
|
170
|
-
dataset: Input dataset.
|
171
|
-
"""
|
172
|
-
if not self.input_cols:
|
173
|
-
cols = [
|
174
|
-
c for c in dataset.columns
|
175
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
176
|
-
]
|
177
|
-
self.set_input_cols(input_cols=cols)
|
178
|
-
|
179
|
-
if not self.output_cols:
|
180
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
181
|
-
self.set_output_cols(output_cols=cols)
|
182
|
-
|
183
185
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "OutputCodeClassifier":
|
184
186
|
"""
|
185
187
|
Input columns setter.
|
@@ -225,54 +227,48 @@ class OutputCodeClassifier(BaseTransformer):
|
|
225
227
|
self
|
226
228
|
"""
|
227
229
|
self._infer_input_output_cols(dataset)
|
228
|
-
if isinstance(dataset,
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
self.
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
230
|
+
if isinstance(dataset, DataFrame):
|
231
|
+
session = dataset._session
|
232
|
+
assert session is not None # keep mypy happy
|
233
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
234
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
235
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
236
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
237
|
+
|
238
|
+
# Specify input columns so column pruning will be enforced
|
239
|
+
selected_cols = self._get_active_columns()
|
240
|
+
if len(selected_cols) > 0:
|
241
|
+
dataset = dataset.select(selected_cols)
|
242
|
+
|
243
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
|
+
|
245
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
246
|
+
if SNOWML_SPROC_ENV in os.environ:
|
247
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
248
|
+
project=_PROJECT,
|
249
|
+
subproject=_SUBPROJECT,
|
250
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OutputCodeClassifier.__class__.__name__),
|
251
|
+
api_calls=[Session.call],
|
252
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
253
|
+
)
|
254
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
255
|
+
pd_df.columns = dataset.columns
|
256
|
+
dataset = pd_df
|
257
|
+
|
258
|
+
model_trainer = ModelTrainerBuilder.build(
|
259
|
+
estimator=self._sklearn_object,
|
260
|
+
dataset=dataset,
|
261
|
+
input_cols=self.input_cols,
|
262
|
+
label_cols=self.label_cols,
|
263
|
+
sample_weight_col=self.sample_weight_col,
|
264
|
+
autogenerated=self._autogenerated,
|
265
|
+
subproject=_SUBPROJECT
|
266
|
+
)
|
267
|
+
self._sklearn_object = model_trainer.train()
|
244
268
|
self._is_fitted = True
|
245
269
|
self._get_model_signatures(dataset)
|
246
270
|
return self
|
247
271
|
|
248
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
249
|
-
session = dataset._session
|
250
|
-
assert session is not None # keep mypy happy
|
251
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
252
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
253
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
254
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
255
|
-
|
256
|
-
# Specify input columns so column pruning will be enforced
|
257
|
-
selected_cols = self._get_active_columns()
|
258
|
-
if len(selected_cols) > 0:
|
259
|
-
dataset = dataset.select(selected_cols)
|
260
|
-
|
261
|
-
estimator = self._sklearn_object
|
262
|
-
assert estimator is not None # Keep mypy happy
|
263
|
-
|
264
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
265
|
-
|
266
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
267
|
-
dataset,
|
268
|
-
session,
|
269
|
-
estimator,
|
270
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
271
|
-
self.input_cols,
|
272
|
-
self.label_cols,
|
273
|
-
self.sample_weight_col,
|
274
|
-
)
|
275
|
-
|
276
272
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
277
273
|
if self._drop_input_cols:
|
278
274
|
return []
|
@@ -460,11 +456,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
460
456
|
subproject=_SUBPROJECT,
|
461
457
|
custom_tags=dict([("autogen", True)]),
|
462
458
|
)
|
463
|
-
@telemetry.add_stmt_params_to_df(
|
464
|
-
project=_PROJECT,
|
465
|
-
subproject=_SUBPROJECT,
|
466
|
-
custom_tags=dict([("autogen", True)]),
|
467
|
-
)
|
468
459
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
469
460
|
"""Predict multi-class targets using underlying estimators
|
470
461
|
For more details on this function, see [sklearn.multiclass.OutputCodeClassifier.predict]
|
@@ -518,11 +509,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
518
509
|
subproject=_SUBPROJECT,
|
519
510
|
custom_tags=dict([("autogen", True)]),
|
520
511
|
)
|
521
|
-
@telemetry.add_stmt_params_to_df(
|
522
|
-
project=_PROJECT,
|
523
|
-
subproject=_SUBPROJECT,
|
524
|
-
custom_tags=dict([("autogen", True)]),
|
525
|
-
)
|
526
512
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
527
513
|
"""Method not supported for this class.
|
528
514
|
|
@@ -579,7 +565,8 @@ class OutputCodeClassifier(BaseTransformer):
|
|
579
565
|
if False:
|
580
566
|
self.fit(dataset)
|
581
567
|
assert self._sklearn_object is not None
|
582
|
-
|
568
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
569
|
+
return labels
|
583
570
|
else:
|
584
571
|
raise NotImplementedError
|
585
572
|
|
@@ -615,6 +602,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
615
602
|
output_cols = []
|
616
603
|
|
617
604
|
# Make sure column names are valid snowflake identifiers.
|
605
|
+
assert output_cols is not None # Make MyPy happy
|
618
606
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
619
607
|
|
620
608
|
return rv
|
@@ -625,11 +613,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
625
613
|
subproject=_SUBPROJECT,
|
626
614
|
custom_tags=dict([("autogen", True)]),
|
627
615
|
)
|
628
|
-
@telemetry.add_stmt_params_to_df(
|
629
|
-
project=_PROJECT,
|
630
|
-
subproject=_SUBPROJECT,
|
631
|
-
custom_tags=dict([("autogen", True)]),
|
632
|
-
)
|
633
616
|
def predict_proba(
|
634
617
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
635
618
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -670,11 +653,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
670
653
|
subproject=_SUBPROJECT,
|
671
654
|
custom_tags=dict([("autogen", True)]),
|
672
655
|
)
|
673
|
-
@telemetry.add_stmt_params_to_df(
|
674
|
-
project=_PROJECT,
|
675
|
-
subproject=_SUBPROJECT,
|
676
|
-
custom_tags=dict([("autogen", True)]),
|
677
|
-
)
|
678
656
|
def predict_log_proba(
|
679
657
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
680
658
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -711,16 +689,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
711
689
|
return output_df
|
712
690
|
|
713
691
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
714
|
-
@telemetry.send_api_usage_telemetry(
|
715
|
-
project=_PROJECT,
|
716
|
-
subproject=_SUBPROJECT,
|
717
|
-
custom_tags=dict([("autogen", True)]),
|
718
|
-
)
|
719
|
-
@telemetry.add_stmt_params_to_df(
|
720
|
-
project=_PROJECT,
|
721
|
-
subproject=_SUBPROJECT,
|
722
|
-
custom_tags=dict([("autogen", True)]),
|
723
|
-
)
|
724
692
|
def decision_function(
|
725
693
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
726
694
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -821,11 +789,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
821
789
|
subproject=_SUBPROJECT,
|
822
790
|
custom_tags=dict([("autogen", True)]),
|
823
791
|
)
|
824
|
-
@telemetry.add_stmt_params_to_df(
|
825
|
-
project=_PROJECT,
|
826
|
-
subproject=_SUBPROJECT,
|
827
|
-
custom_tags=dict([("autogen", True)]),
|
828
|
-
)
|
829
792
|
def kneighbors(
|
830
793
|
self,
|
831
794
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -885,18 +848,28 @@ class OutputCodeClassifier(BaseTransformer):
|
|
885
848
|
# For classifier, the type of predict is the same as the type of label
|
886
849
|
if self._sklearn_object._estimator_type == 'classifier':
|
887
850
|
# label columns is the desired type for output
|
888
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
851
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
889
852
|
# rename the output columns
|
890
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
853
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
891
854
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
892
855
|
([] if self._drop_input_cols else inputs)
|
893
856
|
+ outputs)
|
857
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
858
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
859
|
+
# Clusterer returns int64 cluster labels.
|
860
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
861
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
862
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
863
|
+
([] if self._drop_input_cols else inputs)
|
864
|
+
+ outputs)
|
865
|
+
|
894
866
|
# For regressor, the type of predict is float64
|
895
867
|
elif self._sklearn_object._estimator_type == 'regressor':
|
896
868
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
897
869
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
898
870
|
([] if self._drop_input_cols else inputs)
|
899
871
|
+ outputs)
|
872
|
+
|
900
873
|
for prob_func in PROB_FUNCTIONS:
|
901
874
|
if hasattr(self, prob_func):
|
902
875
|
output_cols_prefix: str = f"{prob_func}_"
|