snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ShrunkCovariance(BaseTransformer):
57
58
  r"""Covariance estimator with shrinkage
58
59
  For more details on this class, see [sklearn.covariance.ShrunkCovariance]
@@ -60,47 +61,61 @@ class ShrunkCovariance(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- store_precision: bool, default=True
64
- Specify if the estimated precision is stored.
65
-
66
- assume_centered: bool, default=False
67
- If True, data will not be centered before computation.
68
- Useful when working with data whose mean is almost, but not exactly
69
- zero.
70
- If False, data will be centered before computation.
71
-
72
- shrinkage: float, default=0.1
73
- Coefficient in the convex combination used for the computation
74
- of the shrunk estimate. Range is [0, 1].
75
64
 
76
65
  input_cols: Optional[Union[str, List[str]]]
77
66
  A string or list of strings representing column names that contain features.
78
67
  If this parameter is not specified, all columns in the input DataFrame except
79
- the columns specified by label_cols and sample_weight_col parameters are
80
- considered input columns.
81
-
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
82
72
  label_cols: Optional[Union[str, List[str]]]
83
- A string or list of strings representing column names that contain labels.
84
- This is a required param for estimators, as there is no way to infer these
85
- columns. If this parameter is not specified, then object is fitted without
86
- labels (like a transformer).
87
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
88
75
  output_cols: Optional[Union[str, List[str]]]
89
76
  A string or list of strings representing column names that will store the
90
77
  output of predict and transform operations. The length of output_cols must
91
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
92
79
  transformer class used.
93
- If this parameter is not specified, output column names are derived by
94
- adding an OUTPUT_ prefix to the label column names. These inferred output
95
- column names work for estimator's predict() method, but output_cols must
96
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
97
89
 
98
90
  sample_weight_col: Optional[str]
99
91
  A string representing the column name containing the sample weights.
100
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
95
+
96
+ passthrough_cols: Optional[Union[str, List[str]]]
97
+ A string or a list of strings indicating column names to be excluded from any
98
+ operations (such as train, transform, or inference). These specified column(s)
99
+ will remain untouched throughout the process. This option is helpful in scenarios
100
+ requiring automatic input_cols inference, but need to avoid using specific
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
101
103
 
102
104
  drop_input_cols: Optional[bool], default=False
103
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ store_precision: bool, default=True
108
+ Specify if the estimated precision is stored.
109
+
110
+ assume_centered: bool, default=False
111
+ If True, data will not be centered before computation.
112
+ Useful when working with data whose mean is almost, but not exactly
113
+ zero.
114
+ If False, data will be centered before computation.
115
+
116
+ shrinkage: float, default=0.1
117
+ Coefficient in the convex combination used for the computation
118
+ of the shrunk estimate. Range is [0, 1].
104
119
  """
105
120
 
106
121
  def __init__( # type: ignore[no-untyped-def]
@@ -112,6 +127,7 @@ class ShrunkCovariance(BaseTransformer):
112
127
  input_cols: Optional[Union[str, Iterable[str]]] = None,
113
128
  output_cols: Optional[Union[str, Iterable[str]]] = None,
114
129
  label_cols: Optional[Union[str, Iterable[str]]] = None,
130
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
115
131
  drop_input_cols: Optional[bool] = False,
116
132
  sample_weight_col: Optional[str] = None,
117
133
  ) -> None:
@@ -120,9 +136,10 @@ class ShrunkCovariance(BaseTransformer):
120
136
  self.set_input_cols(input_cols)
121
137
  self.set_output_cols(output_cols)
122
138
  self.set_label_cols(label_cols)
139
+ self.set_passthrough_cols(passthrough_cols)
123
140
  self.set_drop_input_cols(drop_input_cols)
124
141
  self.set_sample_weight_col(sample_weight_col)
125
- deps = set(SklearnWrapperProvider().dependencies)
142
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
126
143
 
127
144
  self._deps = list(deps)
128
145
 
@@ -133,13 +150,14 @@ class ShrunkCovariance(BaseTransformer):
133
150
  args=init_args,
134
151
  klass=sklearn.covariance.ShrunkCovariance
135
152
  )
136
- self._sklearn_object = sklearn.covariance.ShrunkCovariance(
153
+ self._sklearn_object: Any = sklearn.covariance.ShrunkCovariance(
137
154
  **cleaned_up_init_args,
138
155
  )
139
156
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
140
157
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
141
158
  self._snowpark_cols: Optional[List[str]] = self.input_cols
142
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ShrunkCovariance.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
159
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ShrunkCovariance.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
160
+ self._autogenerated = True
143
161
 
144
162
  def _get_rand_id(self) -> str:
145
163
  """
@@ -150,24 +168,6 @@ class ShrunkCovariance(BaseTransformer):
150
168
  """
151
169
  return str(uuid4()).replace("-", "_").upper()
152
170
 
153
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
154
- """
155
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
156
-
157
- Args:
158
- dataset: Input dataset.
159
- """
160
- if not self.input_cols:
161
- cols = [
162
- c for c in dataset.columns
163
- if c not in self.get_label_cols() and c != self.sample_weight_col
164
- ]
165
- self.set_input_cols(input_cols=cols)
166
-
167
- if not self.output_cols:
168
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
169
- self.set_output_cols(output_cols=cols)
170
-
171
171
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "ShrunkCovariance":
172
172
  """
173
173
  Input columns setter.
@@ -213,54 +213,48 @@ class ShrunkCovariance(BaseTransformer):
213
213
  self
214
214
  """
215
215
  self._infer_input_output_cols(dataset)
216
- if isinstance(dataset, pd.DataFrame):
217
- assert self._sklearn_object is not None # keep mypy happy
218
- self._sklearn_object = self._handlers.fit_pandas(
219
- dataset,
220
- self._sklearn_object,
221
- self.input_cols,
222
- self.label_cols,
223
- self.sample_weight_col
224
- )
225
- elif isinstance(dataset, DataFrame):
226
- self._fit_snowpark(dataset)
227
- else:
228
- raise TypeError(
229
- f"Unexpected dataset type: {type(dataset)}."
230
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
231
- )
216
+ if isinstance(dataset, DataFrame):
217
+ session = dataset._session
218
+ assert session is not None # keep mypy happy
219
+ # Validate that key package version in user workspace are supported in snowflake conda channel
220
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
221
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
222
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
223
+
224
+ # Specify input columns so column pruning will be enforced
225
+ selected_cols = self._get_active_columns()
226
+ if len(selected_cols) > 0:
227
+ dataset = dataset.select(selected_cols)
228
+
229
+ self._snowpark_cols = dataset.select(self.input_cols).columns
230
+
231
+ # If we are already in a stored procedure, no need to kick off another one.
232
+ if SNOWML_SPROC_ENV in os.environ:
233
+ statement_params = telemetry.get_function_usage_statement_params(
234
+ project=_PROJECT,
235
+ subproject=_SUBPROJECT,
236
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ShrunkCovariance.__class__.__name__),
237
+ api_calls=[Session.call],
238
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
239
+ )
240
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
241
+ pd_df.columns = dataset.columns
242
+ dataset = pd_df
243
+
244
+ model_trainer = ModelTrainerBuilder.build(
245
+ estimator=self._sklearn_object,
246
+ dataset=dataset,
247
+ input_cols=self.input_cols,
248
+ label_cols=self.label_cols,
249
+ sample_weight_col=self.sample_weight_col,
250
+ autogenerated=self._autogenerated,
251
+ subproject=_SUBPROJECT
252
+ )
253
+ self._sklearn_object = model_trainer.train()
232
254
  self._is_fitted = True
233
255
  self._get_model_signatures(dataset)
234
256
  return self
235
257
 
236
- def _fit_snowpark(self, dataset: DataFrame) -> None:
237
- session = dataset._session
238
- assert session is not None # keep mypy happy
239
- # Validate that key package version in user workspace are supported in snowflake conda channel
240
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
241
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
242
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
243
-
244
- # Specify input columns so column pruning will be enforced
245
- selected_cols = self._get_active_columns()
246
- if len(selected_cols) > 0:
247
- dataset = dataset.select(selected_cols)
248
-
249
- estimator = self._sklearn_object
250
- assert estimator is not None # Keep mypy happy
251
-
252
- self._snowpark_cols = dataset.select(self.input_cols).columns
253
-
254
- self._sklearn_object = self._handlers.fit_snowpark(
255
- dataset,
256
- session,
257
- estimator,
258
- ["snowflake-snowpark-python"] + self._get_dependencies(),
259
- self.input_cols,
260
- self.label_cols,
261
- self.sample_weight_col,
262
- )
263
-
264
258
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
265
259
  if self._drop_input_cols:
266
260
  return []
@@ -448,11 +442,6 @@ class ShrunkCovariance(BaseTransformer):
448
442
  subproject=_SUBPROJECT,
449
443
  custom_tags=dict([("autogen", True)]),
450
444
  )
451
- @telemetry.add_stmt_params_to_df(
452
- project=_PROJECT,
453
- subproject=_SUBPROJECT,
454
- custom_tags=dict([("autogen", True)]),
455
- )
456
445
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
457
446
  """Method not supported for this class.
458
447
 
@@ -504,11 +493,6 @@ class ShrunkCovariance(BaseTransformer):
504
493
  subproject=_SUBPROJECT,
505
494
  custom_tags=dict([("autogen", True)]),
506
495
  )
507
- @telemetry.add_stmt_params_to_df(
508
- project=_PROJECT,
509
- subproject=_SUBPROJECT,
510
- custom_tags=dict([("autogen", True)]),
511
- )
512
496
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
513
497
  """Method not supported for this class.
514
498
 
@@ -565,7 +549,8 @@ class ShrunkCovariance(BaseTransformer):
565
549
  if False:
566
550
  self.fit(dataset)
567
551
  assert self._sklearn_object is not None
568
- return self._sklearn_object.labels_
552
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
553
+ return labels
569
554
  else:
570
555
  raise NotImplementedError
571
556
 
@@ -601,6 +586,7 @@ class ShrunkCovariance(BaseTransformer):
601
586
  output_cols = []
602
587
 
603
588
  # Make sure column names are valid snowflake identifiers.
589
+ assert output_cols is not None # Make MyPy happy
604
590
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
605
591
 
606
592
  return rv
@@ -611,11 +597,6 @@ class ShrunkCovariance(BaseTransformer):
611
597
  subproject=_SUBPROJECT,
612
598
  custom_tags=dict([("autogen", True)]),
613
599
  )
614
- @telemetry.add_stmt_params_to_df(
615
- project=_PROJECT,
616
- subproject=_SUBPROJECT,
617
- custom_tags=dict([("autogen", True)]),
618
- )
619
600
  def predict_proba(
620
601
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
621
602
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -656,11 +637,6 @@ class ShrunkCovariance(BaseTransformer):
656
637
  subproject=_SUBPROJECT,
657
638
  custom_tags=dict([("autogen", True)]),
658
639
  )
659
- @telemetry.add_stmt_params_to_df(
660
- project=_PROJECT,
661
- subproject=_SUBPROJECT,
662
- custom_tags=dict([("autogen", True)]),
663
- )
664
640
  def predict_log_proba(
665
641
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
666
642
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -697,16 +673,6 @@ class ShrunkCovariance(BaseTransformer):
697
673
  return output_df
698
674
 
699
675
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
700
- @telemetry.send_api_usage_telemetry(
701
- project=_PROJECT,
702
- subproject=_SUBPROJECT,
703
- custom_tags=dict([("autogen", True)]),
704
- )
705
- @telemetry.add_stmt_params_to_df(
706
- project=_PROJECT,
707
- subproject=_SUBPROJECT,
708
- custom_tags=dict([("autogen", True)]),
709
- )
710
676
  def decision_function(
711
677
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
712
678
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -807,11 +773,6 @@ class ShrunkCovariance(BaseTransformer):
807
773
  subproject=_SUBPROJECT,
808
774
  custom_tags=dict([("autogen", True)]),
809
775
  )
810
- @telemetry.add_stmt_params_to_df(
811
- project=_PROJECT,
812
- subproject=_SUBPROJECT,
813
- custom_tags=dict([("autogen", True)]),
814
- )
815
776
  def kneighbors(
816
777
  self,
817
778
  dataset: Union[DataFrame, pd.DataFrame],
@@ -871,18 +832,28 @@ class ShrunkCovariance(BaseTransformer):
871
832
  # For classifier, the type of predict is the same as the type of label
872
833
  if self._sklearn_object._estimator_type == 'classifier':
873
834
  # label columns is the desired type for output
874
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
835
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
875
836
  # rename the output columns
876
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
837
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
838
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
839
+ ([] if self._drop_input_cols else inputs)
840
+ + outputs)
841
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
842
+ # For outlier models, returns -1 for outliers and 1 for inliers.
843
+ # Clusterer returns int64 cluster labels.
844
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
845
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
877
846
  self._model_signature_dict["predict"] = ModelSignature(inputs,
878
847
  ([] if self._drop_input_cols else inputs)
879
848
  + outputs)
849
+
880
850
  # For regressor, the type of predict is float64
881
851
  elif self._sklearn_object._estimator_type == 'regressor':
882
852
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
883
853
  self._model_signature_dict["predict"] = ModelSignature(inputs,
884
854
  ([] if self._drop_input_cols else inputs)
885
855
  + outputs)
856
+
886
857
  for prob_func in PROB_FUNCTIONS:
887
858
  if hasattr(self, prob_func):
888
859
  output_cols_prefix: str = f"{prob_func}_"