snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class StackingRegressor(BaseTransformer):
57
58
  r"""Stack of estimators with a final regressor
58
59
  For more details on this class, see [sklearn.ensemble.StackingRegressor]
@@ -60,6 +61,51 @@ class StackingRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimators: list of (str, estimator)
64
110
  Base estimators which will be stacked together. Each element of the
65
111
  list is defined as a tuple of string (i.e. name) and an estimator
@@ -109,35 +155,6 @@ class StackingRegressor(BaseTransformer):
109
155
 
110
156
  verbose: int, default=0
111
157
  Verbosity level.
112
-
113
- input_cols: Optional[Union[str, List[str]]]
114
- A string or list of strings representing column names that contain features.
115
- If this parameter is not specified, all columns in the input DataFrame except
116
- the columns specified by label_cols and sample_weight_col parameters are
117
- considered input columns.
118
-
119
- label_cols: Optional[Union[str, List[str]]]
120
- A string or list of strings representing column names that contain labels.
121
- This is a required param for estimators, as there is no way to infer these
122
- columns. If this parameter is not specified, then object is fitted without
123
- labels (like a transformer).
124
-
125
- output_cols: Optional[Union[str, List[str]]]
126
- A string or list of strings representing column names that will store the
127
- output of predict and transform operations. The length of output_cols must
128
- match the expected number of output columns from the specific estimator or
129
- transformer class used.
130
- If this parameter is not specified, output column names are derived by
131
- adding an OUTPUT_ prefix to the label column names. These inferred output
132
- column names work for estimator's predict() method, but output_cols must
133
- be set explicitly for transformers.
134
-
135
- sample_weight_col: Optional[str]
136
- A string representing the column name containing the sample weights.
137
- This argument is only required when working with weighted datasets.
138
-
139
- drop_input_cols: Optional[bool], default=False
140
- If set, the response of predict(), transform() methods will not contain input columns.
141
158
  """
142
159
 
143
160
  def __init__( # type: ignore[no-untyped-def]
@@ -152,6 +169,7 @@ class StackingRegressor(BaseTransformer):
152
169
  input_cols: Optional[Union[str, Iterable[str]]] = None,
153
170
  output_cols: Optional[Union[str, Iterable[str]]] = None,
154
171
  label_cols: Optional[Union[str, Iterable[str]]] = None,
172
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
155
173
  drop_input_cols: Optional[bool] = False,
156
174
  sample_weight_col: Optional[str] = None,
157
175
  ) -> None:
@@ -160,9 +178,10 @@ class StackingRegressor(BaseTransformer):
160
178
  self.set_input_cols(input_cols)
161
179
  self.set_output_cols(output_cols)
162
180
  self.set_label_cols(label_cols)
181
+ self.set_passthrough_cols(passthrough_cols)
163
182
  self.set_drop_input_cols(drop_input_cols)
164
183
  self.set_sample_weight_col(sample_weight_col)
165
- deps = set(SklearnWrapperProvider().dependencies)
184
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
166
185
  deps = deps | gather_dependencies(estimators)
167
186
  deps = deps | gather_dependencies(final_estimator)
168
187
  self._deps = list(deps)
@@ -178,13 +197,14 @@ class StackingRegressor(BaseTransformer):
178
197
  args=init_args,
179
198
  klass=sklearn.ensemble.StackingRegressor
180
199
  )
181
- self._sklearn_object = sklearn.ensemble.StackingRegressor(
200
+ self._sklearn_object: Any = sklearn.ensemble.StackingRegressor(
182
201
  **cleaned_up_init_args,
183
202
  )
184
203
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
185
204
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
186
205
  self._snowpark_cols: Optional[List[str]] = self.input_cols
187
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
206
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
207
+ self._autogenerated = True
188
208
 
189
209
  def _get_rand_id(self) -> str:
190
210
  """
@@ -195,24 +215,6 @@ class StackingRegressor(BaseTransformer):
195
215
  """
196
216
  return str(uuid4()).replace("-", "_").upper()
197
217
 
198
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
199
- """
200
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
201
-
202
- Args:
203
- dataset: Input dataset.
204
- """
205
- if not self.input_cols:
206
- cols = [
207
- c for c in dataset.columns
208
- if c not in self.get_label_cols() and c != self.sample_weight_col
209
- ]
210
- self.set_input_cols(input_cols=cols)
211
-
212
- if not self.output_cols:
213
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
214
- self.set_output_cols(output_cols=cols)
215
-
216
218
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "StackingRegressor":
217
219
  """
218
220
  Input columns setter.
@@ -258,54 +260,48 @@ class StackingRegressor(BaseTransformer):
258
260
  self
259
261
  """
260
262
  self._infer_input_output_cols(dataset)
261
- if isinstance(dataset, pd.DataFrame):
262
- assert self._sklearn_object is not None # keep mypy happy
263
- self._sklearn_object = self._handlers.fit_pandas(
264
- dataset,
265
- self._sklearn_object,
266
- self.input_cols,
267
- self.label_cols,
268
- self.sample_weight_col
269
- )
270
- elif isinstance(dataset, DataFrame):
271
- self._fit_snowpark(dataset)
272
- else:
273
- raise TypeError(
274
- f"Unexpected dataset type: {type(dataset)}."
275
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
276
- )
263
+ if isinstance(dataset, DataFrame):
264
+ session = dataset._session
265
+ assert session is not None # keep mypy happy
266
+ # Validate that key package version in user workspace are supported in snowflake conda channel
267
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
268
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
269
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
270
+
271
+ # Specify input columns so column pruning will be enforced
272
+ selected_cols = self._get_active_columns()
273
+ if len(selected_cols) > 0:
274
+ dataset = dataset.select(selected_cols)
275
+
276
+ self._snowpark_cols = dataset.select(self.input_cols).columns
277
+
278
+ # If we are already in a stored procedure, no need to kick off another one.
279
+ if SNOWML_SPROC_ENV in os.environ:
280
+ statement_params = telemetry.get_function_usage_statement_params(
281
+ project=_PROJECT,
282
+ subproject=_SUBPROJECT,
283
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), StackingRegressor.__class__.__name__),
284
+ api_calls=[Session.call],
285
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
286
+ )
287
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
288
+ pd_df.columns = dataset.columns
289
+ dataset = pd_df
290
+
291
+ model_trainer = ModelTrainerBuilder.build(
292
+ estimator=self._sklearn_object,
293
+ dataset=dataset,
294
+ input_cols=self.input_cols,
295
+ label_cols=self.label_cols,
296
+ sample_weight_col=self.sample_weight_col,
297
+ autogenerated=self._autogenerated,
298
+ subproject=_SUBPROJECT
299
+ )
300
+ self._sklearn_object = model_trainer.train()
277
301
  self._is_fitted = True
278
302
  self._get_model_signatures(dataset)
279
303
  return self
280
304
 
281
- def _fit_snowpark(self, dataset: DataFrame) -> None:
282
- session = dataset._session
283
- assert session is not None # keep mypy happy
284
- # Validate that key package version in user workspace are supported in snowflake conda channel
285
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
286
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
287
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
288
-
289
- # Specify input columns so column pruning will be enforced
290
- selected_cols = self._get_active_columns()
291
- if len(selected_cols) > 0:
292
- dataset = dataset.select(selected_cols)
293
-
294
- estimator = self._sklearn_object
295
- assert estimator is not None # Keep mypy happy
296
-
297
- self._snowpark_cols = dataset.select(self.input_cols).columns
298
-
299
- self._sklearn_object = self._handlers.fit_snowpark(
300
- dataset,
301
- session,
302
- estimator,
303
- ["snowflake-snowpark-python"] + self._get_dependencies(),
304
- self.input_cols,
305
- self.label_cols,
306
- self.sample_weight_col,
307
- )
308
-
309
305
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
310
306
  if self._drop_input_cols:
311
307
  return []
@@ -493,11 +489,6 @@ class StackingRegressor(BaseTransformer):
493
489
  subproject=_SUBPROJECT,
494
490
  custom_tags=dict([("autogen", True)]),
495
491
  )
496
- @telemetry.add_stmt_params_to_df(
497
- project=_PROJECT,
498
- subproject=_SUBPROJECT,
499
- custom_tags=dict([("autogen", True)]),
500
- )
501
492
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
502
493
  """Predict target for X
503
494
  For more details on this function, see [sklearn.ensemble.StackingRegressor.predict]
@@ -551,11 +542,6 @@ class StackingRegressor(BaseTransformer):
551
542
  subproject=_SUBPROJECT,
552
543
  custom_tags=dict([("autogen", True)]),
553
544
  )
554
- @telemetry.add_stmt_params_to_df(
555
- project=_PROJECT,
556
- subproject=_SUBPROJECT,
557
- custom_tags=dict([("autogen", True)]),
558
- )
559
545
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
560
546
  """Return the predictions for X for each estimator
561
547
  For more details on this function, see [sklearn.ensemble.StackingRegressor.transform]
@@ -614,7 +600,8 @@ class StackingRegressor(BaseTransformer):
614
600
  if False:
615
601
  self.fit(dataset)
616
602
  assert self._sklearn_object is not None
617
- return self._sklearn_object.labels_
603
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
604
+ return labels
618
605
  else:
619
606
  raise NotImplementedError
620
607
 
@@ -650,6 +637,7 @@ class StackingRegressor(BaseTransformer):
650
637
  output_cols = []
651
638
 
652
639
  # Make sure column names are valid snowflake identifiers.
640
+ assert output_cols is not None # Make MyPy happy
653
641
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
654
642
 
655
643
  return rv
@@ -660,11 +648,6 @@ class StackingRegressor(BaseTransformer):
660
648
  subproject=_SUBPROJECT,
661
649
  custom_tags=dict([("autogen", True)]),
662
650
  )
663
- @telemetry.add_stmt_params_to_df(
664
- project=_PROJECT,
665
- subproject=_SUBPROJECT,
666
- custom_tags=dict([("autogen", True)]),
667
- )
668
651
  def predict_proba(
669
652
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
670
653
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -705,11 +688,6 @@ class StackingRegressor(BaseTransformer):
705
688
  subproject=_SUBPROJECT,
706
689
  custom_tags=dict([("autogen", True)]),
707
690
  )
708
- @telemetry.add_stmt_params_to_df(
709
- project=_PROJECT,
710
- subproject=_SUBPROJECT,
711
- custom_tags=dict([("autogen", True)]),
712
- )
713
691
  def predict_log_proba(
714
692
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
715
693
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -746,16 +724,6 @@ class StackingRegressor(BaseTransformer):
746
724
  return output_df
747
725
 
748
726
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
749
- @telemetry.send_api_usage_telemetry(
750
- project=_PROJECT,
751
- subproject=_SUBPROJECT,
752
- custom_tags=dict([("autogen", True)]),
753
- )
754
- @telemetry.add_stmt_params_to_df(
755
- project=_PROJECT,
756
- subproject=_SUBPROJECT,
757
- custom_tags=dict([("autogen", True)]),
758
- )
759
727
  def decision_function(
760
728
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
761
729
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -856,11 +824,6 @@ class StackingRegressor(BaseTransformer):
856
824
  subproject=_SUBPROJECT,
857
825
  custom_tags=dict([("autogen", True)]),
858
826
  )
859
- @telemetry.add_stmt_params_to_df(
860
- project=_PROJECT,
861
- subproject=_SUBPROJECT,
862
- custom_tags=dict([("autogen", True)]),
863
- )
864
827
  def kneighbors(
865
828
  self,
866
829
  dataset: Union[DataFrame, pd.DataFrame],
@@ -920,18 +883,28 @@ class StackingRegressor(BaseTransformer):
920
883
  # For classifier, the type of predict is the same as the type of label
921
884
  if self._sklearn_object._estimator_type == 'classifier':
922
885
  # label columns is the desired type for output
923
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
886
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
924
887
  # rename the output columns
925
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
888
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
926
889
  self._model_signature_dict["predict"] = ModelSignature(inputs,
927
890
  ([] if self._drop_input_cols else inputs)
928
891
  + outputs)
892
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
893
+ # For outlier models, returns -1 for outliers and 1 for inliers.
894
+ # Clusterer returns int64 cluster labels.
895
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
896
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
897
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
898
+ ([] if self._drop_input_cols else inputs)
899
+ + outputs)
900
+
929
901
  # For regressor, the type of predict is float64
930
902
  elif self._sklearn_object._estimator_type == 'regressor':
931
903
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
932
904
  self._model_signature_dict["predict"] = ModelSignature(inputs,
933
905
  ([] if self._drop_input_cols else inputs)
934
906
  + outputs)
907
+
935
908
  for prob_func in PROB_FUNCTIONS:
936
909
  if hasattr(self, prob_func):
937
910
  output_cols_prefix: str = f"{prob_func}_"