snowflake-ml-python 1.1.0__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (225) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/identifier.py +78 -72
  10. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  11. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  12. snowflake/ml/dataset/dataset.py +1 -1
  13. snowflake/ml/model/_api.py +21 -14
  14. snowflake/ml/model/_client/model/model_impl.py +176 -0
  15. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  17. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  18. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  19. snowflake/ml/model/_client/sql/model.py +75 -0
  20. snowflake/ml/model/_client/sql/model_version.py +213 -0
  21. snowflake/ml/model/_client/sql/stage.py +40 -0
  22. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  23. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  24. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  25. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  26. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  27. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  28. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  30. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  31. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  33. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  35. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  36. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  37. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  38. snowflake/ml/model/model_signature.py +108 -53
  39. snowflake/ml/model/type_hints.py +1 -0
  40. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  41. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  42. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  43. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  44. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  45. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  46. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  47. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +108 -135
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +106 -135
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +106 -135
  51. snowflake/ml/modeling/cluster/birch.py +106 -135
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +106 -135
  53. snowflake/ml/modeling/cluster/dbscan.py +106 -135
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +106 -135
  55. snowflake/ml/modeling/cluster/k_means.py +105 -135
  56. snowflake/ml/modeling/cluster/mean_shift.py +106 -135
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +105 -135
  58. snowflake/ml/modeling/cluster/optics.py +106 -135
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +106 -135
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +106 -135
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +106 -135
  62. snowflake/ml/modeling/compose/column_transformer.py +106 -135
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +108 -135
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +106 -135
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +99 -128
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +106 -135
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +106 -135
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +104 -133
  69. snowflake/ml/modeling/covariance/min_cov_det.py +106 -135
  70. snowflake/ml/modeling/covariance/oas.py +99 -128
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +103 -132
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +106 -135
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +106 -135
  74. snowflake/ml/modeling/decomposition/fast_ica.py +106 -135
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +106 -135
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +106 -135
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +106 -135
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +106 -135
  79. snowflake/ml/modeling/decomposition/pca.py +106 -135
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +106 -135
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +106 -135
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +108 -135
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +108 -135
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +108 -135
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +108 -135
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +108 -135
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +108 -135
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +108 -135
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +108 -135
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +108 -135
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +108 -135
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +108 -135
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +108 -135
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +106 -135
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +108 -135
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +108 -135
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +108 -135
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +108 -135
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +108 -135
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +101 -128
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +99 -126
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +99 -126
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +99 -126
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +100 -127
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +99 -126
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +106 -135
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +95 -124
  108. snowflake/ml/modeling/framework/base.py +83 -1
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +108 -135
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +108 -135
  111. snowflake/ml/modeling/impute/iterative_imputer.py +106 -135
  112. snowflake/ml/modeling/impute/knn_imputer.py +106 -135
  113. snowflake/ml/modeling/impute/missing_indicator.py +106 -135
  114. snowflake/ml/modeling/impute/simple_imputer.py +9 -1
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +96 -125
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +106 -135
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +106 -135
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +105 -134
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +103 -132
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +108 -135
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +90 -118
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +90 -118
  123. snowflake/ml/modeling/linear_model/ard_regression.py +108 -135
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +108 -135
  125. snowflake/ml/modeling/linear_model/elastic_net.py +108 -135
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +108 -135
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +108 -135
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +108 -135
  129. snowflake/ml/modeling/linear_model/lars.py +108 -135
  130. snowflake/ml/modeling/linear_model/lars_cv.py +108 -135
  131. snowflake/ml/modeling/linear_model/lasso.py +108 -135
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +108 -135
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +108 -135
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +108 -135
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +108 -135
  136. snowflake/ml/modeling/linear_model/linear_regression.py +108 -135
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +108 -135
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +108 -135
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +108 -135
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +108 -135
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +108 -135
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +108 -135
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +108 -135
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +108 -135
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +107 -135
  146. snowflake/ml/modeling/linear_model/perceptron.py +107 -135
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +108 -135
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +108 -135
  149. snowflake/ml/modeling/linear_model/ridge.py +108 -135
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +108 -135
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +108 -135
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +108 -135
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +108 -135
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +106 -135
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +108 -135
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +108 -135
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +108 -135
  158. snowflake/ml/modeling/manifold/isomap.py +106 -135
  159. snowflake/ml/modeling/manifold/mds.py +106 -135
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +106 -135
  161. snowflake/ml/modeling/manifold/tsne.py +106 -135
  162. snowflake/ml/modeling/metrics/classification.py +196 -55
  163. snowflake/ml/modeling/metrics/correlation.py +4 -2
  164. snowflake/ml/modeling/metrics/covariance.py +7 -4
  165. snowflake/ml/modeling/metrics/ranking.py +32 -16
  166. snowflake/ml/modeling/metrics/regression.py +60 -32
  167. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +106 -135
  168. snowflake/ml/modeling/mixture/gaussian_mixture.py +106 -135
  169. snowflake/ml/modeling/model_selection/grid_search_cv.py +91 -148
  170. snowflake/ml/modeling/model_selection/randomized_search_cv.py +93 -154
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +105 -132
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +108 -135
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +108 -135
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +108 -135
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +108 -135
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +108 -135
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +98 -125
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +107 -134
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +108 -135
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +108 -135
  181. snowflake/ml/modeling/neighbors/kernel_density.py +106 -135
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +106 -135
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +108 -135
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +106 -135
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +108 -135
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +108 -135
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +108 -135
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +106 -135
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +108 -135
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +108 -135
  191. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  192. snowflake/ml/modeling/preprocessing/binarizer.py +25 -8
  193. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +9 -4
  194. snowflake/ml/modeling/preprocessing/label_encoder.py +31 -11
  195. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +27 -9
  196. snowflake/ml/modeling/preprocessing/min_max_scaler.py +42 -14
  197. snowflake/ml/modeling/preprocessing/normalizer.py +9 -4
  198. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +26 -10
  199. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +37 -13
  200. snowflake/ml/modeling/preprocessing/polynomial_features.py +106 -135
  201. snowflake/ml/modeling/preprocessing/robust_scaler.py +39 -13
  202. snowflake/ml/modeling/preprocessing/standard_scaler.py +36 -12
  203. snowflake/ml/modeling/semi_supervised/label_propagation.py +108 -135
  204. snowflake/ml/modeling/semi_supervised/label_spreading.py +108 -135
  205. snowflake/ml/modeling/svm/linear_svc.py +108 -135
  206. snowflake/ml/modeling/svm/linear_svr.py +108 -135
  207. snowflake/ml/modeling/svm/nu_svc.py +108 -135
  208. snowflake/ml/modeling/svm/nu_svr.py +108 -135
  209. snowflake/ml/modeling/svm/svc.py +108 -135
  210. snowflake/ml/modeling/svm/svr.py +108 -135
  211. snowflake/ml/modeling/tree/decision_tree_classifier.py +108 -135
  212. snowflake/ml/modeling/tree/decision_tree_regressor.py +108 -135
  213. snowflake/ml/modeling/tree/extra_tree_classifier.py +108 -135
  214. snowflake/ml/modeling/tree/extra_tree_regressor.py +108 -135
  215. snowflake/ml/modeling/xgboost/xgb_classifier.py +108 -136
  216. snowflake/ml/modeling/xgboost/xgb_regressor.py +108 -136
  217. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +108 -136
  218. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +108 -136
  219. snowflake/ml/registry/model_registry.py +2 -0
  220. snowflake/ml/registry/registry.py +215 -0
  221. snowflake/ml/version.py +1 -1
  222. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +34 -1
  223. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  224. snowflake_ml_python-1.1.0.dist-info/RECORD +0 -331
  225. {snowflake_ml_python-1.1.0.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class HistGradientBoostingClassifier(BaseTransformer):
57
58
  r"""Histogram-based Gradient Boosting Classification Tree
58
59
  For more details on this class, see [sklearn.ensemble.HistGradientBoostingClassifier]
@@ -60,6 +61,51 @@ class HistGradientBoostingClassifier(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  loss: {'log_loss'}, default='log_loss'
64
110
  The loss function to use in the boosting process.
65
111
 
@@ -200,35 +246,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
200
246
  as `n_samples / (n_classes * np.bincount(y))`.
201
247
  Note that these weights will be multiplied with sample_weight (passed
202
248
  through the fit method) if `sample_weight` is specified.
203
-
204
- input_cols: Optional[Union[str, List[str]]]
205
- A string or list of strings representing column names that contain features.
206
- If this parameter is not specified, all columns in the input DataFrame except
207
- the columns specified by label_cols and sample_weight_col parameters are
208
- considered input columns.
209
-
210
- label_cols: Optional[Union[str, List[str]]]
211
- A string or list of strings representing column names that contain labels.
212
- This is a required param for estimators, as there is no way to infer these
213
- columns. If this parameter is not specified, then object is fitted without
214
- labels (like a transformer).
215
-
216
- output_cols: Optional[Union[str, List[str]]]
217
- A string or list of strings representing column names that will store the
218
- output of predict and transform operations. The length of output_cols must
219
- match the expected number of output columns from the specific estimator or
220
- transformer class used.
221
- If this parameter is not specified, output column names are derived by
222
- adding an OUTPUT_ prefix to the label column names. These inferred output
223
- column names work for estimator's predict() method, but output_cols must
224
- be set explicitly for transformers.
225
-
226
- sample_weight_col: Optional[str]
227
- A string representing the column name containing the sample weights.
228
- This argument is only required when working with weighted datasets.
229
-
230
- drop_input_cols: Optional[bool], default=False
231
- If set, the response of predict(), transform() methods will not contain input columns.
232
249
  """
233
250
 
234
251
  def __init__( # type: ignore[no-untyped-def]
@@ -257,6 +274,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
257
274
  input_cols: Optional[Union[str, Iterable[str]]] = None,
258
275
  output_cols: Optional[Union[str, Iterable[str]]] = None,
259
276
  label_cols: Optional[Union[str, Iterable[str]]] = None,
277
+ passthrough_cols: Optional[Union[str, Iterable[str]]] = None,
260
278
  drop_input_cols: Optional[bool] = False,
261
279
  sample_weight_col: Optional[str] = None,
262
280
  ) -> None:
@@ -265,9 +283,10 @@ class HistGradientBoostingClassifier(BaseTransformer):
265
283
  self.set_input_cols(input_cols)
266
284
  self.set_output_cols(output_cols)
267
285
  self.set_label_cols(label_cols)
286
+ self.set_passthrough_cols(passthrough_cols)
268
287
  self.set_drop_input_cols(drop_input_cols)
269
288
  self.set_sample_weight_col(sample_weight_col)
270
- deps = set(SklearnWrapperProvider().dependencies)
289
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
271
290
 
272
291
  self._deps = list(deps)
273
292
 
@@ -295,13 +314,14 @@ class HistGradientBoostingClassifier(BaseTransformer):
295
314
  args=init_args,
296
315
  klass=sklearn.ensemble.HistGradientBoostingClassifier
297
316
  )
298
- self._sklearn_object = sklearn.ensemble.HistGradientBoostingClassifier(
317
+ self._sklearn_object: Any = sklearn.ensemble.HistGradientBoostingClassifier(
299
318
  **cleaned_up_init_args,
300
319
  )
301
320
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
302
321
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
303
322
  self._snowpark_cols: Optional[List[str]] = self.input_cols
304
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
323
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
324
+ self._autogenerated = True
305
325
 
306
326
  def _get_rand_id(self) -> str:
307
327
  """
@@ -312,24 +332,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
312
332
  """
313
333
  return str(uuid4()).replace("-", "_").upper()
314
334
 
315
- def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
316
- """
317
- Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
318
-
319
- Args:
320
- dataset: Input dataset.
321
- """
322
- if not self.input_cols:
323
- cols = [
324
- c for c in dataset.columns
325
- if c not in self.get_label_cols() and c != self.sample_weight_col
326
- ]
327
- self.set_input_cols(input_cols=cols)
328
-
329
- if not self.output_cols:
330
- cols = [identifier.concat_names(ids=['OUTPUT_', c]) for c in self.label_cols]
331
- self.set_output_cols(output_cols=cols)
332
-
333
335
  def set_input_cols(self, input_cols: Optional[Union[str, Iterable[str]]]) -> "HistGradientBoostingClassifier":
334
336
  """
335
337
  Input columns setter.
@@ -375,54 +377,48 @@ class HistGradientBoostingClassifier(BaseTransformer):
375
377
  self
376
378
  """
377
379
  self._infer_input_output_cols(dataset)
378
- if isinstance(dataset, pd.DataFrame):
379
- assert self._sklearn_object is not None # keep mypy happy
380
- self._sklearn_object = self._handlers.fit_pandas(
381
- dataset,
382
- self._sklearn_object,
383
- self.input_cols,
384
- self.label_cols,
385
- self.sample_weight_col
386
- )
387
- elif isinstance(dataset, DataFrame):
388
- self._fit_snowpark(dataset)
389
- else:
390
- raise TypeError(
391
- f"Unexpected dataset type: {type(dataset)}."
392
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
393
- )
380
+ if isinstance(dataset, DataFrame):
381
+ session = dataset._session
382
+ assert session is not None # keep mypy happy
383
+ # Validate that key package version in user workspace are supported in snowflake conda channel
384
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
385
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
386
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
387
+
388
+ # Specify input columns so column pruning will be enforced
389
+ selected_cols = self._get_active_columns()
390
+ if len(selected_cols) > 0:
391
+ dataset = dataset.select(selected_cols)
392
+
393
+ self._snowpark_cols = dataset.select(self.input_cols).columns
394
+
395
+ # If we are already in a stored procedure, no need to kick off another one.
396
+ if SNOWML_SPROC_ENV in os.environ:
397
+ statement_params = telemetry.get_function_usage_statement_params(
398
+ project=_PROJECT,
399
+ subproject=_SUBPROJECT,
400
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__),
401
+ api_calls=[Session.call],
402
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
403
+ )
404
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
405
+ pd_df.columns = dataset.columns
406
+ dataset = pd_df
407
+
408
+ model_trainer = ModelTrainerBuilder.build(
409
+ estimator=self._sklearn_object,
410
+ dataset=dataset,
411
+ input_cols=self.input_cols,
412
+ label_cols=self.label_cols,
413
+ sample_weight_col=self.sample_weight_col,
414
+ autogenerated=self._autogenerated,
415
+ subproject=_SUBPROJECT
416
+ )
417
+ self._sklearn_object = model_trainer.train()
394
418
  self._is_fitted = True
395
419
  self._get_model_signatures(dataset)
396
420
  return self
397
421
 
398
- def _fit_snowpark(self, dataset: DataFrame) -> None:
399
- session = dataset._session
400
- assert session is not None # keep mypy happy
401
- # Validate that key package version in user workspace are supported in snowflake conda channel
402
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
403
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
404
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
405
-
406
- # Specify input columns so column pruning will be enforced
407
- selected_cols = self._get_active_columns()
408
- if len(selected_cols) > 0:
409
- dataset = dataset.select(selected_cols)
410
-
411
- estimator = self._sklearn_object
412
- assert estimator is not None # Keep mypy happy
413
-
414
- self._snowpark_cols = dataset.select(self.input_cols).columns
415
-
416
- self._sklearn_object = self._handlers.fit_snowpark(
417
- dataset,
418
- session,
419
- estimator,
420
- ["snowflake-snowpark-python"] + self._get_dependencies(),
421
- self.input_cols,
422
- self.label_cols,
423
- self.sample_weight_col,
424
- )
425
-
426
422
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
427
423
  if self._drop_input_cols:
428
424
  return []
@@ -610,11 +606,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
610
606
  subproject=_SUBPROJECT,
611
607
  custom_tags=dict([("autogen", True)]),
612
608
  )
613
- @telemetry.add_stmt_params_to_df(
614
- project=_PROJECT,
615
- subproject=_SUBPROJECT,
616
- custom_tags=dict([("autogen", True)]),
617
- )
618
609
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
619
610
  """Predict classes for X
620
611
  For more details on this function, see [sklearn.ensemble.HistGradientBoostingClassifier.predict]
@@ -668,11 +659,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
668
659
  subproject=_SUBPROJECT,
669
660
  custom_tags=dict([("autogen", True)]),
670
661
  )
671
- @telemetry.add_stmt_params_to_df(
672
- project=_PROJECT,
673
- subproject=_SUBPROJECT,
674
- custom_tags=dict([("autogen", True)]),
675
- )
676
662
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
677
663
  """Method not supported for this class.
678
664
 
@@ -729,7 +715,8 @@ class HistGradientBoostingClassifier(BaseTransformer):
729
715
  if False:
730
716
  self.fit(dataset)
731
717
  assert self._sklearn_object is not None
732
- return self._sklearn_object.labels_
718
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
719
+ return labels
733
720
  else:
734
721
  raise NotImplementedError
735
722
 
@@ -765,6 +752,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
765
752
  output_cols = []
766
753
 
767
754
  # Make sure column names are valid snowflake identifiers.
755
+ assert output_cols is not None # Make MyPy happy
768
756
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
769
757
 
770
758
  return rv
@@ -775,11 +763,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
775
763
  subproject=_SUBPROJECT,
776
764
  custom_tags=dict([("autogen", True)]),
777
765
  )
778
- @telemetry.add_stmt_params_to_df(
779
- project=_PROJECT,
780
- subproject=_SUBPROJECT,
781
- custom_tags=dict([("autogen", True)]),
782
- )
783
766
  def predict_proba(
784
767
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
785
768
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -822,11 +805,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
822
805
  subproject=_SUBPROJECT,
823
806
  custom_tags=dict([("autogen", True)]),
824
807
  )
825
- @telemetry.add_stmt_params_to_df(
826
- project=_PROJECT,
827
- subproject=_SUBPROJECT,
828
- custom_tags=dict([("autogen", True)]),
829
- )
830
808
  def predict_log_proba(
831
809
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
832
810
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -865,16 +843,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
865
843
  return output_df
866
844
 
867
845
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
868
- @telemetry.send_api_usage_telemetry(
869
- project=_PROJECT,
870
- subproject=_SUBPROJECT,
871
- custom_tags=dict([("autogen", True)]),
872
- )
873
- @telemetry.add_stmt_params_to_df(
874
- project=_PROJECT,
875
- subproject=_SUBPROJECT,
876
- custom_tags=dict([("autogen", True)]),
877
- )
878
846
  def decision_function(
879
847
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
880
848
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -977,11 +945,6 @@ class HistGradientBoostingClassifier(BaseTransformer):
977
945
  subproject=_SUBPROJECT,
978
946
  custom_tags=dict([("autogen", True)]),
979
947
  )
980
- @telemetry.add_stmt_params_to_df(
981
- project=_PROJECT,
982
- subproject=_SUBPROJECT,
983
- custom_tags=dict([("autogen", True)]),
984
- )
985
948
  def kneighbors(
986
949
  self,
987
950
  dataset: Union[DataFrame, pd.DataFrame],
@@ -1041,18 +1004,28 @@ class HistGradientBoostingClassifier(BaseTransformer):
1041
1004
  # For classifier, the type of predict is the same as the type of label
1042
1005
  if self._sklearn_object._estimator_type == 'classifier':
1043
1006
  # label columns is the desired type for output
1044
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
1007
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1045
1008
  # rename the output columns
1046
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
1009
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1047
1010
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1048
1011
  ([] if self._drop_input_cols else inputs)
1049
1012
  + outputs)
1013
+ # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1014
+ # For outlier models, returns -1 for outliers and 1 for inliers.
1015
+ # Clusterer returns int64 cluster labels.
1016
+ elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1017
+ outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1018
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1019
+ ([] if self._drop_input_cols else inputs)
1020
+ + outputs)
1021
+
1050
1022
  # For regressor, the type of predict is float64
1051
1023
  elif self._sklearn_object._estimator_type == 'regressor':
1052
1024
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1053
1025
  self._model_signature_dict["predict"] = ModelSignature(inputs,
1054
1026
  ([] if self._drop_input_cols else inputs)
1055
1027
  + outputs)
1028
+
1056
1029
  for prob_func in PROB_FUNCTIONS:
1057
1030
  if hasattr(self, prob_func):
1058
1031
  output_cols_prefix: str = f"{prob_func}_"