snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/identifier.py +78 -72
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
- snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
- snowflake/ml/modeling/cluster/birch.py +106 -135
- snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
- snowflake/ml/modeling/cluster/dbscan.py +106 -135
- snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
- snowflake/ml/modeling/cluster/k_means.py +105 -135
- snowflake/ml/modeling/cluster/mean_shift.py +106 -135
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
- snowflake/ml/modeling/cluster/optics.py +106 -135
- snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
- snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
- snowflake/ml/modeling/compose/column_transformer.py +106 -135
- snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
- snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
- snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
- snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
- snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
- snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
- snowflake/ml/modeling/covariance/oas.py +99 -128
- snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
- snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
- snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
- snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
- snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/pca.py +106 -135
- snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
- snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
- snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
- snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
- snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
- snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
- snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
- snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
- snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
- snowflake/ml/modeling/framework/base.py +83 -1
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
- snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
- snowflake/ml/modeling/impute/knn_imputer.py +106 -135
- snowflake/ml/modeling/impute/missing_indicator.py +106 -135
- snowflake/ml/modeling/impute/simple_imputer.py +9 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
- snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
- snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/lars.py +108 -135
- snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
- snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
- snowflake/ml/modeling/linear_model/perceptron.py +107 -135
- snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/ridge.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
- snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
- snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
- snowflake/ml/modeling/manifold/isomap.py +106 -135
- snowflake/ml/modeling/manifold/mds.py +106 -135
- snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
- snowflake/ml/modeling/manifold/tsne.py +106 -135
- snowflake/ml/modeling/metrics/classification.py +196 -55
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
- snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
- snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
- snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
- snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
- snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
- snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
- snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
- snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
- snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
- snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
- snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
- snowflake/ml/modeling/svm/linear_svc.py +108 -135
- snowflake/ml/modeling/svm/linear_svr.py +108 -135
- snowflake/ml/modeling/svm/nu_svc.py +108 -135
- snowflake/ml/modeling/svm/nu_svr.py +108 -135
- snowflake/ml/modeling/svm/svc.py +108 -135
- snowflake/ml/modeling/svm/svr.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
- snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
- snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -21,17 +21,19 @@ from sklearn.utils.metaestimators import available_if
|
|
21
21
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
22
22
|
from snowflake.ml._internal import telemetry
|
23
23
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
24
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
24
25
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
25
|
-
from snowflake.snowpark import DataFrame
|
26
|
+
from snowflake.snowpark import DataFrame, Session
|
26
27
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
27
28
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
28
31
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
29
32
|
gather_dependencies,
|
30
33
|
original_estimator_has_callable,
|
31
34
|
transform_snowml_obj_to_sklearn_obj,
|
32
35
|
validate_sklearn_args,
|
33
36
|
)
|
34
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import XGBoostWrapperProvider
|
35
37
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
36
38
|
|
37
39
|
from snowflake.ml.model.model_signature import (
|
@@ -51,7 +53,6 @@ _PROJECT = "ModelDevelopment"
|
|
51
53
|
_SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "").split("_")])
|
52
54
|
|
53
55
|
|
54
|
-
|
55
56
|
class XGBRFClassifier(BaseTransformer):
|
56
57
|
r"""scikit-learn API for XGBoost random forest classification
|
57
58
|
For more details on this class, see [xgboost.XGBRFClassifier]
|
@@ -60,7 +61,51 @@ class XGBRFClassifier(BaseTransformer):
|
|
60
61
|
Parameters
|
61
62
|
----------
|
62
63
|
|
63
|
-
|
64
|
+
input_cols: Optional[Union[str, List[str]]]
|
65
|
+
A string or list of strings representing column names that contain features.
|
66
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
67
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
68
|
+
parameters are considered input columns. Input columns can also be set after
|
69
|
+
initialization with the `set_input_cols` method.
|
70
|
+
|
71
|
+
label_cols: Optional[Union[str, List[str]]]
|
72
|
+
A string or list of strings representing column names that contain labels.
|
73
|
+
Label columns must be specified with this parameter during initialization
|
74
|
+
or with the `set_label_cols` method before fitting.
|
75
|
+
|
76
|
+
output_cols: Optional[Union[str, List[str]]]
|
77
|
+
A string or list of strings representing column names that will store the
|
78
|
+
output of predict and transform operations. The length of output_cols must
|
79
|
+
match the expected number of output columns from the specific predictor or
|
80
|
+
transformer class used.
|
81
|
+
If you omit this parameter, output column names are derived by adding an
|
82
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
83
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
84
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
85
|
+
In general, explicitly specifying output column names is clearer, especially
|
86
|
+
if you don’t specify the input column names.
|
87
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
88
|
+
be set explicitly for transformers. Output columns can also be set after
|
89
|
+
initialization with the `set_output_cols` method.
|
90
|
+
|
91
|
+
sample_weight_col: Optional[str]
|
92
|
+
A string representing the column name containing the sample weights.
|
93
|
+
This argument is only required when working with weighted datasets. Sample
|
94
|
+
weight column can also be set after initialization with the
|
95
|
+
`set_sample_weight_col` method.
|
96
|
+
|
97
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
98
|
+
A string or a list of strings indicating column names to be excluded from any
|
99
|
+
operations (such as train, transform, or inference). These specified column(s)
|
100
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
101
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
102
|
+
columns, like index columns, during training or inference. Passthrough columns
|
103
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
104
|
+
|
105
|
+
drop_input_cols: Optional[bool], default=False
|
106
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
107
|
+
|
108
|
+
n_estimators: int
|
64
109
|
Number of trees in random forest to fit.
|
65
110
|
|
66
111
|
max_depth: Optional[int]
|
@@ -267,35 +312,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
267
312
|
The value of the gradient for each sample point.
|
268
313
|
hess: array_like of shape [n_samples]
|
269
314
|
The value of the second derivative for each sample point
|
270
|
-
|
271
|
-
input_cols: Optional[Union[str, List[str]]]
|
272
|
-
A string or list of strings representing column names that contain features.
|
273
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
274
|
-
the columns specified by label_cols and sample_weight_col parameters are
|
275
|
-
considered input columns.
|
276
|
-
|
277
|
-
label_cols: Optional[Union[str, List[str]]]
|
278
|
-
A string or list of strings representing column names that contain labels.
|
279
|
-
This is a required param for estimators, as there is no way to infer these
|
280
|
-
columns. If this parameter is not specified, then object is fitted without
|
281
|
-
labels (like a transformer).
|
282
|
-
|
283
|
-
output_cols: Optional[Union[str, List[str]]]
|
284
|
-
A string or list of strings representing column names that will store the
|
285
|
-
output of predict and transform operations. The length of output_cols must
|
286
|
-
match the expected number of output columns from the specific estimator or
|
287
|
-
transformer class used.
|
288
|
-
If this parameter is not specified, output column names are derived by
|
289
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
290
|
-
column names work for estimator's predict() method, but output_cols must
|
291
|
-
be set explicitly for transformers.
|
292
|
-
|
293
|
-
sample_weight_col: Optional[str]
|
294
|
-
A string representing the column name containing the sample weights.
|
295
|
-
This argument is only required when working with weighted datasets.
|
296
|
-
|
297
|
-
drop_input_cols: Optional[bool], default=False
|
298
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
299
315
|
"""
|
300
316
|
|
301
317
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -308,6 +324,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
308
324
|
input_cols: Optional[Union[str, Iterable[str]]] = None,
|
309
325
|
output_cols: Optional[Union[str, Iterable[str]]] = None,
|
310
326
|
label_cols: Optional[Union[str, Iterable[str]]] = None,
|
327
|
+
passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
|
311
328
|
drop_input_cols: Optional[bool] = False,
|
312
329
|
sample_weight_col: Optional[str] = None,
|
313
330
|
**kwargs,
|
@@ -317,9 +334,10 @@ class XGBRFClassifier(BaseTransformer):
|
|
317
334
|
self.set_input_cols(input_cols)
|
318
335
|
self.set_output_cols(output_cols)
|
319
336
|
self.set_label_cols(label_cols)
|
337
|
+
self.set_passthrough_cols(passthrough_cols)
|
320
338
|
self.set_drop_input_cols(drop_input_cols)
|
321
339
|
self.set_sample_weight_col(sample_weight_col)
|
322
|
-
deps = set(
|
340
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'xgboost=={xgboost.__version__}', f'cloudpickle=={cp.__version__}'])
|
323
341
|
|
324
342
|
self._deps = list(deps)
|
325
343
|
|
@@ -331,14 +349,15 @@ class XGBRFClassifier(BaseTransformer):
|
|
331
349
|
args=init_args,
|
332
350
|
klass=xgboost.XGBRFClassifier
|
333
351
|
)
|
334
|
-
self._sklearn_object = xgboost.XGBRFClassifier(
|
352
|
+
self._sklearn_object: Any = xgboost.XGBRFClassifier(
|
335
353
|
**cleaned_up_init_args,
|
336
354
|
**kwargs,
|
337
355
|
)
|
338
356
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
339
357
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
340
358
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
341
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
359
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
360
|
+
self._autogenerated = True
|
342
361
|
|
343
362
|
def _get_rand_id(self) -> str:
|
344
363
|
"""
|
@@ -349,24 +368,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
349
368
|
"""
|
350
369
|
return str(uuid4()).replace("-", "_").upper()
|
351
370
|
|
352
|
-
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
353
|
-
"""
|
354
|
-
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
355
|
-
|
356
|
-
Args:
|
357
|
-
dataset: Input dataset.
|
358
|
-
"""
|
359
|
-
if not self.input_cols:
|
360
|
-
cols = [
|
361
|
-
c for c in dataset.columns
|
362
|
-
if c not in self.get_label_cols() and c != self.sample_weight_col
|
363
|
-
]
|
364
|
-
self.set_input_cols(input_cols=cols)
|
365
|
-
|
366
|
-
if not self.output_cols:
|
367
|
-
cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
|
368
|
-
self.set_output_cols(output_cols=cols)
|
369
|
-
|
370
371
|
def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "XGBRFClassifier":
|
371
372
|
"""
|
372
373
|
Input columns setter.
|
@@ -412,54 +413,48 @@ class XGBRFClassifier(BaseTransformer):
|
|
412
413
|
self
|
413
414
|
"""
|
414
415
|
self._infer_input_output_cols(dataset)
|
415
|
-
if isinstance(dataset,
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
self.
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
416
|
+
if isinstance(dataset, DataFrame):
|
417
|
+
session = dataset._session
|
418
|
+
assert session is not None # keep mypy happy
|
419
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
420
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
421
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
422
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
423
|
+
|
424
|
+
# Specify input columns so column pruning will be enforced
|
425
|
+
selected_cols = self._get_active_columns()
|
426
|
+
if len(selected_cols) > 0:
|
427
|
+
dataset = dataset.select(selected_cols)
|
428
|
+
|
429
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
430
|
+
|
431
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
432
|
+
if SNOWML_SPROC_ENV in os.environ:
|
433
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
434
|
+
project=_PROJECT,
|
435
|
+
subproject=_SUBPROJECT,
|
436
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRFClassifier.__class__.__name__),
|
437
|
+
api_calls=[Session.call],
|
438
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
439
|
+
)
|
440
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
441
|
+
pd_df.columns = dataset.columns
|
442
|
+
dataset = pd_df
|
443
|
+
|
444
|
+
model_trainer = ModelTrainerBuilder.build(
|
445
|
+
estimator=self._sklearn_object,
|
446
|
+
dataset=dataset,
|
447
|
+
input_cols=self.input_cols,
|
448
|
+
label_cols=self.label_cols,
|
449
|
+
sample_weight_col=self.sample_weight_col,
|
450
|
+
autogenerated=self._autogenerated,
|
451
|
+
subproject=_SUBPROJECT
|
452
|
+
)
|
453
|
+
self._sklearn_object = model_trainer.train()
|
431
454
|
self._is_fitted = True
|
432
455
|
self._get_model_signatures(dataset)
|
433
456
|
return self
|
434
457
|
|
435
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
436
|
-
session = dataset._session
|
437
|
-
assert session is not None # keep mypy happy
|
438
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
439
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
440
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
441
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
442
|
-
|
443
|
-
# Specify input columns so column pruning will be enforced
|
444
|
-
selected_cols = self._get_active_columns()
|
445
|
-
if len(selected_cols) > 0:
|
446
|
-
dataset = dataset.select(selected_cols)
|
447
|
-
|
448
|
-
estimator = self._sklearn_object
|
449
|
-
assert estimator is not None # Keep mypy happy
|
450
|
-
|
451
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
452
|
-
|
453
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
454
|
-
dataset,
|
455
|
-
session,
|
456
|
-
estimator,
|
457
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
458
|
-
self.input_cols,
|
459
|
-
self.label_cols,
|
460
|
-
self.sample_weight_col,
|
461
|
-
)
|
462
|
-
|
463
458
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
464
459
|
if self._drop_input_cols:
|
465
460
|
return []
|
@@ -647,11 +642,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
647
642
|
subproject=_SUBPROJECT,
|
648
643
|
custom_tags=dict([("autogen", True)]),
|
649
644
|
)
|
650
|
-
@telemetry.add_stmt_params_to_df(
|
651
|
-
project=_PROJECT,
|
652
|
-
subproject=_SUBPROJECT,
|
653
|
-
custom_tags=dict([("autogen", True)]),
|
654
|
-
)
|
655
645
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
656
646
|
"""Predict with `X`
|
657
647
|
For more details on this function, see [xgboost.XGBRFClassifier.predict]
|
@@ -705,11 +695,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
705
695
|
subproject=_SUBPROJECT,
|
706
696
|
custom_tags=dict([("autogen", True)]),
|
707
697
|
)
|
708
|
-
@telemetry.add_stmt_params_to_df(
|
709
|
-
project=_PROJECT,
|
710
|
-
subproject=_SUBPROJECT,
|
711
|
-
custom_tags=dict([("autogen", True)]),
|
712
|
-
)
|
713
698
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
714
699
|
"""Method not supported for this class.
|
715
700
|
|
@@ -766,7 +751,8 @@ class XGBRFClassifier(BaseTransformer):
|
|
766
751
|
if False:
|
767
752
|
self.fit(dataset)
|
768
753
|
assert self._sklearn_object is not None
|
769
|
-
|
754
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
755
|
+
return labels
|
770
756
|
else:
|
771
757
|
raise NotImplementedError
|
772
758
|
|
@@ -802,6 +788,7 @@ class XGBRFClassifier(BaseTransformer):
|
|
802
788
|
output_cols = []
|
803
789
|
|
804
790
|
# Make sure column names are valid snowflake identifiers.
|
791
|
+
assert output_cols is not None # Make MyPy happy
|
805
792
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
806
793
|
|
807
794
|
return rv
|
@@ -812,11 +799,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
812
799
|
subproject=_SUBPROJECT,
|
813
800
|
custom_tags=dict([("autogen", True)]),
|
814
801
|
)
|
815
|
-
@telemetry.add_stmt_params_to_df(
|
816
|
-
project=_PROJECT,
|
817
|
-
subproject=_SUBPROJECT,
|
818
|
-
custom_tags=dict([("autogen", True)]),
|
819
|
-
)
|
820
802
|
def predict_proba(
|
821
803
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
822
804
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -859,11 +841,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
859
841
|
subproject=_SUBPROJECT,
|
860
842
|
custom_tags=dict([("autogen", True)]),
|
861
843
|
)
|
862
|
-
@telemetry.add_stmt_params_to_df(
|
863
|
-
project=_PROJECT,
|
864
|
-
subproject=_SUBPROJECT,
|
865
|
-
custom_tags=dict([("autogen", True)]),
|
866
|
-
)
|
867
844
|
def predict_log_proba(
|
868
845
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
869
846
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -902,16 +879,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
902
879
|
return output_df
|
903
880
|
|
904
881
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
905
|
-
@telemetry.send_api_usage_telemetry(
|
906
|
-
project=_PROJECT,
|
907
|
-
subproject=_SUBPROJECT,
|
908
|
-
custom_tags=dict([("autogen", True)]),
|
909
|
-
)
|
910
|
-
@telemetry.add_stmt_params_to_df(
|
911
|
-
project=_PROJECT,
|
912
|
-
subproject=_SUBPROJECT,
|
913
|
-
custom_tags=dict([("autogen", True)]),
|
914
|
-
)
|
915
882
|
def decision_function(
|
916
883
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
917
884
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -1012,11 +979,6 @@ class XGBRFClassifier(BaseTransformer):
|
|
1012
979
|
subproject=_SUBPROJECT,
|
1013
980
|
custom_tags=dict([("autogen", True)]),
|
1014
981
|
)
|
1015
|
-
@telemetry.add_stmt_params_to_df(
|
1016
|
-
project=_PROJECT,
|
1017
|
-
subproject=_SUBPROJECT,
|
1018
|
-
custom_tags=dict([("autogen", True)]),
|
1019
|
-
)
|
1020
982
|
def kneighbors(
|
1021
983
|
self,
|
1022
984
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -1076,18 +1038,28 @@ class XGBRFClassifier(BaseTransformer):
|
|
1076
1038
|
# For classifier, the type of predict is the same as the type of label
|
1077
1039
|
if self._sklearn_object._estimator_type == 'classifier':
|
1078
1040
|
# label columns is the desired type for output
|
1079
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
1041
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1080
1042
|
# rename the output columns
|
1081
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
1043
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1044
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1045
|
+
([] if self._drop_input_cols else inputs)
|
1046
|
+
+ outputs)
|
1047
|
+
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1048
|
+
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1049
|
+
# Clusterer returns int64 cluster labels.
|
1050
|
+
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1051
|
+
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1082
1052
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1083
1053
|
([] if self._drop_input_cols else inputs)
|
1084
1054
|
+ outputs)
|
1055
|
+
|
1085
1056
|
# For regressor, the type of predict is float64
|
1086
1057
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1087
1058
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1088
1059
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1089
1060
|
([] if self._drop_input_cols else inputs)
|
1090
1061
|
+ outputs)
|
1062
|
+
|
1091
1063
|
for prob_func in PROB_FUNCTIONS:
|
1092
1064
|
if hasattr(self, prob_func):
|
1093
1065
|
output_cols_prefix: str = f"{prob_func}_"
|