snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class StackingRegressor(BaseTransformer):
|
57
58
|
r"""Stack of estimators with a final regressor
|
58
59
|
For more details on this class, see [sklearn.ensemble.StackingRegressor]
|
@@ -60,6 +61,51 @@ class StackingRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimators: list of (str, estimator)
|
64
110
|
Base estimators which will be stacked together. Each element of the
|
65
111
|
list is defined as a tuple of string (i.e. name) and an estimator
|
@@ -109,35 +155,6 @@ class StackingRegressor(BaseTransformer):
|
|
109
155
|
|
110
156
|
verbose: int, default=0
|
111
157
|
Verbosity level.
|
112
|
-
|
113
|
-
input_cols: Optional[Union[str, List[str]]]
|
114
|
-
A string or list of strings representing column names that contain features.
|
115
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
116
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
117
|
-
considered input columns.
|
118
|
-
|
119
|
-
label_cols: Optional[Union[str, List[str]]]
|
120
|
-
A string or list of strings representing column names that contain labels.
|
121
|
-
This is a required param for estimators, as there is no way to infer these
|
122
|
-
columns. If this parameter is not specified, then object is fitted without
|
123
|
-
labels (like a transformer).
|
124
|
-
|
125
|
-
output_cols: Optional[Union[str, List[str]]]
|
126
|
-
A string or list of strings representing column names that will store the
|
127
|
-
output of predict and transform operations. The length of output_cols must
|
128
|
-
match the expected number of output columns from the specific estimator or
|
129
|
-
transformer class used.
|
130
|
-
If this parameter is not specified, output column names are derived by
|
131
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
132
|
-
column names work for estimator's predict() method, but output_cols must
|
133
|
-
be set explicitly for transformers.
|
134
|
-
|
135
|
-
sample_weight_col: Optional[str]
|
136
|
-
A string representing the column name containing the sample weights.
|
137
|
-
This argument is only required when working with weighted datasets.
|
138
|
-
|
139
|
-
drop_input_cols: Optional[bool], default=False
|
140
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
141
158
|
"""
|
142
159
|
|
143
160
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -152,6 +169,7 @@ class StackingRegressor(BaseTransformer):
|
|
152
169
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
153
170
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
154
171
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
172
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
155
173
|
drop_input_cols: Optional[bool] = False,
|
156
174
|
sample_weight_col: Optional[str] = None,
|
157
175
|
) -> None:
|
@@ -160,9 +178,10 @@ class StackingRegressor(BaseTransformer):
|
|
160
178
|
self.set_input_cols(input_cols)
|
161
179
|
self.set_output_cols(output_cols)
|
162
180
|
self.set_label_cols(label_cols)
|
181
|
+
self.set_passthrough_cols(passthrough_cols)
|
163
182
|
self.set_drop_input_cols(drop_input_cols)
|
164
183
|
self.set_sample_weight_col(sample_weight_col)
|
165
|
-
deps = set(
|
184
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
166
185
|
deps = deps | gather_dependencies(estimators)
|
167
186
|
deps = deps | gather_dependencies(final_estimator)
|
168
187
|
self._deps = list(deps)
|
@@ -178,13 +197,14 @@ class StackingRegressor(BaseTransformer):
|
|
178
197
|
args=init_args,
|
179
198
|
klass=sklearn.ensemble.StackingRegressor
|
180
199
|
)
|
181
|
-
self._sklearn_object = sklearn.ensemble.StackingRegressor(
|
200
|
+
self._sklearn_object: Any = sklearn.ensemble.StackingRegressor(
|
182
201
|
**cleaned_up_init_args,
|
183
202
|
)
|
184
203
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
185
204
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
186
205
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
187
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
206
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
207
|
+
self._autogenerated = True
|
188
208
|
|
189
209
|
def _get_rand_id(self) -> str:
|
190
210
|
"""
|
@@ -195,24 +215,6 @@ class StackingRegressor(BaseTransformer):
|
|
195
215
|
"""
|
196
216
|
return str(uuid4()).replace("-", "_").upper()
|
197
217
|
|
198
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
199
|
-
"""
|
200
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
201
|
-
|
202
|
-
Args:
|
203
|
-
dataset: Input dataset.
|
204
|
-
"""
|
205
|
-
if not self.input_cols:
|
206
|
-
cols = [
|
207
|
-
c for c in dataset.columns
|
208
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
209
|
-
]
|
210
|
-
self.set_input_cols(input_cols=cols)
|
211
|
-
|
212
|
-
if not self.output_cols:
|
213
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
214
|
-
self.set_output_cols(output_cols=cols)
|
215
|
-
|
216
218
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "StackingRegressor":
|
217
219
|
"""
|
218
220
|
Input columns setter.
|
@@ -258,54 +260,48 @@ class StackingRegressor(BaseTransformer):
|
|
258
260
|
self
|
259
261
|
"""
|
260
262
|
self._infer_input_output_cols(dataset)
|
261
|
-
if isinstance(dataset,
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
self.
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
263
|
+
if isinstance(dataset, DataFrame):
|
264
|
+
session = dataset._session
|
265
|
+
assert session is not None # keep mypy happy
|
266
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
267
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
268
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
269
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
270
|
+
|
271
|
+
# Specify input columns so column pruning will be enforced
|
272
|
+
selected_cols = self._get_active_columns()
|
273
|
+
if len(selected_cols) > 0:
|
274
|
+
dataset = dataset.select(selected_cols)
|
275
|
+
|
276
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
277
|
+
|
278
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
279
|
+
if SNOWML_SPROC_ENV in os.environ:
|
280
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
281
|
+
project=_PROJECT,
|
282
|
+
subproject=_SUBPROJECT,
|
283
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), StackingRegressor.__class__.__name__),
|
284
|
+
api_calls=[Session.call],
|
285
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
286
|
+
)
|
287
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
288
|
+
pd_df.columns = dataset.columns
|
289
|
+
dataset = pd_df
|
290
|
+
|
291
|
+
model_trainer = ModelTrainerBuilder.build(
|
292
|
+
estimator=self._sklearn_object,
|
293
|
+
dataset=dataset,
|
294
|
+
input_cols=self.input_cols,
|
295
|
+
label_cols=self.label_cols,
|
296
|
+
sample_weight_col=self.sample_weight_col,
|
297
|
+
autogenerated=self._autogenerated,
|
298
|
+
subproject=_SUBPROJECT
|
299
|
+
)
|
300
|
+
self._sklearn_object = model_trainer.train()
|
277
301
|
self._is_fitted = True
|
278
302
|
self._get_model_signatures(dataset)
|
279
303
|
return self
|
280
304
|
|
281
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
282
|
-
session = dataset._session
|
283
|
-
assert session is not None # keep mypy happy
|
284
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
285
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
286
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
287
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
288
|
-
|
289
|
-
# Specify input columns so column pruning will be enforced
|
290
|
-
selected_cols = self._get_active_columns()
|
291
|
-
if len(selected_cols) > 0:
|
292
|
-
dataset = dataset.select(selected_cols)
|
293
|
-
|
294
|
-
estimator = self._sklearn_object
|
295
|
-
assert estimator is not None # Keep mypy happy
|
296
|
-
|
297
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
298
|
-
|
299
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
300
|
-
dataset,
|
301
|
-
session,
|
302
|
-
estimator,
|
303
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
304
|
-
self.input_cols,
|
305
|
-
self.label_cols,
|
306
|
-
self.sample_weight_col,
|
307
|
-
)
|
308
|
-
|
309
305
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
310
306
|
if self._drop_input_cols:
|
311
307
|
return []
|
@@ -493,11 +489,6 @@ class StackingRegressor(BaseTransformer):
|
|
493
489
|
subproject=_SUBPROJECT,
|
494
490
|
custom_tags=dict([("autogen", True)]),
|
495
491
|
)
|
496
|
-
@telemetry.add_stmt_params_to_df(
|
497
|
-
project=_PROJECT,
|
498
|
-
subproject=_SUBPROJECT,
|
499
|
-
custom_tags=dict([("autogen", True)]),
|
500
|
-
)
|
501
492
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
502
493
|
"""Predict target for X
|
503
494
|
For more details on this function, see [sklearn.ensemble.StackingRegressor.predict]
|
@@ -551,11 +542,6 @@ class StackingRegressor(BaseTransformer):
|
|
551
542
|
subproject=_SUBPROJECT,
|
552
543
|
custom_tags=dict([("autogen", True)]),
|
553
544
|
)
|
554
|
-
@telemetry.add_stmt_params_to_df(
|
555
|
-
project=_PROJECT,
|
556
|
-
subproject=_SUBPROJECT,
|
557
|
-
custom_tags=dict([("autogen", True)]),
|
558
|
-
)
|
559
545
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
560
546
|
"""Return the predictions for X for each estimator
|
561
547
|
For more details on this function, see [sklearn.ensemble.StackingRegressor.transform]
|
@@ -614,7 +600,8 @@ class StackingRegressor(BaseTransformer):
|
|
614
600
|
if False:
|
615
601
|
self.fit(dataset)
|
616
602
|
assert self._sklearn_object is not None
|
617
|
-
|
603
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
604
|
+
return labels
|
618
605
|
else:
|
619
606
|
raise NotImplementedError
|
620
607
|
|
@@ -650,6 +637,7 @@ class StackingRegressor(BaseTransformer):
|
|
650
637
|
output_cols = []
|
651
638
|
|
652
639
|
# Make sure column names are valid snowflake identifiers.
|
640
|
+
assert output_cols is not None # Make MyPy happy
|
653
641
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
654
642
|
|
655
643
|
return rv
|
@@ -660,11 +648,6 @@ class StackingRegressor(BaseTransformer):
|
|
660
648
|
subproject=_SUBPROJECT,
|
661
649
|
custom_tags=dict([("autogen", True)]),
|
662
650
|
)
|
663
|
-
@telemetry.add_stmt_params_to_df(
|
664
|
-
project=_PROJECT,
|
665
|
-
subproject=_SUBPROJECT,
|
666
|
-
custom_tags=dict([("autogen", True)]),
|
667
|
-
)
|
668
651
|
def predict_proba(
|
669
652
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
670
653
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -705,11 +688,6 @@ class StackingRegressor(BaseTransformer):
|
|
705
688
|
subproject=_SUBPROJECT,
|
706
689
|
custom_tags=dict([("autogen", True)]),
|
707
690
|
)
|
708
|
-
@telemetry.add_stmt_params_to_df(
|
709
|
-
project=_PROJECT,
|
710
|
-
subproject=_SUBPROJECT,
|
711
|
-
custom_tags=dict([("autogen", True)]),
|
712
|
-
)
|
713
691
|
def predict_log_proba(
|
714
692
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
715
693
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -746,16 +724,6 @@ class StackingRegressor(BaseTransformer):
|
|
746
724
|
return output_df
|
747
725
|
|
748
726
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
749
|
-
@telemetry.send_api_usage_telemetry(
|
750
|
-
project=_PROJECT,
|
751
|
-
subproject=_SUBPROJECT,
|
752
|
-
custom_tags=dict([("autogen", True)]),
|
753
|
-
)
|
754
|
-
@telemetry.add_stmt_params_to_df(
|
755
|
-
project=_PROJECT,
|
756
|
-
subproject=_SUBPROJECT,
|
757
|
-
custom_tags=dict([("autogen", True)]),
|
758
|
-
)
|
759
727
|
def decision_function(
|
760
728
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
761
729
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -856,11 +824,6 @@ class StackingRegressor(BaseTransformer):
|
|
856
824
|
subproject=_SUBPROJECT,
|
857
825
|
custom_tags=dict([("autogen", True)]),
|
858
826
|
)
|
859
|
-
@telemetry.add_stmt_params_to_df(
|
860
|
-
project=_PROJECT,
|
861
|
-
subproject=_SUBPROJECT,
|
862
|
-
custom_tags=dict([("autogen", True)]),
|
863
|
-
)
|
864
827
|
def kneighbors(
|
865
828
|
self,
|
866
829
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -920,18 +883,28 @@ class StackingRegressor(BaseTransformer):
|
|
920
883
|
# For classifier, the type of predict is the same as the type of label
|
921
884
|
if self._sklearn_object._estimator_type == 'classifier':
|
922
885
|
# label columns is the desired type for output
|
923
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
886
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
924
887
|
# rename the output columns
|
925
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
888
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
926
889
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
927
890
|
([] if self._drop_input_cols else inputs)
|
928
891
|
+ outputs)
|
892
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
893
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
894
|
+
# Clusterer returns int64 cluster labels.
|
895
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
896
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
897
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
898
|
+
([] if self._drop_input_cols else inputs)
|
899
|
+
+ outputs)
|
900
|
+
|
929
901
|
# For regressor, the type of predict is float64
|
930
902
|
elif self._sklearn_object._estimator_type == 'regressor':
|
931
903
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
932
904
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
933
905
|
([] if self._drop_input_cols else inputs)
|
934
906
|
+ outputs)
|
907
|
+
|
935
908
|
for prob_func in PROB_FUNCTIONS:
|
936
909
|
if hasattr(self, prob_func):
|
937
910
|
output_cols_prefix: str = f"{prob_func}_"
|