snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_ridge".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class KernelRidge(BaseTransformer):
|
71
64
|
r"""Kernel ridge regression
|
72
65
|
For more details on this class, see [sklearn.kernel_ridge.KernelRidge]
|
@@ -244,12 +237,7 @@ class KernelRidge(BaseTransformer):
|
|
244
237
|
)
|
245
238
|
return selected_cols
|
246
239
|
|
247
|
-
|
248
|
-
project=_PROJECT,
|
249
|
-
subproject=_SUBPROJECT,
|
250
|
-
custom_tags=dict([("autogen", True)]),
|
251
|
-
)
|
252
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelRidge":
|
240
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelRidge":
|
253
241
|
"""Fit Kernel Ridge regression model
|
254
242
|
For more details on this function, see [sklearn.kernel_ridge.KernelRidge.fit]
|
255
243
|
(https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html#sklearn.kernel_ridge.KernelRidge.fit)
|
@@ -276,12 +264,14 @@ class KernelRidge(BaseTransformer):
|
|
276
264
|
|
277
265
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
266
|
|
279
|
-
|
267
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
280
268
|
if SNOWML_SPROC_ENV in os.environ:
|
281
269
|
statement_params = telemetry.get_function_usage_statement_params(
|
282
270
|
project=_PROJECT,
|
283
271
|
subproject=_SUBPROJECT,
|
284
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
272
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
273
|
+
inspect.currentframe(), KernelRidge.__class__.__name__
|
274
|
+
),
|
285
275
|
api_calls=[Session.call],
|
286
276
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
287
277
|
)
|
@@ -302,27 +292,24 @@ class KernelRidge(BaseTransformer):
|
|
302
292
|
)
|
303
293
|
self._sklearn_object = model_trainer.train()
|
304
294
|
self._is_fitted = True
|
305
|
-
self.
|
295
|
+
self._generate_model_signatures(dataset)
|
306
296
|
return self
|
307
297
|
|
308
298
|
def _batch_inference_validate_snowpark(
|
309
299
|
self,
|
310
300
|
dataset: DataFrame,
|
311
301
|
inference_method: str,
|
312
|
-
) ->
|
313
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
314
|
-
return the available package that exists in the snowflake anaconda channel
|
302
|
+
) -> None:
|
303
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
315
304
|
|
316
305
|
Args:
|
317
306
|
dataset: snowpark dataframe
|
318
307
|
inference_method: the inference method such as predict, score...
|
319
|
-
|
308
|
+
|
320
309
|
Raises:
|
321
310
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
322
311
|
SnowflakeMLException: If the session is None, raise error
|
323
312
|
|
324
|
-
Returns:
|
325
|
-
A list of available package that exists in the snowflake anaconda channel
|
326
313
|
"""
|
327
314
|
if not self._is_fitted:
|
328
315
|
raise exceptions.SnowflakeMLException(
|
@@ -340,9 +327,7 @@ class KernelRidge(BaseTransformer):
|
|
340
327
|
"Session must not specified for snowpark dataset."
|
341
328
|
),
|
342
329
|
)
|
343
|
-
|
344
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
345
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
330
|
+
|
346
331
|
|
347
332
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
348
333
|
@telemetry.send_api_usage_telemetry(
|
@@ -378,7 +363,9 @@ class KernelRidge(BaseTransformer):
|
|
378
363
|
# when it is classifier, infer the datatype from label columns
|
379
364
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
380
365
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
381
|
-
label_cols_signatures = [
|
366
|
+
label_cols_signatures = [
|
367
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
368
|
+
]
|
382
369
|
if len(label_cols_signatures) == 0:
|
383
370
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
384
371
|
raise exceptions.SnowflakeMLException(
|
@@ -386,25 +373,23 @@ class KernelRidge(BaseTransformer):
|
|
386
373
|
original_exception=ValueError(error_str),
|
387
374
|
)
|
388
375
|
|
389
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
390
|
-
label_cols_signatures[0].as_snowpark_type()
|
391
|
-
)
|
376
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
392
377
|
|
393
|
-
self.
|
394
|
-
|
378
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
379
|
+
self._deps = self._get_dependencies()
|
380
|
+
assert isinstance(
|
381
|
+
dataset._session, Session
|
382
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
395
383
|
|
396
384
|
transform_kwargs = dict(
|
397
|
-
session
|
398
|
-
dependencies
|
399
|
-
drop_input_cols
|
400
|
-
expected_output_cols_type
|
385
|
+
session=dataset._session,
|
386
|
+
dependencies=self._deps,
|
387
|
+
drop_input_cols=self._drop_input_cols,
|
388
|
+
expected_output_cols_type=expected_type_inferred,
|
401
389
|
)
|
402
390
|
|
403
391
|
elif isinstance(dataset, pd.DataFrame):
|
404
|
-
transform_kwargs = dict(
|
405
|
-
snowpark_input_cols = self._snowpark_cols,
|
406
|
-
drop_input_cols = self._drop_input_cols
|
407
|
-
)
|
392
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
408
393
|
|
409
394
|
transform_handlers = ModelTransformerBuilder.build(
|
410
395
|
dataset=dataset,
|
@@ -444,7 +429,7 @@ class KernelRidge(BaseTransformer):
|
|
444
429
|
Transformed dataset.
|
445
430
|
"""
|
446
431
|
super()._check_dataset_type(dataset)
|
447
|
-
inference_method="transform"
|
432
|
+
inference_method = "transform"
|
448
433
|
|
449
434
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
450
435
|
# are specific to the type of dataset used.
|
@@ -474,24 +459,19 @@ class KernelRidge(BaseTransformer):
|
|
474
459
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
475
460
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
476
461
|
|
477
|
-
self.
|
478
|
-
|
479
|
-
inference_method=inference_method,
|
480
|
-
)
|
462
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
463
|
+
self._deps = self._get_dependencies()
|
481
464
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
482
465
|
|
483
466
|
transform_kwargs = dict(
|
484
|
-
session
|
485
|
-
dependencies
|
486
|
-
drop_input_cols
|
487
|
-
expected_output_cols_type
|
467
|
+
session=dataset._session,
|
468
|
+
dependencies=self._deps,
|
469
|
+
drop_input_cols=self._drop_input_cols,
|
470
|
+
expected_output_cols_type=expected_dtype,
|
488
471
|
)
|
489
472
|
|
490
473
|
elif isinstance(dataset, pd.DataFrame):
|
491
|
-
transform_kwargs = dict(
|
492
|
-
snowpark_input_cols = self._snowpark_cols,
|
493
|
-
drop_input_cols = self._drop_input_cols
|
494
|
-
)
|
474
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
495
475
|
|
496
476
|
transform_handlers = ModelTransformerBuilder.build(
|
497
477
|
dataset=dataset,
|
@@ -510,7 +490,11 @@ class KernelRidge(BaseTransformer):
|
|
510
490
|
return output_df
|
511
491
|
|
512
492
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
513
|
-
def fit_predict(
|
493
|
+
def fit_predict(
|
494
|
+
self,
|
495
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
496
|
+
output_cols_prefix: str = "fit_predict_",
|
497
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
514
498
|
""" Method not supported for this class.
|
515
499
|
|
516
500
|
|
@@ -535,22 +519,104 @@ class KernelRidge(BaseTransformer):
|
|
535
519
|
)
|
536
520
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
537
521
|
drop_input_cols=self._drop_input_cols,
|
538
|
-
expected_output_cols_list=
|
522
|
+
expected_output_cols_list=(
|
523
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
524
|
+
),
|
539
525
|
)
|
540
526
|
self._sklearn_object = fitted_estimator
|
541
527
|
self._is_fitted = True
|
542
528
|
return output_result
|
543
529
|
|
530
|
+
|
531
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
532
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
533
|
+
""" Method not supported for this class.
|
534
|
+
|
544
535
|
|
545
|
-
|
546
|
-
|
547
|
-
|
536
|
+
Raises:
|
537
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
538
|
+
|
539
|
+
Args:
|
540
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
541
|
+
Snowpark or Pandas DataFrame.
|
542
|
+
output_cols_prefix: Prefix for the response columns
|
548
543
|
Returns:
|
549
544
|
Transformed dataset.
|
550
545
|
"""
|
551
|
-
self.
|
552
|
-
|
553
|
-
|
546
|
+
self._infer_input_output_cols(dataset)
|
547
|
+
super()._check_dataset_type(dataset)
|
548
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
549
|
+
estimator=self._sklearn_object,
|
550
|
+
dataset=dataset,
|
551
|
+
input_cols=self.input_cols,
|
552
|
+
label_cols=self.label_cols,
|
553
|
+
sample_weight_col=self.sample_weight_col,
|
554
|
+
autogenerated=self._autogenerated,
|
555
|
+
subproject=_SUBPROJECT,
|
556
|
+
)
|
557
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
558
|
+
drop_input_cols=self._drop_input_cols,
|
559
|
+
expected_output_cols_list=self.output_cols,
|
560
|
+
)
|
561
|
+
self._sklearn_object = fitted_estimator
|
562
|
+
self._is_fitted = True
|
563
|
+
return output_result
|
564
|
+
|
565
|
+
|
566
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
567
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
568
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
569
|
+
"""
|
570
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
571
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
572
|
+
if output_cols:
|
573
|
+
output_cols = [
|
574
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
575
|
+
for c in output_cols
|
576
|
+
]
|
577
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
578
|
+
output_cols = [output_cols_prefix]
|
579
|
+
elif self._sklearn_object is not None:
|
580
|
+
classes = self._sklearn_object.classes_
|
581
|
+
if isinstance(classes, numpy.ndarray):
|
582
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
583
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
584
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
585
|
+
output_cols = []
|
586
|
+
for i, cl in enumerate(classes):
|
587
|
+
# For binary classification, there is only one output column for each class
|
588
|
+
# ndarray as the two classes are complementary.
|
589
|
+
if len(cl) == 2:
|
590
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
591
|
+
else:
|
592
|
+
output_cols.extend([
|
593
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
594
|
+
])
|
595
|
+
else:
|
596
|
+
output_cols = []
|
597
|
+
|
598
|
+
# Make sure column names are valid snowflake identifiers.
|
599
|
+
assert output_cols is not None # Make MyPy happy
|
600
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
601
|
+
|
602
|
+
return rv
|
603
|
+
|
604
|
+
def _align_expected_output_names(
|
605
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
606
|
+
) -> List[str]:
|
607
|
+
# in case the inferred output column names dimension is different
|
608
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
609
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
610
|
+
output_df_columns = list(output_df_pd.columns)
|
611
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
612
|
+
if self.sample_weight_col:
|
613
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
614
|
+
# if the dimension of inferred output column names is correct; use it
|
615
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
616
|
+
return expected_output_cols_list
|
617
|
+
# otherwise, use the sklearn estimator's output
|
618
|
+
else:
|
619
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
554
620
|
|
555
621
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
556
622
|
@telemetry.send_api_usage_telemetry(
|
@@ -582,24 +648,26 @@ class KernelRidge(BaseTransformer):
|
|
582
648
|
# are specific to the type of dataset used.
|
583
649
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
584
650
|
|
651
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
652
|
+
|
585
653
|
if isinstance(dataset, DataFrame):
|
586
|
-
self.
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
654
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
655
|
+
self._deps = self._get_dependencies()
|
656
|
+
assert isinstance(
|
657
|
+
dataset._session, Session
|
658
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
591
659
|
transform_kwargs = dict(
|
592
660
|
session=dataset._session,
|
593
661
|
dependencies=self._deps,
|
594
|
-
drop_input_cols
|
662
|
+
drop_input_cols=self._drop_input_cols,
|
595
663
|
expected_output_cols_type="float",
|
596
664
|
)
|
665
|
+
expected_output_cols = self._align_expected_output_names(
|
666
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
667
|
+
)
|
597
668
|
|
598
669
|
elif isinstance(dataset, pd.DataFrame):
|
599
|
-
transform_kwargs = dict(
|
600
|
-
snowpark_input_cols = self._snowpark_cols,
|
601
|
-
drop_input_cols = self._drop_input_cols
|
602
|
-
)
|
670
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
603
671
|
|
604
672
|
transform_handlers = ModelTransformerBuilder.build(
|
605
673
|
dataset=dataset,
|
@@ -611,7 +679,7 @@ class KernelRidge(BaseTransformer):
|
|
611
679
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
612
680
|
inference_method=inference_method,
|
613
681
|
input_cols=self.input_cols,
|
614
|
-
expected_output_cols=
|
682
|
+
expected_output_cols=expected_output_cols,
|
615
683
|
**transform_kwargs
|
616
684
|
)
|
617
685
|
return output_df
|
@@ -641,29 +709,30 @@ class KernelRidge(BaseTransformer):
|
|
641
709
|
Output dataset with log probability of the sample for each class in the model.
|
642
710
|
"""
|
643
711
|
super()._check_dataset_type(dataset)
|
644
|
-
inference_method="predict_log_proba"
|
712
|
+
inference_method = "predict_log_proba"
|
713
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
645
714
|
|
646
715
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
647
716
|
# are specific to the type of dataset used.
|
648
717
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
649
718
|
|
650
719
|
if isinstance(dataset, DataFrame):
|
651
|
-
self.
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
720
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
721
|
+
self._deps = self._get_dependencies()
|
722
|
+
assert isinstance(
|
723
|
+
dataset._session, Session
|
724
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
656
725
|
transform_kwargs = dict(
|
657
726
|
session=dataset._session,
|
658
727
|
dependencies=self._deps,
|
659
|
-
drop_input_cols
|
728
|
+
drop_input_cols=self._drop_input_cols,
|
660
729
|
expected_output_cols_type="float",
|
661
730
|
)
|
731
|
+
expected_output_cols = self._align_expected_output_names(
|
732
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
733
|
+
)
|
662
734
|
elif isinstance(dataset, pd.DataFrame):
|
663
|
-
transform_kwargs = dict(
|
664
|
-
snowpark_input_cols = self._snowpark_cols,
|
665
|
-
drop_input_cols = self._drop_input_cols
|
666
|
-
)
|
735
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
667
736
|
|
668
737
|
transform_handlers = ModelTransformerBuilder.build(
|
669
738
|
dataset=dataset,
|
@@ -676,7 +745,7 @@ class KernelRidge(BaseTransformer):
|
|
676
745
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
677
746
|
inference_method=inference_method,
|
678
747
|
input_cols=self.input_cols,
|
679
|
-
expected_output_cols=
|
748
|
+
expected_output_cols=expected_output_cols,
|
680
749
|
**transform_kwargs
|
681
750
|
)
|
682
751
|
return output_df
|
@@ -702,30 +771,32 @@ class KernelRidge(BaseTransformer):
|
|
702
771
|
Output dataset with results of the decision function for the samples in input dataset.
|
703
772
|
"""
|
704
773
|
super()._check_dataset_type(dataset)
|
705
|
-
inference_method="decision_function"
|
774
|
+
inference_method = "decision_function"
|
706
775
|
|
707
776
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
708
777
|
# are specific to the type of dataset used.
|
709
778
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
710
779
|
|
780
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
781
|
+
|
711
782
|
if isinstance(dataset, DataFrame):
|
712
|
-
self.
|
713
|
-
|
714
|
-
|
715
|
-
|
716
|
-
|
783
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
784
|
+
self._deps = self._get_dependencies()
|
785
|
+
assert isinstance(
|
786
|
+
dataset._session, Session
|
787
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
717
788
|
transform_kwargs = dict(
|
718
789
|
session=dataset._session,
|
719
790
|
dependencies=self._deps,
|
720
|
-
drop_input_cols
|
791
|
+
drop_input_cols=self._drop_input_cols,
|
721
792
|
expected_output_cols_type="float",
|
722
793
|
)
|
794
|
+
expected_output_cols = self._align_expected_output_names(
|
795
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
796
|
+
)
|
723
797
|
|
724
798
|
elif isinstance(dataset, pd.DataFrame):
|
725
|
-
transform_kwargs = dict(
|
726
|
-
snowpark_input_cols = self._snowpark_cols,
|
727
|
-
drop_input_cols = self._drop_input_cols
|
728
|
-
)
|
799
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
729
800
|
|
730
801
|
transform_handlers = ModelTransformerBuilder.build(
|
731
802
|
dataset=dataset,
|
@@ -738,7 +809,7 @@ class KernelRidge(BaseTransformer):
|
|
738
809
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
739
810
|
inference_method=inference_method,
|
740
811
|
input_cols=self.input_cols,
|
741
|
-
expected_output_cols=
|
812
|
+
expected_output_cols=expected_output_cols,
|
742
813
|
**transform_kwargs
|
743
814
|
)
|
744
815
|
return output_df
|
@@ -767,17 +838,17 @@ class KernelRidge(BaseTransformer):
|
|
767
838
|
Output dataset with probability of the sample for each class in the model.
|
768
839
|
"""
|
769
840
|
super()._check_dataset_type(dataset)
|
770
|
-
inference_method="score_samples"
|
841
|
+
inference_method = "score_samples"
|
771
842
|
|
772
843
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
773
844
|
# are specific to the type of dataset used.
|
774
845
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
775
846
|
|
847
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
848
|
+
|
776
849
|
if isinstance(dataset, DataFrame):
|
777
|
-
self.
|
778
|
-
|
779
|
-
inference_method=inference_method,
|
780
|
-
)
|
850
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
851
|
+
self._deps = self._get_dependencies()
|
781
852
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
782
853
|
transform_kwargs = dict(
|
783
854
|
session=dataset._session,
|
@@ -785,6 +856,9 @@ class KernelRidge(BaseTransformer):
|
|
785
856
|
drop_input_cols = self._drop_input_cols,
|
786
857
|
expected_output_cols_type="float",
|
787
858
|
)
|
859
|
+
expected_output_cols = self._align_expected_output_names(
|
860
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
861
|
+
)
|
788
862
|
|
789
863
|
elif isinstance(dataset, pd.DataFrame):
|
790
864
|
transform_kwargs = dict(
|
@@ -803,7 +877,7 @@ class KernelRidge(BaseTransformer):
|
|
803
877
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
804
878
|
inference_method=inference_method,
|
805
879
|
input_cols=self.input_cols,
|
806
|
-
expected_output_cols=
|
880
|
+
expected_output_cols=expected_output_cols,
|
807
881
|
**transform_kwargs
|
808
882
|
)
|
809
883
|
return output_df
|
@@ -838,17 +912,15 @@ class KernelRidge(BaseTransformer):
|
|
838
912
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
839
913
|
|
840
914
|
if isinstance(dataset, DataFrame):
|
841
|
-
self.
|
842
|
-
|
843
|
-
inference_method="score",
|
844
|
-
)
|
915
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
916
|
+
self._deps = self._get_dependencies()
|
845
917
|
selected_cols = self._get_active_columns()
|
846
918
|
if len(selected_cols) > 0:
|
847
919
|
dataset = dataset.select(selected_cols)
|
848
920
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
849
921
|
transform_kwargs = dict(
|
850
922
|
session=dataset._session,
|
851
|
-
dependencies=
|
923
|
+
dependencies=self._deps,
|
852
924
|
score_sproc_imports=['sklearn'],
|
853
925
|
)
|
854
926
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -913,11 +985,8 @@ class KernelRidge(BaseTransformer):
|
|
913
985
|
|
914
986
|
if isinstance(dataset, DataFrame):
|
915
987
|
|
916
|
-
self.
|
917
|
-
|
918
|
-
inference_method=inference_method,
|
919
|
-
|
920
|
-
)
|
988
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
989
|
+
self._deps = self._get_dependencies()
|
921
990
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
922
991
|
transform_kwargs = dict(
|
923
992
|
session = dataset._session,
|
@@ -950,50 +1019,84 @@ class KernelRidge(BaseTransformer):
|
|
950
1019
|
)
|
951
1020
|
return output_df
|
952
1021
|
|
1022
|
+
|
1023
|
+
|
1024
|
+
def to_sklearn(self) -> Any:
|
1025
|
+
"""Get sklearn.kernel_ridge.KernelRidge object.
|
1026
|
+
"""
|
1027
|
+
if self._sklearn_object is None:
|
1028
|
+
self._sklearn_object = self._create_sklearn_object()
|
1029
|
+
return self._sklearn_object
|
1030
|
+
|
1031
|
+
def to_xgboost(self) -> Any:
|
1032
|
+
raise exceptions.SnowflakeMLException(
|
1033
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1034
|
+
original_exception=AttributeError(
|
1035
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1036
|
+
"to_xgboost()",
|
1037
|
+
"to_sklearn()"
|
1038
|
+
)
|
1039
|
+
),
|
1040
|
+
)
|
1041
|
+
|
1042
|
+
def to_lightgbm(self) -> Any:
|
1043
|
+
raise exceptions.SnowflakeMLException(
|
1044
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1045
|
+
original_exception=AttributeError(
|
1046
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1047
|
+
"to_lightgbm()",
|
1048
|
+
"to_sklearn()"
|
1049
|
+
)
|
1050
|
+
),
|
1051
|
+
)
|
1052
|
+
|
1053
|
+
def _get_dependencies(self) -> List[str]:
|
1054
|
+
return self._deps
|
1055
|
+
|
953
1056
|
|
954
|
-
def
|
1057
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
955
1058
|
self._model_signature_dict = dict()
|
956
1059
|
|
957
1060
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
958
1061
|
|
959
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1062
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
960
1063
|
outputs: List[BaseFeatureSpec] = []
|
961
1064
|
if hasattr(self, "predict"):
|
962
1065
|
# keep mypy happy
|
963
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1066
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
964
1067
|
# For classifier, the type of predict is the same as the type of label
|
965
|
-
if self._sklearn_object._estimator_type ==
|
966
|
-
|
1068
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1069
|
+
# label columns is the desired type for output
|
967
1070
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
968
1071
|
# rename the output columns
|
969
1072
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
970
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
971
|
-
|
972
|
-
|
1073
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1074
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1075
|
+
)
|
973
1076
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
974
1077
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
975
|
-
# Clusterer returns int64 cluster labels.
|
1078
|
+
# Clusterer returns int64 cluster labels.
|
976
1079
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
977
1080
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
978
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
979
|
-
|
980
|
-
|
981
|
-
|
1081
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1082
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1083
|
+
)
|
1084
|
+
|
982
1085
|
# For regressor, the type of predict is float64
|
983
|
-
elif self._sklearn_object._estimator_type ==
|
1086
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
984
1087
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
985
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
986
|
-
|
987
|
-
|
988
|
-
|
1088
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1089
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1090
|
+
)
|
1091
|
+
|
989
1092
|
for prob_func in PROB_FUNCTIONS:
|
990
1093
|
if hasattr(self, prob_func):
|
991
1094
|
output_cols_prefix: str = f"{prob_func}_"
|
992
1095
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
993
1096
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
994
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
995
|
-
|
996
|
-
|
1097
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1098
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1099
|
+
)
|
997
1100
|
|
998
1101
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
999
1102
|
items = list(self._model_signature_dict.items())
|
@@ -1006,10 +1109,10 @@ class KernelRidge(BaseTransformer):
|
|
1006
1109
|
"""Returns model signature of current class.
|
1007
1110
|
|
1008
1111
|
Raises:
|
1009
|
-
|
1112
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1010
1113
|
|
1011
1114
|
Returns:
|
1012
|
-
Dict
|
1115
|
+
Dict with each method and its input output signature
|
1013
1116
|
"""
|
1014
1117
|
if self._model_signature_dict is None:
|
1015
1118
|
raise exceptions.SnowflakeMLException(
|
@@ -1017,35 +1120,3 @@ class KernelRidge(BaseTransformer):
|
|
1017
1120
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1018
1121
|
)
|
1019
1122
|
return self._model_signature_dict
|
1020
|
-
|
1021
|
-
def to_sklearn(self) -> Any:
|
1022
|
-
"""Get sklearn.kernel_ridge.KernelRidge object.
|
1023
|
-
"""
|
1024
|
-
if self._sklearn_object is None:
|
1025
|
-
self._sklearn_object = self._create_sklearn_object()
|
1026
|
-
return self._sklearn_object
|
1027
|
-
|
1028
|
-
def to_xgboost(self) -> Any:
|
1029
|
-
raise exceptions.SnowflakeMLException(
|
1030
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1031
|
-
original_exception=AttributeError(
|
1032
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1033
|
-
"to_xgboost()",
|
1034
|
-
"to_sklearn()"
|
1035
|
-
)
|
1036
|
-
),
|
1037
|
-
)
|
1038
|
-
|
1039
|
-
def to_lightgbm(self) -> Any:
|
1040
|
-
raise exceptions.SnowflakeMLException(
|
1041
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1042
|
-
original_exception=AttributeError(
|
1043
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1044
|
-
"to_lightgbm()",
|
1045
|
-
"to_sklearn()"
|
1046
|
-
)
|
1047
|
-
),
|
1048
|
-
)
|
1049
|
-
|
1050
|
-
def _get_dependencies(self) -> List[str]:
|
1051
|
-
return self._deps
|