snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LassoLarsIC(BaseTransformer):
71
64
  r"""Lasso model fit with Lars using BIC or AIC for model selection
72
65
  For more details on this class, see [sklearn.linear_model.LassoLarsIC]
@@ -266,12 +259,7 @@ class LassoLarsIC(BaseTransformer):
266
259
  )
267
260
  return selected_cols
268
261
 
269
- @telemetry.send_api_usage_telemetry(
270
- project=_PROJECT,
271
- subproject=_SUBPROJECT,
272
- custom_tags=dict([("autogen", True)]),
273
- )
274
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoLarsIC":
262
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoLarsIC":
275
263
  """Fit the model using X, y as training data
276
264
  For more details on this function, see [sklearn.linear_model.LassoLarsIC.fit]
277
265
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html#sklearn.linear_model.LassoLarsIC.fit)
@@ -298,12 +286,14 @@ class LassoLarsIC(BaseTransformer):
298
286
 
299
287
  self._snowpark_cols = dataset.select(self.input_cols).columns
300
288
 
301
- # If we are already in a stored procedure, no need to kick off another one.
289
+ # If we are already in a stored procedure, no need to kick off another one.
302
290
  if SNOWML_SPROC_ENV in os.environ:
303
291
  statement_params = telemetry.get_function_usage_statement_params(
304
292
  project=_PROJECT,
305
293
  subproject=_SUBPROJECT,
306
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsIC.__class__.__name__),
294
+ function_name=telemetry.get_statement_params_full_func_name(
295
+ inspect.currentframe(), LassoLarsIC.__class__.__name__
296
+ ),
307
297
  api_calls=[Session.call],
308
298
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
309
299
  )
@@ -324,27 +314,24 @@ class LassoLarsIC(BaseTransformer):
324
314
  )
325
315
  self._sklearn_object = model_trainer.train()
326
316
  self._is_fitted = True
327
- self._get_model_signatures(dataset)
317
+ self._generate_model_signatures(dataset)
328
318
  return self
329
319
 
330
320
  def _batch_inference_validate_snowpark(
331
321
  self,
332
322
  dataset: DataFrame,
333
323
  inference_method: str,
334
- ) -> List[str]:
335
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
336
- return the available package that exists in the snowflake anaconda channel
324
+ ) -> None:
325
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
337
326
 
338
327
  Args:
339
328
  dataset: snowpark dataframe
340
329
  inference_method: the inference method such as predict, score...
341
-
330
+
342
331
  Raises:
343
332
  SnowflakeMLException: If the estimator is not fitted, raise error
344
333
  SnowflakeMLException: If the session is None, raise error
345
334
 
346
- Returns:
347
- A list of available package that exists in the snowflake anaconda channel
348
335
  """
349
336
  if not self._is_fitted:
350
337
  raise exceptions.SnowflakeMLException(
@@ -362,9 +349,7 @@ class LassoLarsIC(BaseTransformer):
362
349
  "Session must not specified for snowpark dataset."
363
350
  ),
364
351
  )
365
- # Validate that key package version in user workspace are supported in snowflake conda channel
366
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
367
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
352
+
368
353
 
369
354
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
370
355
  @telemetry.send_api_usage_telemetry(
@@ -400,7 +385,9 @@ class LassoLarsIC(BaseTransformer):
400
385
  # when it is classifier, infer the datatype from label columns
401
386
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
402
387
  # Batch inference takes a single expected output column type. Use the first columns type for now.
403
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
388
+ label_cols_signatures = [
389
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
390
+ ]
404
391
  if len(label_cols_signatures) == 0:
405
392
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
406
393
  raise exceptions.SnowflakeMLException(
@@ -408,25 +395,23 @@ class LassoLarsIC(BaseTransformer):
408
395
  original_exception=ValueError(error_str),
409
396
  )
410
397
 
411
- expected_type_inferred = convert_sp_to_sf_type(
412
- label_cols_signatures[0].as_snowpark_type()
413
- )
398
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
414
399
 
415
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
416
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
400
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
401
+ self._deps = self._get_dependencies()
402
+ assert isinstance(
403
+ dataset._session, Session
404
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
417
405
 
418
406
  transform_kwargs = dict(
419
- session = dataset._session,
420
- dependencies = self._deps,
421
- drop_input_cols = self._drop_input_cols,
422
- expected_output_cols_type = expected_type_inferred,
407
+ session=dataset._session,
408
+ dependencies=self._deps,
409
+ drop_input_cols=self._drop_input_cols,
410
+ expected_output_cols_type=expected_type_inferred,
423
411
  )
424
412
 
425
413
  elif isinstance(dataset, pd.DataFrame):
426
- transform_kwargs = dict(
427
- snowpark_input_cols = self._snowpark_cols,
428
- drop_input_cols = self._drop_input_cols
429
- )
414
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
430
415
 
431
416
  transform_handlers = ModelTransformerBuilder.build(
432
417
  dataset=dataset,
@@ -466,7 +451,7 @@ class LassoLarsIC(BaseTransformer):
466
451
  Transformed dataset.
467
452
  """
468
453
  super()._check_dataset_type(dataset)
469
- inference_method="transform"
454
+ inference_method = "transform"
470
455
 
471
456
  # This dictionary contains optional kwargs for batch inference. These kwargs
472
457
  # are specific to the type of dataset used.
@@ -496,24 +481,19 @@ class LassoLarsIC(BaseTransformer):
496
481
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
497
482
  expected_dtype = convert_sp_to_sf_type(output_types[0])
498
483
 
499
- self._deps = self._batch_inference_validate_snowpark(
500
- dataset=dataset,
501
- inference_method=inference_method,
502
- )
484
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
485
+ self._deps = self._get_dependencies()
503
486
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
504
487
 
505
488
  transform_kwargs = dict(
506
- session = dataset._session,
507
- dependencies = self._deps,
508
- drop_input_cols = self._drop_input_cols,
509
- expected_output_cols_type = expected_dtype,
489
+ session=dataset._session,
490
+ dependencies=self._deps,
491
+ drop_input_cols=self._drop_input_cols,
492
+ expected_output_cols_type=expected_dtype,
510
493
  )
511
494
 
512
495
  elif isinstance(dataset, pd.DataFrame):
513
- transform_kwargs = dict(
514
- snowpark_input_cols = self._snowpark_cols,
515
- drop_input_cols = self._drop_input_cols
516
- )
496
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
517
497
 
518
498
  transform_handlers = ModelTransformerBuilder.build(
519
499
  dataset=dataset,
@@ -532,7 +512,11 @@ class LassoLarsIC(BaseTransformer):
532
512
  return output_df
533
513
 
534
514
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
535
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
515
+ def fit_predict(
516
+ self,
517
+ dataset: Union[DataFrame, pd.DataFrame],
518
+ output_cols_prefix: str = "fit_predict_",
519
+ ) -> Union[DataFrame, pd.DataFrame]:
536
520
  """ Method not supported for this class.
537
521
 
538
522
 
@@ -557,22 +541,104 @@ class LassoLarsIC(BaseTransformer):
557
541
  )
558
542
  output_result, fitted_estimator = model_trainer.train_fit_predict(
559
543
  drop_input_cols=self._drop_input_cols,
560
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
544
+ expected_output_cols_list=(
545
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
546
+ ),
561
547
  )
562
548
  self._sklearn_object = fitted_estimator
563
549
  self._is_fitted = True
564
550
  return output_result
565
551
 
552
+
553
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
554
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
555
+ """ Method not supported for this class.
556
+
566
557
 
567
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
568
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
569
- """
558
+ Raises:
559
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
560
+
561
+ Args:
562
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
563
+ Snowpark or Pandas DataFrame.
564
+ output_cols_prefix: Prefix for the response columns
570
565
  Returns:
571
566
  Transformed dataset.
572
567
  """
573
- self.fit(dataset)
574
- assert self._sklearn_object is not None
575
- return self._sklearn_object.embedding_
568
+ self._infer_input_output_cols(dataset)
569
+ super()._check_dataset_type(dataset)
570
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
571
+ estimator=self._sklearn_object,
572
+ dataset=dataset,
573
+ input_cols=self.input_cols,
574
+ label_cols=self.label_cols,
575
+ sample_weight_col=self.sample_weight_col,
576
+ autogenerated=self._autogenerated,
577
+ subproject=_SUBPROJECT,
578
+ )
579
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
580
+ drop_input_cols=self._drop_input_cols,
581
+ expected_output_cols_list=self.output_cols,
582
+ )
583
+ self._sklearn_object = fitted_estimator
584
+ self._is_fitted = True
585
+ return output_result
586
+
587
+
588
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
589
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
590
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
591
+ """
592
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
593
+ # The following condition is introduced for kneighbors methods, and not used in other methods
594
+ if output_cols:
595
+ output_cols = [
596
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
597
+ for c in output_cols
598
+ ]
599
+ elif getattr(self._sklearn_object, "classes_", None) is None:
600
+ output_cols = [output_cols_prefix]
601
+ elif self._sklearn_object is not None:
602
+ classes = self._sklearn_object.classes_
603
+ if isinstance(classes, numpy.ndarray):
604
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
605
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
606
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
607
+ output_cols = []
608
+ for i, cl in enumerate(classes):
609
+ # For binary classification, there is only one output column for each class
610
+ # ndarray as the two classes are complementary.
611
+ if len(cl) == 2:
612
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
613
+ else:
614
+ output_cols.extend([
615
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
616
+ ])
617
+ else:
618
+ output_cols = []
619
+
620
+ # Make sure column names are valid snowflake identifiers.
621
+ assert output_cols is not None # Make MyPy happy
622
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
623
+
624
+ return rv
625
+
626
+ def _align_expected_output_names(
627
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
628
+ ) -> List[str]:
629
+ # in case the inferred output column names dimension is different
630
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
631
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
632
+ output_df_columns = list(output_df_pd.columns)
633
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
634
+ if self.sample_weight_col:
635
+ output_df_columns_set -= set(self.sample_weight_col)
636
+ # if the dimension of inferred output column names is correct; use it
637
+ if len(expected_output_cols_list) == len(output_df_columns_set):
638
+ return expected_output_cols_list
639
+ # otherwise, use the sklearn estimator's output
640
+ else:
641
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
576
642
 
577
643
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
578
644
  @telemetry.send_api_usage_telemetry(
@@ -604,24 +670,26 @@ class LassoLarsIC(BaseTransformer):
604
670
  # are specific to the type of dataset used.
605
671
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
606
672
 
673
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
674
+
607
675
  if isinstance(dataset, DataFrame):
608
- self._deps = self._batch_inference_validate_snowpark(
609
- dataset=dataset,
610
- inference_method=inference_method,
611
- )
612
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
676
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
677
+ self._deps = self._get_dependencies()
678
+ assert isinstance(
679
+ dataset._session, Session
680
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
613
681
  transform_kwargs = dict(
614
682
  session=dataset._session,
615
683
  dependencies=self._deps,
616
- drop_input_cols = self._drop_input_cols,
684
+ drop_input_cols=self._drop_input_cols,
617
685
  expected_output_cols_type="float",
618
686
  )
687
+ expected_output_cols = self._align_expected_output_names(
688
+ inference_method, dataset, expected_output_cols, output_cols_prefix
689
+ )
619
690
 
620
691
  elif isinstance(dataset, pd.DataFrame):
621
- transform_kwargs = dict(
622
- snowpark_input_cols = self._snowpark_cols,
623
- drop_input_cols = self._drop_input_cols
624
- )
692
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
625
693
 
626
694
  transform_handlers = ModelTransformerBuilder.build(
627
695
  dataset=dataset,
@@ -633,7 +701,7 @@ class LassoLarsIC(BaseTransformer):
633
701
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
634
702
  inference_method=inference_method,
635
703
  input_cols=self.input_cols,
636
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
704
+ expected_output_cols=expected_output_cols,
637
705
  **transform_kwargs
638
706
  )
639
707
  return output_df
@@ -663,29 +731,30 @@ class LassoLarsIC(BaseTransformer):
663
731
  Output dataset with log probability of the sample for each class in the model.
664
732
  """
665
733
  super()._check_dataset_type(dataset)
666
- inference_method="predict_log_proba"
734
+ inference_method = "predict_log_proba"
735
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
667
736
 
668
737
  # This dictionary contains optional kwargs for batch inference. These kwargs
669
738
  # are specific to the type of dataset used.
670
739
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
671
740
 
672
741
  if isinstance(dataset, DataFrame):
673
- self._deps = self._batch_inference_validate_snowpark(
674
- dataset=dataset,
675
- inference_method=inference_method,
676
- )
677
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
742
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
743
+ self._deps = self._get_dependencies()
744
+ assert isinstance(
745
+ dataset._session, Session
746
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
678
747
  transform_kwargs = dict(
679
748
  session=dataset._session,
680
749
  dependencies=self._deps,
681
- drop_input_cols = self._drop_input_cols,
750
+ drop_input_cols=self._drop_input_cols,
682
751
  expected_output_cols_type="float",
683
752
  )
753
+ expected_output_cols = self._align_expected_output_names(
754
+ inference_method, dataset, expected_output_cols, output_cols_prefix
755
+ )
684
756
  elif isinstance(dataset, pd.DataFrame):
685
- transform_kwargs = dict(
686
- snowpark_input_cols = self._snowpark_cols,
687
- drop_input_cols = self._drop_input_cols
688
- )
757
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
689
758
 
690
759
  transform_handlers = ModelTransformerBuilder.build(
691
760
  dataset=dataset,
@@ -698,7 +767,7 @@ class LassoLarsIC(BaseTransformer):
698
767
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
699
768
  inference_method=inference_method,
700
769
  input_cols=self.input_cols,
701
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
770
+ expected_output_cols=expected_output_cols,
702
771
  **transform_kwargs
703
772
  )
704
773
  return output_df
@@ -724,30 +793,32 @@ class LassoLarsIC(BaseTransformer):
724
793
  Output dataset with results of the decision function for the samples in input dataset.
725
794
  """
726
795
  super()._check_dataset_type(dataset)
727
- inference_method="decision_function"
796
+ inference_method = "decision_function"
728
797
 
729
798
  # This dictionary contains optional kwargs for batch inference. These kwargs
730
799
  # are specific to the type of dataset used.
731
800
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
732
801
 
802
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
803
+
733
804
  if isinstance(dataset, DataFrame):
734
- self._deps = self._batch_inference_validate_snowpark(
735
- dataset=dataset,
736
- inference_method=inference_method,
737
- )
738
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
805
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
806
+ self._deps = self._get_dependencies()
807
+ assert isinstance(
808
+ dataset._session, Session
809
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
739
810
  transform_kwargs = dict(
740
811
  session=dataset._session,
741
812
  dependencies=self._deps,
742
- drop_input_cols = self._drop_input_cols,
813
+ drop_input_cols=self._drop_input_cols,
743
814
  expected_output_cols_type="float",
744
815
  )
816
+ expected_output_cols = self._align_expected_output_names(
817
+ inference_method, dataset, expected_output_cols, output_cols_prefix
818
+ )
745
819
 
746
820
  elif isinstance(dataset, pd.DataFrame):
747
- transform_kwargs = dict(
748
- snowpark_input_cols = self._snowpark_cols,
749
- drop_input_cols = self._drop_input_cols
750
- )
821
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
751
822
 
752
823
  transform_handlers = ModelTransformerBuilder.build(
753
824
  dataset=dataset,
@@ -760,7 +831,7 @@ class LassoLarsIC(BaseTransformer):
760
831
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
761
832
  inference_method=inference_method,
762
833
  input_cols=self.input_cols,
763
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
834
+ expected_output_cols=expected_output_cols,
764
835
  **transform_kwargs
765
836
  )
766
837
  return output_df
@@ -789,17 +860,17 @@ class LassoLarsIC(BaseTransformer):
789
860
  Output dataset with probability of the sample for each class in the model.
790
861
  """
791
862
  super()._check_dataset_type(dataset)
792
- inference_method="score_samples"
863
+ inference_method = "score_samples"
793
864
 
794
865
  # This dictionary contains optional kwargs for batch inference. These kwargs
795
866
  # are specific to the type of dataset used.
796
867
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
797
868
 
869
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
870
+
798
871
  if isinstance(dataset, DataFrame):
799
- self._deps = self._batch_inference_validate_snowpark(
800
- dataset=dataset,
801
- inference_method=inference_method,
802
- )
872
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
873
+ self._deps = self._get_dependencies()
803
874
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
804
875
  transform_kwargs = dict(
805
876
  session=dataset._session,
@@ -807,6 +878,9 @@ class LassoLarsIC(BaseTransformer):
807
878
  drop_input_cols = self._drop_input_cols,
808
879
  expected_output_cols_type="float",
809
880
  )
881
+ expected_output_cols = self._align_expected_output_names(
882
+ inference_method, dataset, expected_output_cols, output_cols_prefix
883
+ )
810
884
 
811
885
  elif isinstance(dataset, pd.DataFrame):
812
886
  transform_kwargs = dict(
@@ -825,7 +899,7 @@ class LassoLarsIC(BaseTransformer):
825
899
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
826
900
  inference_method=inference_method,
827
901
  input_cols=self.input_cols,
828
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
902
+ expected_output_cols=expected_output_cols,
829
903
  **transform_kwargs
830
904
  )
831
905
  return output_df
@@ -860,17 +934,15 @@ class LassoLarsIC(BaseTransformer):
860
934
  transform_kwargs: ScoreKwargsTypedDict = dict()
861
935
 
862
936
  if isinstance(dataset, DataFrame):
863
- self._deps = self._batch_inference_validate_snowpark(
864
- dataset=dataset,
865
- inference_method="score",
866
- )
937
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
938
+ self._deps = self._get_dependencies()
867
939
  selected_cols = self._get_active_columns()
868
940
  if len(selected_cols) > 0:
869
941
  dataset = dataset.select(selected_cols)
870
942
  assert isinstance(dataset._session, Session) # keep mypy happy
871
943
  transform_kwargs = dict(
872
944
  session=dataset._session,
873
- dependencies=["snowflake-snowpark-python"] + self._deps,
945
+ dependencies=self._deps,
874
946
  score_sproc_imports=['sklearn'],
875
947
  )
876
948
  elif isinstance(dataset, pd.DataFrame):
@@ -935,11 +1007,8 @@ class LassoLarsIC(BaseTransformer):
935
1007
 
936
1008
  if isinstance(dataset, DataFrame):
937
1009
 
938
- self._deps = self._batch_inference_validate_snowpark(
939
- dataset=dataset,
940
- inference_method=inference_method,
941
-
942
- )
1010
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1011
+ self._deps = self._get_dependencies()
943
1012
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
944
1013
  transform_kwargs = dict(
945
1014
  session = dataset._session,
@@ -972,50 +1041,84 @@ class LassoLarsIC(BaseTransformer):
972
1041
  )
973
1042
  return output_df
974
1043
 
1044
+
1045
+
1046
+ def to_sklearn(self) -> Any:
1047
+ """Get sklearn.linear_model.LassoLarsIC object.
1048
+ """
1049
+ if self._sklearn_object is None:
1050
+ self._sklearn_object = self._create_sklearn_object()
1051
+ return self._sklearn_object
1052
+
1053
+ def to_xgboost(self) -> Any:
1054
+ raise exceptions.SnowflakeMLException(
1055
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1056
+ original_exception=AttributeError(
1057
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1058
+ "to_xgboost()",
1059
+ "to_sklearn()"
1060
+ )
1061
+ ),
1062
+ )
1063
+
1064
+ def to_lightgbm(self) -> Any:
1065
+ raise exceptions.SnowflakeMLException(
1066
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1067
+ original_exception=AttributeError(
1068
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1069
+ "to_lightgbm()",
1070
+ "to_sklearn()"
1071
+ )
1072
+ ),
1073
+ )
1074
+
1075
+ def _get_dependencies(self) -> List[str]:
1076
+ return self._deps
1077
+
975
1078
 
976
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1079
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
977
1080
  self._model_signature_dict = dict()
978
1081
 
979
1082
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
980
1083
 
981
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1084
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
982
1085
  outputs: List[BaseFeatureSpec] = []
983
1086
  if hasattr(self, "predict"):
984
1087
  # keep mypy happy
985
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1088
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
986
1089
  # For classifier, the type of predict is the same as the type of label
987
- if self._sklearn_object._estimator_type == 'classifier':
988
- # label columns is the desired type for output
1090
+ if self._sklearn_object._estimator_type == "classifier":
1091
+ # label columns is the desired type for output
989
1092
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
990
1093
  # rename the output columns
991
1094
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
992
- self._model_signature_dict["predict"] = ModelSignature(inputs,
993
- ([] if self._drop_input_cols else inputs)
994
- + outputs)
1095
+ self._model_signature_dict["predict"] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
995
1098
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
996
1099
  # For outlier models, returns -1 for outliers and 1 for inliers.
997
- # Clusterer returns int64 cluster labels.
1100
+ # Clusterer returns int64 cluster labels.
998
1101
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
999
1102
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1000
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1001
- ([] if self._drop_input_cols else inputs)
1002
- + outputs)
1003
-
1103
+ self._model_signature_dict["predict"] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1106
+
1004
1107
  # For regressor, the type of predict is float64
1005
- elif self._sklearn_object._estimator_type == 'regressor':
1108
+ elif self._sklearn_object._estimator_type == "regressor":
1006
1109
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1007
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1010
-
1110
+ self._model_signature_dict["predict"] = ModelSignature(
1111
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1112
+ )
1113
+
1011
1114
  for prob_func in PROB_FUNCTIONS:
1012
1115
  if hasattr(self, prob_func):
1013
1116
  output_cols_prefix: str = f"{prob_func}_"
1014
1117
  output_column_names = self._get_output_column_names(output_cols_prefix)
1015
1118
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1016
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1119
+ self._model_signature_dict[prob_func] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1019
1122
 
1020
1123
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1021
1124
  items = list(self._model_signature_dict.items())
@@ -1028,10 +1131,10 @@ class LassoLarsIC(BaseTransformer):
1028
1131
  """Returns model signature of current class.
1029
1132
 
1030
1133
  Raises:
1031
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1134
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1032
1135
 
1033
1136
  Returns:
1034
- Dict[str, ModelSignature]: each method and its input output signature
1137
+ Dict with each method and its input output signature
1035
1138
  """
1036
1139
  if self._model_signature_dict is None:
1037
1140
  raise exceptions.SnowflakeMLException(
@@ -1039,35 +1142,3 @@ class LassoLarsIC(BaseTransformer):
1039
1142
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1040
1143
  )
1041
1144
  return self._model_signature_dict
1042
-
1043
- def to_sklearn(self) -> Any:
1044
- """Get sklearn.linear_model.LassoLarsIC object.
1045
- """
1046
- if self._sklearn_object is None:
1047
- self._sklearn_object = self._create_sklearn_object()
1048
- return self._sklearn_object
1049
-
1050
- def to_xgboost(self) -> Any:
1051
- raise exceptions.SnowflakeMLException(
1052
- error_code=error_codes.METHOD_NOT_ALLOWED,
1053
- original_exception=AttributeError(
1054
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1055
- "to_xgboost()",
1056
- "to_sklearn()"
1057
- )
1058
- ),
1059
- )
1060
-
1061
- def to_lightgbm(self) -> Any:
1062
- raise exceptions.SnowflakeMLException(
1063
- error_code=error_codes.METHOD_NOT_ALLOWED,
1064
- original_exception=AttributeError(
1065
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1066
- "to_lightgbm()",
1067
- "to_sklearn()"
1068
- )
1069
- ),
1070
- )
1071
-
1072
- def _get_dependencies(self) -> List[str]:
1073
- return self._deps