snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class TweedieRegressor(BaseTransformer):
71
64
  r"""Generalized Linear Model with a Tweedie distribution
72
65
  For more details on this class, see [sklearn.linear_model.TweedieRegressor]
@@ -282,12 +275,7 @@ class TweedieRegressor(BaseTransformer):
282
275
  )
283
276
  return selected_cols
284
277
 
285
- @telemetry.send_api_usage_telemetry(
286
- project=_PROJECT,
287
- subproject=_SUBPROJECT,
288
- custom_tags=dict([("autogen", True)]),
289
- )
290
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TweedieRegressor":
278
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TweedieRegressor":
291
279
  """Fit a Generalized Linear Model
292
280
  For more details on this function, see [sklearn.linear_model.TweedieRegressor.fit]
293
281
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TweedieRegressor.html#sklearn.linear_model.TweedieRegressor.fit)
@@ -314,12 +302,14 @@ class TweedieRegressor(BaseTransformer):
314
302
 
315
303
  self._snowpark_cols = dataset.select(self.input_cols).columns
316
304
 
317
- # If we are already in a stored procedure, no need to kick off another one.
305
+ # If we are already in a stored procedure, no need to kick off another one.
318
306
  if SNOWML_SPROC_ENV in os.environ:
319
307
  statement_params = telemetry.get_function_usage_statement_params(
320
308
  project=_PROJECT,
321
309
  subproject=_SUBPROJECT,
322
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TweedieRegressor.__class__.__name__),
310
+ function_name=telemetry.get_statement_params_full_func_name(
311
+ inspect.currentframe(), TweedieRegressor.__class__.__name__
312
+ ),
323
313
  api_calls=[Session.call],
324
314
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
325
315
  )
@@ -340,27 +330,24 @@ class TweedieRegressor(BaseTransformer):
340
330
  )
341
331
  self._sklearn_object = model_trainer.train()
342
332
  self._is_fitted = True
343
- self._get_model_signatures(dataset)
333
+ self._generate_model_signatures(dataset)
344
334
  return self
345
335
 
346
336
  def _batch_inference_validate_snowpark(
347
337
  self,
348
338
  dataset: DataFrame,
349
339
  inference_method: str,
350
- ) -> List[str]:
351
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
352
- return the available package that exists in the snowflake anaconda channel
340
+ ) -> None:
341
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
353
342
 
354
343
  Args:
355
344
  dataset: snowpark dataframe
356
345
  inference_method: the inference method such as predict, score...
357
-
346
+
358
347
  Raises:
359
348
  SnowflakeMLException: If the estimator is not fitted, raise error
360
349
  SnowflakeMLException: If the session is None, raise error
361
350
 
362
- Returns:
363
- A list of available package that exists in the snowflake anaconda channel
364
351
  """
365
352
  if not self._is_fitted:
366
353
  raise exceptions.SnowflakeMLException(
@@ -378,9 +365,7 @@ class TweedieRegressor(BaseTransformer):
378
365
  "Session must not specified for snowpark dataset."
379
366
  ),
380
367
  )
381
- # Validate that key package version in user workspace are supported in snowflake conda channel
382
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
383
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
368
+
384
369
 
385
370
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
386
371
  @telemetry.send_api_usage_telemetry(
@@ -416,7 +401,9 @@ class TweedieRegressor(BaseTransformer):
416
401
  # when it is classifier, infer the datatype from label columns
417
402
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
418
403
  # Batch inference takes a single expected output column type. Use the first columns type for now.
419
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
404
+ label_cols_signatures = [
405
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
406
+ ]
420
407
  if len(label_cols_signatures) == 0:
421
408
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
422
409
  raise exceptions.SnowflakeMLException(
@@ -424,25 +411,23 @@ class TweedieRegressor(BaseTransformer):
424
411
  original_exception=ValueError(error_str),
425
412
  )
426
413
 
427
- expected_type_inferred = convert_sp_to_sf_type(
428
- label_cols_signatures[0].as_snowpark_type()
429
- )
414
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
430
415
 
431
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
416
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
417
+ self._deps = self._get_dependencies()
418
+ assert isinstance(
419
+ dataset._session, Session
420
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
433
421
 
434
422
  transform_kwargs = dict(
435
- session = dataset._session,
436
- dependencies = self._deps,
437
- drop_input_cols = self._drop_input_cols,
438
- expected_output_cols_type = expected_type_inferred,
423
+ session=dataset._session,
424
+ dependencies=self._deps,
425
+ drop_input_cols=self._drop_input_cols,
426
+ expected_output_cols_type=expected_type_inferred,
439
427
  )
440
428
 
441
429
  elif isinstance(dataset, pd.DataFrame):
442
- transform_kwargs = dict(
443
- snowpark_input_cols = self._snowpark_cols,
444
- drop_input_cols = self._drop_input_cols
445
- )
430
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
446
431
 
447
432
  transform_handlers = ModelTransformerBuilder.build(
448
433
  dataset=dataset,
@@ -482,7 +467,7 @@ class TweedieRegressor(BaseTransformer):
482
467
  Transformed dataset.
483
468
  """
484
469
  super()._check_dataset_type(dataset)
485
- inference_method="transform"
470
+ inference_method = "transform"
486
471
 
487
472
  # This dictionary contains optional kwargs for batch inference. These kwargs
488
473
  # are specific to the type of dataset used.
@@ -512,24 +497,19 @@ class TweedieRegressor(BaseTransformer):
512
497
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
513
498
  expected_dtype = convert_sp_to_sf_type(output_types[0])
514
499
 
515
- self._deps = self._batch_inference_validate_snowpark(
516
- dataset=dataset,
517
- inference_method=inference_method,
518
- )
500
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
501
+ self._deps = self._get_dependencies()
519
502
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
520
503
 
521
504
  transform_kwargs = dict(
522
- session = dataset._session,
523
- dependencies = self._deps,
524
- drop_input_cols = self._drop_input_cols,
525
- expected_output_cols_type = expected_dtype,
505
+ session=dataset._session,
506
+ dependencies=self._deps,
507
+ drop_input_cols=self._drop_input_cols,
508
+ expected_output_cols_type=expected_dtype,
526
509
  )
527
510
 
528
511
  elif isinstance(dataset, pd.DataFrame):
529
- transform_kwargs = dict(
530
- snowpark_input_cols = self._snowpark_cols,
531
- drop_input_cols = self._drop_input_cols
532
- )
512
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
533
513
 
534
514
  transform_handlers = ModelTransformerBuilder.build(
535
515
  dataset=dataset,
@@ -548,7 +528,11 @@ class TweedieRegressor(BaseTransformer):
548
528
  return output_df
549
529
 
550
530
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
551
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
531
+ def fit_predict(
532
+ self,
533
+ dataset: Union[DataFrame, pd.DataFrame],
534
+ output_cols_prefix: str = "fit_predict_",
535
+ ) -> Union[DataFrame, pd.DataFrame]:
552
536
  """ Method not supported for this class.
553
537
 
554
538
 
@@ -573,22 +557,104 @@ class TweedieRegressor(BaseTransformer):
573
557
  )
574
558
  output_result, fitted_estimator = model_trainer.train_fit_predict(
575
559
  drop_input_cols=self._drop_input_cols,
576
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
560
+ expected_output_cols_list=(
561
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
562
+ ),
577
563
  )
578
564
  self._sklearn_object = fitted_estimator
579
565
  self._is_fitted = True
580
566
  return output_result
581
567
 
568
+
569
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
570
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
571
+ """ Method not supported for this class.
572
+
582
573
 
583
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
584
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
585
- """
574
+ Raises:
575
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
576
+
577
+ Args:
578
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
579
+ Snowpark or Pandas DataFrame.
580
+ output_cols_prefix: Prefix for the response columns
586
581
  Returns:
587
582
  Transformed dataset.
588
583
  """
589
- self.fit(dataset)
590
- assert self._sklearn_object is not None
591
- return self._sklearn_object.embedding_
584
+ self._infer_input_output_cols(dataset)
585
+ super()._check_dataset_type(dataset)
586
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
587
+ estimator=self._sklearn_object,
588
+ dataset=dataset,
589
+ input_cols=self.input_cols,
590
+ label_cols=self.label_cols,
591
+ sample_weight_col=self.sample_weight_col,
592
+ autogenerated=self._autogenerated,
593
+ subproject=_SUBPROJECT,
594
+ )
595
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
596
+ drop_input_cols=self._drop_input_cols,
597
+ expected_output_cols_list=self.output_cols,
598
+ )
599
+ self._sklearn_object = fitted_estimator
600
+ self._is_fitted = True
601
+ return output_result
602
+
603
+
604
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
605
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
606
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
607
+ """
608
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
609
+ # The following condition is introduced for kneighbors methods, and not used in other methods
610
+ if output_cols:
611
+ output_cols = [
612
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
613
+ for c in output_cols
614
+ ]
615
+ elif getattr(self._sklearn_object, "classes_", None) is None:
616
+ output_cols = [output_cols_prefix]
617
+ elif self._sklearn_object is not None:
618
+ classes = self._sklearn_object.classes_
619
+ if isinstance(classes, numpy.ndarray):
620
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
621
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
622
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
623
+ output_cols = []
624
+ for i, cl in enumerate(classes):
625
+ # For binary classification, there is only one output column for each class
626
+ # ndarray as the two classes are complementary.
627
+ if len(cl) == 2:
628
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
629
+ else:
630
+ output_cols.extend([
631
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
632
+ ])
633
+ else:
634
+ output_cols = []
635
+
636
+ # Make sure column names are valid snowflake identifiers.
637
+ assert output_cols is not None # Make MyPy happy
638
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
639
+
640
+ return rv
641
+
642
+ def _align_expected_output_names(
643
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
644
+ ) -> List[str]:
645
+ # in case the inferred output column names dimension is different
646
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
647
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
648
+ output_df_columns = list(output_df_pd.columns)
649
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
650
+ if self.sample_weight_col:
651
+ output_df_columns_set -= set(self.sample_weight_col)
652
+ # if the dimension of inferred output column names is correct; use it
653
+ if len(expected_output_cols_list) == len(output_df_columns_set):
654
+ return expected_output_cols_list
655
+ # otherwise, use the sklearn estimator's output
656
+ else:
657
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
592
658
 
593
659
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
594
660
  @telemetry.send_api_usage_telemetry(
@@ -620,24 +686,26 @@ class TweedieRegressor(BaseTransformer):
620
686
  # are specific to the type of dataset used.
621
687
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
622
688
 
689
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
690
+
623
691
  if isinstance(dataset, DataFrame):
624
- self._deps = self._batch_inference_validate_snowpark(
625
- dataset=dataset,
626
- inference_method=inference_method,
627
- )
628
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
692
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
693
+ self._deps = self._get_dependencies()
694
+ assert isinstance(
695
+ dataset._session, Session
696
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
629
697
  transform_kwargs = dict(
630
698
  session=dataset._session,
631
699
  dependencies=self._deps,
632
- drop_input_cols = self._drop_input_cols,
700
+ drop_input_cols=self._drop_input_cols,
633
701
  expected_output_cols_type="float",
634
702
  )
703
+ expected_output_cols = self._align_expected_output_names(
704
+ inference_method, dataset, expected_output_cols, output_cols_prefix
705
+ )
635
706
 
636
707
  elif isinstance(dataset, pd.DataFrame):
637
- transform_kwargs = dict(
638
- snowpark_input_cols = self._snowpark_cols,
639
- drop_input_cols = self._drop_input_cols
640
- )
708
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
641
709
 
642
710
  transform_handlers = ModelTransformerBuilder.build(
643
711
  dataset=dataset,
@@ -649,7 +717,7 @@ class TweedieRegressor(BaseTransformer):
649
717
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
650
718
  inference_method=inference_method,
651
719
  input_cols=self.input_cols,
652
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
720
+ expected_output_cols=expected_output_cols,
653
721
  **transform_kwargs
654
722
  )
655
723
  return output_df
@@ -679,29 +747,30 @@ class TweedieRegressor(BaseTransformer):
679
747
  Output dataset with log probability of the sample for each class in the model.
680
748
  """
681
749
  super()._check_dataset_type(dataset)
682
- inference_method="predict_log_proba"
750
+ inference_method = "predict_log_proba"
751
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
683
752
 
684
753
  # This dictionary contains optional kwargs for batch inference. These kwargs
685
754
  # are specific to the type of dataset used.
686
755
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
687
756
 
688
757
  if isinstance(dataset, DataFrame):
689
- self._deps = self._batch_inference_validate_snowpark(
690
- dataset=dataset,
691
- inference_method=inference_method,
692
- )
693
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
758
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
759
+ self._deps = self._get_dependencies()
760
+ assert isinstance(
761
+ dataset._session, Session
762
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
694
763
  transform_kwargs = dict(
695
764
  session=dataset._session,
696
765
  dependencies=self._deps,
697
- drop_input_cols = self._drop_input_cols,
766
+ drop_input_cols=self._drop_input_cols,
698
767
  expected_output_cols_type="float",
699
768
  )
769
+ expected_output_cols = self._align_expected_output_names(
770
+ inference_method, dataset, expected_output_cols, output_cols_prefix
771
+ )
700
772
  elif isinstance(dataset, pd.DataFrame):
701
- transform_kwargs = dict(
702
- snowpark_input_cols = self._snowpark_cols,
703
- drop_input_cols = self._drop_input_cols
704
- )
773
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
705
774
 
706
775
  transform_handlers = ModelTransformerBuilder.build(
707
776
  dataset=dataset,
@@ -714,7 +783,7 @@ class TweedieRegressor(BaseTransformer):
714
783
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
715
784
  inference_method=inference_method,
716
785
  input_cols=self.input_cols,
717
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
786
+ expected_output_cols=expected_output_cols,
718
787
  **transform_kwargs
719
788
  )
720
789
  return output_df
@@ -740,30 +809,32 @@ class TweedieRegressor(BaseTransformer):
740
809
  Output dataset with results of the decision function for the samples in input dataset.
741
810
  """
742
811
  super()._check_dataset_type(dataset)
743
- inference_method="decision_function"
812
+ inference_method = "decision_function"
744
813
 
745
814
  # This dictionary contains optional kwargs for batch inference. These kwargs
746
815
  # are specific to the type of dataset used.
747
816
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
748
817
 
818
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
819
+
749
820
  if isinstance(dataset, DataFrame):
750
- self._deps = self._batch_inference_validate_snowpark(
751
- dataset=dataset,
752
- inference_method=inference_method,
753
- )
754
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
821
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
822
+ self._deps = self._get_dependencies()
823
+ assert isinstance(
824
+ dataset._session, Session
825
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
755
826
  transform_kwargs = dict(
756
827
  session=dataset._session,
757
828
  dependencies=self._deps,
758
- drop_input_cols = self._drop_input_cols,
829
+ drop_input_cols=self._drop_input_cols,
759
830
  expected_output_cols_type="float",
760
831
  )
832
+ expected_output_cols = self._align_expected_output_names(
833
+ inference_method, dataset, expected_output_cols, output_cols_prefix
834
+ )
761
835
 
762
836
  elif isinstance(dataset, pd.DataFrame):
763
- transform_kwargs = dict(
764
- snowpark_input_cols = self._snowpark_cols,
765
- drop_input_cols = self._drop_input_cols
766
- )
837
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
767
838
 
768
839
  transform_handlers = ModelTransformerBuilder.build(
769
840
  dataset=dataset,
@@ -776,7 +847,7 @@ class TweedieRegressor(BaseTransformer):
776
847
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
777
848
  inference_method=inference_method,
778
849
  input_cols=self.input_cols,
779
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
850
+ expected_output_cols=expected_output_cols,
780
851
  **transform_kwargs
781
852
  )
782
853
  return output_df
@@ -805,17 +876,17 @@ class TweedieRegressor(BaseTransformer):
805
876
  Output dataset with probability of the sample for each class in the model.
806
877
  """
807
878
  super()._check_dataset_type(dataset)
808
- inference_method="score_samples"
879
+ inference_method = "score_samples"
809
880
 
810
881
  # This dictionary contains optional kwargs for batch inference. These kwargs
811
882
  # are specific to the type of dataset used.
812
883
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
813
884
 
885
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
886
+
814
887
  if isinstance(dataset, DataFrame):
815
- self._deps = self._batch_inference_validate_snowpark(
816
- dataset=dataset,
817
- inference_method=inference_method,
818
- )
888
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
889
+ self._deps = self._get_dependencies()
819
890
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
820
891
  transform_kwargs = dict(
821
892
  session=dataset._session,
@@ -823,6 +894,9 @@ class TweedieRegressor(BaseTransformer):
823
894
  drop_input_cols = self._drop_input_cols,
824
895
  expected_output_cols_type="float",
825
896
  )
897
+ expected_output_cols = self._align_expected_output_names(
898
+ inference_method, dataset, expected_output_cols, output_cols_prefix
899
+ )
826
900
 
827
901
  elif isinstance(dataset, pd.DataFrame):
828
902
  transform_kwargs = dict(
@@ -841,7 +915,7 @@ class TweedieRegressor(BaseTransformer):
841
915
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
842
916
  inference_method=inference_method,
843
917
  input_cols=self.input_cols,
844
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
918
+ expected_output_cols=expected_output_cols,
845
919
  **transform_kwargs
846
920
  )
847
921
  return output_df
@@ -876,17 +950,15 @@ class TweedieRegressor(BaseTransformer):
876
950
  transform_kwargs: ScoreKwargsTypedDict = dict()
877
951
 
878
952
  if isinstance(dataset, DataFrame):
879
- self._deps = self._batch_inference_validate_snowpark(
880
- dataset=dataset,
881
- inference_method="score",
882
- )
953
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
954
+ self._deps = self._get_dependencies()
883
955
  selected_cols = self._get_active_columns()
884
956
  if len(selected_cols) > 0:
885
957
  dataset = dataset.select(selected_cols)
886
958
  assert isinstance(dataset._session, Session) # keep mypy happy
887
959
  transform_kwargs = dict(
888
960
  session=dataset._session,
889
- dependencies=["snowflake-snowpark-python"] + self._deps,
961
+ dependencies=self._deps,
890
962
  score_sproc_imports=['sklearn'],
891
963
  )
892
964
  elif isinstance(dataset, pd.DataFrame):
@@ -951,11 +1023,8 @@ class TweedieRegressor(BaseTransformer):
951
1023
 
952
1024
  if isinstance(dataset, DataFrame):
953
1025
 
954
- self._deps = self._batch_inference_validate_snowpark(
955
- dataset=dataset,
956
- inference_method=inference_method,
957
-
958
- )
1026
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1027
+ self._deps = self._get_dependencies()
959
1028
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
960
1029
  transform_kwargs = dict(
961
1030
  session = dataset._session,
@@ -988,50 +1057,84 @@ class TweedieRegressor(BaseTransformer):
988
1057
  )
989
1058
  return output_df
990
1059
 
1060
+
1061
+
1062
+ def to_sklearn(self) -> Any:
1063
+ """Get sklearn.linear_model.TweedieRegressor object.
1064
+ """
1065
+ if self._sklearn_object is None:
1066
+ self._sklearn_object = self._create_sklearn_object()
1067
+ return self._sklearn_object
1068
+
1069
+ def to_xgboost(self) -> Any:
1070
+ raise exceptions.SnowflakeMLException(
1071
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1072
+ original_exception=AttributeError(
1073
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1074
+ "to_xgboost()",
1075
+ "to_sklearn()"
1076
+ )
1077
+ ),
1078
+ )
1079
+
1080
+ def to_lightgbm(self) -> Any:
1081
+ raise exceptions.SnowflakeMLException(
1082
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1083
+ original_exception=AttributeError(
1084
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1085
+ "to_lightgbm()",
1086
+ "to_sklearn()"
1087
+ )
1088
+ ),
1089
+ )
1090
+
1091
+ def _get_dependencies(self) -> List[str]:
1092
+ return self._deps
1093
+
991
1094
 
992
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1095
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
993
1096
  self._model_signature_dict = dict()
994
1097
 
995
1098
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
996
1099
 
997
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1100
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
998
1101
  outputs: List[BaseFeatureSpec] = []
999
1102
  if hasattr(self, "predict"):
1000
1103
  # keep mypy happy
1001
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1104
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1002
1105
  # For classifier, the type of predict is the same as the type of label
1003
- if self._sklearn_object._estimator_type == 'classifier':
1004
- # label columns is the desired type for output
1106
+ if self._sklearn_object._estimator_type == "classifier":
1107
+ # label columns is the desired type for output
1005
1108
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1006
1109
  # rename the output columns
1007
1110
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1111
+ self._model_signature_dict["predict"] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1011
1114
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1012
1115
  # For outlier models, returns -1 for outliers and 1 for inliers.
1013
- # Clusterer returns int64 cluster labels.
1116
+ # Clusterer returns int64 cluster labels.
1014
1117
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1015
1118
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1019
-
1119
+ self._model_signature_dict["predict"] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1122
+
1020
1123
  # For regressor, the type of predict is float64
1021
- elif self._sklearn_object._estimator_type == 'regressor':
1124
+ elif self._sklearn_object._estimator_type == "regressor":
1022
1125
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1026
-
1126
+ self._model_signature_dict["predict"] = ModelSignature(
1127
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1128
+ )
1129
+
1027
1130
  for prob_func in PROB_FUNCTIONS:
1028
1131
  if hasattr(self, prob_func):
1029
1132
  output_cols_prefix: str = f"{prob_func}_"
1030
1133
  output_column_names = self._get_output_column_names(output_cols_prefix)
1031
1134
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1032
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1033
- ([] if self._drop_input_cols else inputs)
1034
- + outputs)
1135
+ self._model_signature_dict[prob_func] = ModelSignature(
1136
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1137
+ )
1035
1138
 
1036
1139
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1037
1140
  items = list(self._model_signature_dict.items())
@@ -1044,10 +1147,10 @@ class TweedieRegressor(BaseTransformer):
1044
1147
  """Returns model signature of current class.
1045
1148
 
1046
1149
  Raises:
1047
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1150
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1048
1151
 
1049
1152
  Returns:
1050
- Dict[str, ModelSignature]: each method and its input output signature
1153
+ Dict with each method and its input output signature
1051
1154
  """
1052
1155
  if self._model_signature_dict is None:
1053
1156
  raise exceptions.SnowflakeMLException(
@@ -1055,35 +1158,3 @@ class TweedieRegressor(BaseTransformer):
1055
1158
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1056
1159
  )
1057
1160
  return self._model_signature_dict
1058
-
1059
- def to_sklearn(self) -> Any:
1060
- """Get sklearn.linear_model.TweedieRegressor object.
1061
- """
1062
- if self._sklearn_object is None:
1063
- self._sklearn_object = self._create_sklearn_object()
1064
- return self._sklearn_object
1065
-
1066
- def to_xgboost(self) -> Any:
1067
- raise exceptions.SnowflakeMLException(
1068
- error_code=error_codes.METHOD_NOT_ALLOWED,
1069
- original_exception=AttributeError(
1070
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
- "to_xgboost()",
1072
- "to_sklearn()"
1073
- )
1074
- ),
1075
- )
1076
-
1077
- def to_lightgbm(self) -> Any:
1078
- raise exceptions.SnowflakeMLException(
1079
- error_code=error_codes.METHOD_NOT_ALLOWED,
1080
- original_exception=AttributeError(
1081
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
- "to_lightgbm()",
1083
- "to_sklearn()"
1084
- )
1085
- ),
1086
- )
1087
-
1088
- def _get_dependencies(self) -> List[str]:
1089
- return self._deps