snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class PoissonRegressor(BaseTransformer):
|
57
58
|
r"""Generalized Linear Model with a Poisson distribution
|
58
59
|
For more details on this class, see [sklearn.linear_model.PoissonRegressor]
|
@@ -60,6 +61,51 @@ class PoissonRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
alpha: float, default=1
|
64
110
|
Constant that multiplies the L2 penalty term and determines the
|
65
111
|
regularization strength. ``alpha = 0`` is equivalent to unpenalized
|
@@ -103,35 +149,6 @@ class PoissonRegressor(BaseTransformer):
|
|
103
149
|
verbose: int, default=0
|
104
150
|
For the lbfgs solver set verbose to any positive number for verbosity.
|
105
151
|
Values must be in the range `[0, inf)`.
|
106
|
-
|
107
|
-
input_cols: Optional[Union[str, List[str]]]
|
108
|
-
A string or list of strings representing column names that contain features.
|
109
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
110
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
111
|
-
considered input columns.
|
112
|
-
|
113
|
-
label_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain labels.
|
115
|
-
This is a required param for estimators, as there is no way to infer these
|
116
|
-
columns. If this parameter is not specified, then object is fitted without
|
117
|
-
labels (like a transformer).
|
118
|
-
|
119
|
-
output_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that will store the
|
121
|
-
output of predict and transform operations. The length of output_cols must
|
122
|
-
match the expected number of output columns from the specific estimator or
|
123
|
-
transformer class used.
|
124
|
-
If this parameter is not specified, output column names are derived by
|
125
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
126
|
-
column names work for estimator's predict() method, but output_cols must
|
127
|
-
be set explicitly for transformers.
|
128
|
-
|
129
|
-
sample_weight_col: Optional[str]
|
130
|
-
A string representing the column name containing the sample weights.
|
131
|
-
This argument is only required when working with weighted datasets.
|
132
|
-
|
133
|
-
drop_input_cols: Optional[bool], default=False
|
134
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
135
152
|
"""
|
136
153
|
|
137
154
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -147,6 +164,7 @@ class PoissonRegressor(BaseTransformer):
|
|
147
164
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
148
165
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
149
166
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
167
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
150
168
|
drop_input_cols: Optional[bool] = False,
|
151
169
|
sample_weight_col: Optional[str] = None,
|
152
170
|
) -> None:
|
@@ -155,9 +173,10 @@ class PoissonRegressor(BaseTransformer):
|
|
155
173
|
self.set_input_cols(input_cols)
|
156
174
|
self.set_output_cols(output_cols)
|
157
175
|
self.set_label_cols(label_cols)
|
176
|
+
self.set_passthrough_cols(passthrough_cols)
|
158
177
|
self.set_drop_input_cols(drop_input_cols)
|
159
178
|
self.set_sample_weight_col(sample_weight_col)
|
160
|
-
deps = set(
|
179
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
161
180
|
|
162
181
|
self._deps = list(deps)
|
163
182
|
|
@@ -172,13 +191,14 @@ class PoissonRegressor(BaseTransformer):
|
|
172
191
|
args=init_args,
|
173
192
|
klass=sklearn.linear_model.PoissonRegressor
|
174
193
|
)
|
175
|
-
self._sklearn_object = sklearn.linear_model.PoissonRegressor(
|
194
|
+
self._sklearn_object: Any = sklearn.linear_model.PoissonRegressor(
|
176
195
|
**cleaned_up_init_args,
|
177
196
|
)
|
178
197
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
179
198
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
180
199
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
181
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PoissonRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
200
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=PoissonRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
201
|
+
self._autogenerated = True
|
182
202
|
|
183
203
|
def _get_rand_id(self) -> str:
|
184
204
|
"""
|
@@ -189,24 +209,6 @@ class PoissonRegressor(BaseTransformer):
|
|
189
209
|
"""
|
190
210
|
return str(uuid4()).replace("-", "_").upper()
|
191
211
|
|
192
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
193
|
-
"""
|
194
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
195
|
-
|
196
|
-
Args:
|
197
|
-
dataset: Input dataset.
|
198
|
-
"""
|
199
|
-
if not self.input_cols:
|
200
|
-
cols = [
|
201
|
-
c for c in dataset.columns
|
202
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
203
|
-
]
|
204
|
-
self.set_input_cols(input_cols=cols)
|
205
|
-
|
206
|
-
if not self.output_cols:
|
207
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
208
|
-
self.set_output_cols(output_cols=cols)
|
209
|
-
|
210
212
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "PoissonRegressor":
|
211
213
|
"""
|
212
214
|
Input columns setter.
|
@@ -252,54 +254,48 @@ class PoissonRegressor(BaseTransformer):
|
|
252
254
|
self
|
253
255
|
"""
|
254
256
|
self._infer_input_output_cols(dataset)
|
255
|
-
if isinstance(dataset,
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
self.
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
257
|
+
if isinstance(dataset, DataFrame):
|
258
|
+
session = dataset._session
|
259
|
+
assert session is not None # keep mypy happy
|
260
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
261
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
262
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
263
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
264
|
+
|
265
|
+
# Specify input columns so column pruning will be enforced
|
266
|
+
selected_cols = self._get_active_columns()
|
267
|
+
if len(selected_cols) > 0:
|
268
|
+
dataset = dataset.select(selected_cols)
|
269
|
+
|
270
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
271
|
+
|
272
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
273
|
+
if SNOWML_SPROC_ENV in os.environ:
|
274
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
275
|
+
project=_PROJECT,
|
276
|
+
subproject=_SUBPROJECT,
|
277
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PoissonRegressor.__class__.__name__),
|
278
|
+
api_calls=[Session.call],
|
279
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
280
|
+
)
|
281
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
282
|
+
pd_df.columns = dataset.columns
|
283
|
+
dataset = pd_df
|
284
|
+
|
285
|
+
model_trainer = ModelTrainerBuilder.build(
|
286
|
+
estimator=self._sklearn_object,
|
287
|
+
dataset=dataset,
|
288
|
+
input_cols=self.input_cols,
|
289
|
+
label_cols=self.label_cols,
|
290
|
+
sample_weight_col=self.sample_weight_col,
|
291
|
+
autogenerated=self._autogenerated,
|
292
|
+
subproject=_SUBPROJECT
|
293
|
+
)
|
294
|
+
self._sklearn_object = model_trainer.train()
|
271
295
|
self._is_fitted = True
|
272
296
|
self._get_model_signatures(dataset)
|
273
297
|
return self
|
274
298
|
|
275
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
276
|
-
session = dataset._session
|
277
|
-
assert session is not None # keep mypy happy
|
278
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
279
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
280
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
281
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
282
|
-
|
283
|
-
# Specify input columns so column pruning will be enforced
|
284
|
-
selected_cols = self._get_active_columns()
|
285
|
-
if len(selected_cols) > 0:
|
286
|
-
dataset = dataset.select(selected_cols)
|
287
|
-
|
288
|
-
estimator = self._sklearn_object
|
289
|
-
assert estimator is not None # Keep mypy happy
|
290
|
-
|
291
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
292
|
-
|
293
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
294
|
-
dataset,
|
295
|
-
session,
|
296
|
-
estimator,
|
297
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
298
|
-
self.input_cols,
|
299
|
-
self.label_cols,
|
300
|
-
self.sample_weight_col,
|
301
|
-
)
|
302
|
-
|
303
299
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
304
300
|
if self._drop_input_cols:
|
305
301
|
return []
|
@@ -487,11 +483,6 @@ class PoissonRegressor(BaseTransformer):
|
|
487
483
|
subproject=_SUBPROJECT,
|
488
484
|
custom_tags=dict([("autogen", True)]),
|
489
485
|
)
|
490
|
-
@telemetry.add_stmt_params_to_df(
|
491
|
-
project=_PROJECT,
|
492
|
-
subproject=_SUBPROJECT,
|
493
|
-
custom_tags=dict([("autogen", True)]),
|
494
|
-
)
|
495
486
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
496
487
|
"""Predict using GLM with feature matrix X
|
497
488
|
For more details on this function, see [sklearn.linear_model.PoissonRegressor.predict]
|
@@ -545,11 +536,6 @@ class PoissonRegressor(BaseTransformer):
|
|
545
536
|
subproject=_SUBPROJECT,
|
546
537
|
custom_tags=dict([("autogen", True)]),
|
547
538
|
)
|
548
|
-
@telemetry.add_stmt_params_to_df(
|
549
|
-
project=_PROJECT,
|
550
|
-
subproject=_SUBPROJECT,
|
551
|
-
custom_tags=dict([("autogen", True)]),
|
552
|
-
)
|
553
539
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
554
540
|
"""Method not supported for this class.
|
555
541
|
|
@@ -606,7 +592,8 @@ class PoissonRegressor(BaseTransformer):
|
|
606
592
|
if False:
|
607
593
|
self.fit(dataset)
|
608
594
|
assert self._sklearn_object is not None
|
609
|
-
|
595
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
596
|
+
return labels
|
610
597
|
else:
|
611
598
|
raise NotImplementedError
|
612
599
|
|
@@ -642,6 +629,7 @@ class PoissonRegressor(BaseTransformer):
|
|
642
629
|
output_cols = []
|
643
630
|
|
644
631
|
# Make sure column names are valid snowflake identifiers.
|
632
|
+
assert output_cols is not None # Make MyPy happy
|
645
633
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
646
634
|
|
647
635
|
return rv
|
@@ -652,11 +640,6 @@ class PoissonRegressor(BaseTransformer):
|
|
652
640
|
subproject=_SUBPROJECT,
|
653
641
|
custom_tags=dict([("autogen", True)]),
|
654
642
|
)
|
655
|
-
@telemetry.add_stmt_params_to_df(
|
656
|
-
project=_PROJECT,
|
657
|
-
subproject=_SUBPROJECT,
|
658
|
-
custom_tags=dict([("autogen", True)]),
|
659
|
-
)
|
660
643
|
def predict_proba(
|
661
644
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
662
645
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -697,11 +680,6 @@ class PoissonRegressor(BaseTransformer):
|
|
697
680
|
subproject=_SUBPROJECT,
|
698
681
|
custom_tags=dict([("autogen", True)]),
|
699
682
|
)
|
700
|
-
@telemetry.add_stmt_params_to_df(
|
701
|
-
project=_PROJECT,
|
702
|
-
subproject=_SUBPROJECT,
|
703
|
-
custom_tags=dict([("autogen", True)]),
|
704
|
-
)
|
705
683
|
def predict_log_proba(
|
706
684
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
707
685
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -738,16 +716,6 @@ class PoissonRegressor(BaseTransformer):
|
|
738
716
|
return output_df
|
739
717
|
|
740
718
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
741
|
-
@telemetry.send_api_usage_telemetry(
|
742
|
-
project=_PROJECT,
|
743
|
-
subproject=_SUBPROJECT,
|
744
|
-
custom_tags=dict([("autogen", True)]),
|
745
|
-
)
|
746
|
-
@telemetry.add_stmt_params_to_df(
|
747
|
-
project=_PROJECT,
|
748
|
-
subproject=_SUBPROJECT,
|
749
|
-
custom_tags=dict([("autogen", True)]),
|
750
|
-
)
|
751
719
|
def decision_function(
|
752
720
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
753
721
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -848,11 +816,6 @@ class PoissonRegressor(BaseTransformer):
|
|
848
816
|
subproject=_SUBPROJECT,
|
849
817
|
custom_tags=dict([("autogen", True)]),
|
850
818
|
)
|
851
|
-
@telemetry.add_stmt_params_to_df(
|
852
|
-
project=_PROJECT,
|
853
|
-
subproject=_SUBPROJECT,
|
854
|
-
custom_tags=dict([("autogen", True)]),
|
855
|
-
)
|
856
819
|
def kneighbors(
|
857
820
|
self,
|
858
821
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -912,18 +875,28 @@ class PoissonRegressor(BaseTransformer):
|
|
912
875
|
# For classifier, the type of predict is the same as the type of label
|
913
876
|
if self._sklearn_object._estimator_type == 'classifier':
|
914
877
|
# label columns is the desired type for output
|
915
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
878
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
916
879
|
# rename the output columns
|
917
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
880
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
918
881
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
919
882
|
([] if self._drop_input_cols else inputs)
|
920
883
|
+ outputs)
|
884
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
885
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
886
|
+
# Clusterer returns int64 cluster labels.
|
887
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
888
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
889
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
890
|
+
([] if self._drop_input_cols else inputs)
|
891
|
+
+ outputs)
|
892
|
+
|
921
893
|
# For regressor, the type of predict is float64
|
922
894
|
elif self._sklearn_object._estimator_type == 'regressor':
|
923
895
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
924
896
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
925
897
|
([] if self._drop_input_cols else inputs)
|
926
898
|
+ outputs)
|
899
|
+
|
927
900
|
for prob_func in PROB_FUNCTIONS:
|
928
901
|
if hasattr(self, prob_func):
|
929
902
|
output_cols_prefix: str = f"{prob_func}_"
|