snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LarsCV(BaseTransformer):
71
64
  r"""Cross-validated Least Angle Regression model
72
65
  For more details on this class, see [sklearn.linear_model.LarsCV]
@@ -269,12 +262,7 @@ class LarsCV(BaseTransformer):
269
262
  )
270
263
  return selected_cols
271
264
 
272
- @telemetry.send_api_usage_telemetry(
273
- project=_PROJECT,
274
- subproject=_SUBPROJECT,
275
- custom_tags=dict([("autogen", True)]),
276
- )
277
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LarsCV":
265
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LarsCV":
278
266
  """Fit the model using X, y as training data
279
267
  For more details on this function, see [sklearn.linear_model.LarsCV.fit]
280
268
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LarsCV.html#sklearn.linear_model.LarsCV.fit)
@@ -301,12 +289,14 @@ class LarsCV(BaseTransformer):
301
289
 
302
290
  self._snowpark_cols = dataset.select(self.input_cols).columns
303
291
 
304
- # If we are already in a stored procedure, no need to kick off another one.
292
+ # If we are already in a stored procedure, no need to kick off another one.
305
293
  if SNOWML_SPROC_ENV in os.environ:
306
294
  statement_params = telemetry.get_function_usage_statement_params(
307
295
  project=_PROJECT,
308
296
  subproject=_SUBPROJECT,
309
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LarsCV.__class__.__name__),
297
+ function_name=telemetry.get_statement_params_full_func_name(
298
+ inspect.currentframe(), LarsCV.__class__.__name__
299
+ ),
310
300
  api_calls=[Session.call],
311
301
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
312
302
  )
@@ -327,27 +317,24 @@ class LarsCV(BaseTransformer):
327
317
  )
328
318
  self._sklearn_object = model_trainer.train()
329
319
  self._is_fitted = True
330
- self._get_model_signatures(dataset)
320
+ self._generate_model_signatures(dataset)
331
321
  return self
332
322
 
333
323
  def _batch_inference_validate_snowpark(
334
324
  self,
335
325
  dataset: DataFrame,
336
326
  inference_method: str,
337
- ) -> List[str]:
338
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
339
- return the available package that exists in the snowflake anaconda channel
327
+ ) -> None:
328
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
340
329
 
341
330
  Args:
342
331
  dataset: snowpark dataframe
343
332
  inference_method: the inference method such as predict, score...
344
-
333
+
345
334
  Raises:
346
335
  SnowflakeMLException: If the estimator is not fitted, raise error
347
336
  SnowflakeMLException: If the session is None, raise error
348
337
 
349
- Returns:
350
- A list of available package that exists in the snowflake anaconda channel
351
338
  """
352
339
  if not self._is_fitted:
353
340
  raise exceptions.SnowflakeMLException(
@@ -365,9 +352,7 @@ class LarsCV(BaseTransformer):
365
352
  "Session must not specified for snowpark dataset."
366
353
  ),
367
354
  )
368
- # Validate that key package version in user workspace are supported in snowflake conda channel
369
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
370
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
355
+
371
356
 
372
357
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
373
358
  @telemetry.send_api_usage_telemetry(
@@ -403,7 +388,9 @@ class LarsCV(BaseTransformer):
403
388
  # when it is classifier, infer the datatype from label columns
404
389
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
405
390
  # Batch inference takes a single expected output column type. Use the first columns type for now.
406
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
391
+ label_cols_signatures = [
392
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
393
+ ]
407
394
  if len(label_cols_signatures) == 0:
408
395
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
409
396
  raise exceptions.SnowflakeMLException(
@@ -411,25 +398,23 @@ class LarsCV(BaseTransformer):
411
398
  original_exception=ValueError(error_str),
412
399
  )
413
400
 
414
- expected_type_inferred = convert_sp_to_sf_type(
415
- label_cols_signatures[0].as_snowpark_type()
416
- )
401
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
417
402
 
418
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
419
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
403
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
404
+ self._deps = self._get_dependencies()
405
+ assert isinstance(
406
+ dataset._session, Session
407
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
420
408
 
421
409
  transform_kwargs = dict(
422
- session = dataset._session,
423
- dependencies = self._deps,
424
- drop_input_cols = self._drop_input_cols,
425
- expected_output_cols_type = expected_type_inferred,
410
+ session=dataset._session,
411
+ dependencies=self._deps,
412
+ drop_input_cols=self._drop_input_cols,
413
+ expected_output_cols_type=expected_type_inferred,
426
414
  )
427
415
 
428
416
  elif isinstance(dataset, pd.DataFrame):
429
- transform_kwargs = dict(
430
- snowpark_input_cols = self._snowpark_cols,
431
- drop_input_cols = self._drop_input_cols
432
- )
417
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
433
418
 
434
419
  transform_handlers = ModelTransformerBuilder.build(
435
420
  dataset=dataset,
@@ -469,7 +454,7 @@ class LarsCV(BaseTransformer):
469
454
  Transformed dataset.
470
455
  """
471
456
  super()._check_dataset_type(dataset)
472
- inference_method="transform"
457
+ inference_method = "transform"
473
458
 
474
459
  # This dictionary contains optional kwargs for batch inference. These kwargs
475
460
  # are specific to the type of dataset used.
@@ -499,24 +484,19 @@ class LarsCV(BaseTransformer):
499
484
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
500
485
  expected_dtype = convert_sp_to_sf_type(output_types[0])
501
486
 
502
- self._deps = self._batch_inference_validate_snowpark(
503
- dataset=dataset,
504
- inference_method=inference_method,
505
- )
487
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
488
+ self._deps = self._get_dependencies()
506
489
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
507
490
 
508
491
  transform_kwargs = dict(
509
- session = dataset._session,
510
- dependencies = self._deps,
511
- drop_input_cols = self._drop_input_cols,
512
- expected_output_cols_type = expected_dtype,
492
+ session=dataset._session,
493
+ dependencies=self._deps,
494
+ drop_input_cols=self._drop_input_cols,
495
+ expected_output_cols_type=expected_dtype,
513
496
  )
514
497
 
515
498
  elif isinstance(dataset, pd.DataFrame):
516
- transform_kwargs = dict(
517
- snowpark_input_cols = self._snowpark_cols,
518
- drop_input_cols = self._drop_input_cols
519
- )
499
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
520
500
 
521
501
  transform_handlers = ModelTransformerBuilder.build(
522
502
  dataset=dataset,
@@ -535,7 +515,11 @@ class LarsCV(BaseTransformer):
535
515
  return output_df
536
516
 
537
517
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
538
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
518
+ def fit_predict(
519
+ self,
520
+ dataset: Union[DataFrame, pd.DataFrame],
521
+ output_cols_prefix: str = "fit_predict_",
522
+ ) -> Union[DataFrame, pd.DataFrame]:
539
523
  """ Method not supported for this class.
540
524
 
541
525
 
@@ -560,22 +544,104 @@ class LarsCV(BaseTransformer):
560
544
  )
561
545
  output_result, fitted_estimator = model_trainer.train_fit_predict(
562
546
  drop_input_cols=self._drop_input_cols,
563
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
547
+ expected_output_cols_list=(
548
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
549
+ ),
564
550
  )
565
551
  self._sklearn_object = fitted_estimator
566
552
  self._is_fitted = True
567
553
  return output_result
568
554
 
555
+
556
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
557
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
558
+ """ Method not supported for this class.
559
+
569
560
 
570
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
571
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
572
- """
561
+ Raises:
562
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
563
+
564
+ Args:
565
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
566
+ Snowpark or Pandas DataFrame.
567
+ output_cols_prefix: Prefix for the response columns
573
568
  Returns:
574
569
  Transformed dataset.
575
570
  """
576
- self.fit(dataset)
577
- assert self._sklearn_object is not None
578
- return self._sklearn_object.embedding_
571
+ self._infer_input_output_cols(dataset)
572
+ super()._check_dataset_type(dataset)
573
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
574
+ estimator=self._sklearn_object,
575
+ dataset=dataset,
576
+ input_cols=self.input_cols,
577
+ label_cols=self.label_cols,
578
+ sample_weight_col=self.sample_weight_col,
579
+ autogenerated=self._autogenerated,
580
+ subproject=_SUBPROJECT,
581
+ )
582
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
583
+ drop_input_cols=self._drop_input_cols,
584
+ expected_output_cols_list=self.output_cols,
585
+ )
586
+ self._sklearn_object = fitted_estimator
587
+ self._is_fitted = True
588
+ return output_result
589
+
590
+
591
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
592
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
593
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
594
+ """
595
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
596
+ # The following condition is introduced for kneighbors methods, and not used in other methods
597
+ if output_cols:
598
+ output_cols = [
599
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
600
+ for c in output_cols
601
+ ]
602
+ elif getattr(self._sklearn_object, "classes_", None) is None:
603
+ output_cols = [output_cols_prefix]
604
+ elif self._sklearn_object is not None:
605
+ classes = self._sklearn_object.classes_
606
+ if isinstance(classes, numpy.ndarray):
607
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
608
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
609
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
610
+ output_cols = []
611
+ for i, cl in enumerate(classes):
612
+ # For binary classification, there is only one output column for each class
613
+ # ndarray as the two classes are complementary.
614
+ if len(cl) == 2:
615
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
616
+ else:
617
+ output_cols.extend([
618
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
619
+ ])
620
+ else:
621
+ output_cols = []
622
+
623
+ # Make sure column names are valid snowflake identifiers.
624
+ assert output_cols is not None # Make MyPy happy
625
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
626
+
627
+ return rv
628
+
629
+ def _align_expected_output_names(
630
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
631
+ ) -> List[str]:
632
+ # in case the inferred output column names dimension is different
633
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
634
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
635
+ output_df_columns = list(output_df_pd.columns)
636
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
637
+ if self.sample_weight_col:
638
+ output_df_columns_set -= set(self.sample_weight_col)
639
+ # if the dimension of inferred output column names is correct; use it
640
+ if len(expected_output_cols_list) == len(output_df_columns_set):
641
+ return expected_output_cols_list
642
+ # otherwise, use the sklearn estimator's output
643
+ else:
644
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
579
645
 
580
646
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
581
647
  @telemetry.send_api_usage_telemetry(
@@ -607,24 +673,26 @@ class LarsCV(BaseTransformer):
607
673
  # are specific to the type of dataset used.
608
674
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
609
675
 
676
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
677
+
610
678
  if isinstance(dataset, DataFrame):
611
- self._deps = self._batch_inference_validate_snowpark(
612
- dataset=dataset,
613
- inference_method=inference_method,
614
- )
615
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
679
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
680
+ self._deps = self._get_dependencies()
681
+ assert isinstance(
682
+ dataset._session, Session
683
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
616
684
  transform_kwargs = dict(
617
685
  session=dataset._session,
618
686
  dependencies=self._deps,
619
- drop_input_cols = self._drop_input_cols,
687
+ drop_input_cols=self._drop_input_cols,
620
688
  expected_output_cols_type="float",
621
689
  )
690
+ expected_output_cols = self._align_expected_output_names(
691
+ inference_method, dataset, expected_output_cols, output_cols_prefix
692
+ )
622
693
 
623
694
  elif isinstance(dataset, pd.DataFrame):
624
- transform_kwargs = dict(
625
- snowpark_input_cols = self._snowpark_cols,
626
- drop_input_cols = self._drop_input_cols
627
- )
695
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
628
696
 
629
697
  transform_handlers = ModelTransformerBuilder.build(
630
698
  dataset=dataset,
@@ -636,7 +704,7 @@ class LarsCV(BaseTransformer):
636
704
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
637
705
  inference_method=inference_method,
638
706
  input_cols=self.input_cols,
639
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
707
+ expected_output_cols=expected_output_cols,
640
708
  **transform_kwargs
641
709
  )
642
710
  return output_df
@@ -666,29 +734,30 @@ class LarsCV(BaseTransformer):
666
734
  Output dataset with log probability of the sample for each class in the model.
667
735
  """
668
736
  super()._check_dataset_type(dataset)
669
- inference_method="predict_log_proba"
737
+ inference_method = "predict_log_proba"
738
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
670
739
 
671
740
  # This dictionary contains optional kwargs for batch inference. These kwargs
672
741
  # are specific to the type of dataset used.
673
742
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
674
743
 
675
744
  if isinstance(dataset, DataFrame):
676
- self._deps = self._batch_inference_validate_snowpark(
677
- dataset=dataset,
678
- inference_method=inference_method,
679
- )
680
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
745
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
746
+ self._deps = self._get_dependencies()
747
+ assert isinstance(
748
+ dataset._session, Session
749
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
681
750
  transform_kwargs = dict(
682
751
  session=dataset._session,
683
752
  dependencies=self._deps,
684
- drop_input_cols = self._drop_input_cols,
753
+ drop_input_cols=self._drop_input_cols,
685
754
  expected_output_cols_type="float",
686
755
  )
756
+ expected_output_cols = self._align_expected_output_names(
757
+ inference_method, dataset, expected_output_cols, output_cols_prefix
758
+ )
687
759
  elif isinstance(dataset, pd.DataFrame):
688
- transform_kwargs = dict(
689
- snowpark_input_cols = self._snowpark_cols,
690
- drop_input_cols = self._drop_input_cols
691
- )
760
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
692
761
 
693
762
  transform_handlers = ModelTransformerBuilder.build(
694
763
  dataset=dataset,
@@ -701,7 +770,7 @@ class LarsCV(BaseTransformer):
701
770
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
702
771
  inference_method=inference_method,
703
772
  input_cols=self.input_cols,
704
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
773
+ expected_output_cols=expected_output_cols,
705
774
  **transform_kwargs
706
775
  )
707
776
  return output_df
@@ -727,30 +796,32 @@ class LarsCV(BaseTransformer):
727
796
  Output dataset with results of the decision function for the samples in input dataset.
728
797
  """
729
798
  super()._check_dataset_type(dataset)
730
- inference_method="decision_function"
799
+ inference_method = "decision_function"
731
800
 
732
801
  # This dictionary contains optional kwargs for batch inference. These kwargs
733
802
  # are specific to the type of dataset used.
734
803
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
735
804
 
805
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
806
+
736
807
  if isinstance(dataset, DataFrame):
737
- self._deps = self._batch_inference_validate_snowpark(
738
- dataset=dataset,
739
- inference_method=inference_method,
740
- )
741
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
808
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
809
+ self._deps = self._get_dependencies()
810
+ assert isinstance(
811
+ dataset._session, Session
812
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
742
813
  transform_kwargs = dict(
743
814
  session=dataset._session,
744
815
  dependencies=self._deps,
745
- drop_input_cols = self._drop_input_cols,
816
+ drop_input_cols=self._drop_input_cols,
746
817
  expected_output_cols_type="float",
747
818
  )
819
+ expected_output_cols = self._align_expected_output_names(
820
+ inference_method, dataset, expected_output_cols, output_cols_prefix
821
+ )
748
822
 
749
823
  elif isinstance(dataset, pd.DataFrame):
750
- transform_kwargs = dict(
751
- snowpark_input_cols = self._snowpark_cols,
752
- drop_input_cols = self._drop_input_cols
753
- )
824
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
754
825
 
755
826
  transform_handlers = ModelTransformerBuilder.build(
756
827
  dataset=dataset,
@@ -763,7 +834,7 @@ class LarsCV(BaseTransformer):
763
834
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
764
835
  inference_method=inference_method,
765
836
  input_cols=self.input_cols,
766
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
837
+ expected_output_cols=expected_output_cols,
767
838
  **transform_kwargs
768
839
  )
769
840
  return output_df
@@ -792,17 +863,17 @@ class LarsCV(BaseTransformer):
792
863
  Output dataset with probability of the sample for each class in the model.
793
864
  """
794
865
  super()._check_dataset_type(dataset)
795
- inference_method="score_samples"
866
+ inference_method = "score_samples"
796
867
 
797
868
  # This dictionary contains optional kwargs for batch inference. These kwargs
798
869
  # are specific to the type of dataset used.
799
870
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
800
871
 
872
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
873
+
801
874
  if isinstance(dataset, DataFrame):
802
- self._deps = self._batch_inference_validate_snowpark(
803
- dataset=dataset,
804
- inference_method=inference_method,
805
- )
875
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
876
+ self._deps = self._get_dependencies()
806
877
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
807
878
  transform_kwargs = dict(
808
879
  session=dataset._session,
@@ -810,6 +881,9 @@ class LarsCV(BaseTransformer):
810
881
  drop_input_cols = self._drop_input_cols,
811
882
  expected_output_cols_type="float",
812
883
  )
884
+ expected_output_cols = self._align_expected_output_names(
885
+ inference_method, dataset, expected_output_cols, output_cols_prefix
886
+ )
813
887
 
814
888
  elif isinstance(dataset, pd.DataFrame):
815
889
  transform_kwargs = dict(
@@ -828,7 +902,7 @@ class LarsCV(BaseTransformer):
828
902
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
829
903
  inference_method=inference_method,
830
904
  input_cols=self.input_cols,
831
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
905
+ expected_output_cols=expected_output_cols,
832
906
  **transform_kwargs
833
907
  )
834
908
  return output_df
@@ -863,17 +937,15 @@ class LarsCV(BaseTransformer):
863
937
  transform_kwargs: ScoreKwargsTypedDict = dict()
864
938
 
865
939
  if isinstance(dataset, DataFrame):
866
- self._deps = self._batch_inference_validate_snowpark(
867
- dataset=dataset,
868
- inference_method="score",
869
- )
940
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
941
+ self._deps = self._get_dependencies()
870
942
  selected_cols = self._get_active_columns()
871
943
  if len(selected_cols) > 0:
872
944
  dataset = dataset.select(selected_cols)
873
945
  assert isinstance(dataset._session, Session) # keep mypy happy
874
946
  transform_kwargs = dict(
875
947
  session=dataset._session,
876
- dependencies=["snowflake-snowpark-python"] + self._deps,
948
+ dependencies=self._deps,
877
949
  score_sproc_imports=['sklearn'],
878
950
  )
879
951
  elif isinstance(dataset, pd.DataFrame):
@@ -938,11 +1010,8 @@ class LarsCV(BaseTransformer):
938
1010
 
939
1011
  if isinstance(dataset, DataFrame):
940
1012
 
941
- self._deps = self._batch_inference_validate_snowpark(
942
- dataset=dataset,
943
- inference_method=inference_method,
944
-
945
- )
1013
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1014
+ self._deps = self._get_dependencies()
946
1015
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
947
1016
  transform_kwargs = dict(
948
1017
  session = dataset._session,
@@ -975,50 +1044,84 @@ class LarsCV(BaseTransformer):
975
1044
  )
976
1045
  return output_df
977
1046
 
1047
+
1048
+
1049
+ def to_sklearn(self) -> Any:
1050
+ """Get sklearn.linear_model.LarsCV object.
1051
+ """
1052
+ if self._sklearn_object is None:
1053
+ self._sklearn_object = self._create_sklearn_object()
1054
+ return self._sklearn_object
1055
+
1056
+ def to_xgboost(self) -> Any:
1057
+ raise exceptions.SnowflakeMLException(
1058
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1059
+ original_exception=AttributeError(
1060
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
+ "to_xgboost()",
1062
+ "to_sklearn()"
1063
+ )
1064
+ ),
1065
+ )
1066
+
1067
+ def to_lightgbm(self) -> Any:
1068
+ raise exceptions.SnowflakeMLException(
1069
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1070
+ original_exception=AttributeError(
1071
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1072
+ "to_lightgbm()",
1073
+ "to_sklearn()"
1074
+ )
1075
+ ),
1076
+ )
1077
+
1078
+ def _get_dependencies(self) -> List[str]:
1079
+ return self._deps
1080
+
978
1081
 
979
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1082
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
980
1083
  self._model_signature_dict = dict()
981
1084
 
982
1085
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
983
1086
 
984
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1087
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
985
1088
  outputs: List[BaseFeatureSpec] = []
986
1089
  if hasattr(self, "predict"):
987
1090
  # keep mypy happy
988
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1091
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
989
1092
  # For classifier, the type of predict is the same as the type of label
990
- if self._sklearn_object._estimator_type == 'classifier':
991
- # label columns is the desired type for output
1093
+ if self._sklearn_object._estimator_type == "classifier":
1094
+ # label columns is the desired type for output
992
1095
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
993
1096
  # rename the output columns
994
1097
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
995
- self._model_signature_dict["predict"] = ModelSignature(inputs,
996
- ([] if self._drop_input_cols else inputs)
997
- + outputs)
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
998
1101
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
999
1102
  # For outlier models, returns -1 for outliers and 1 for inliers.
1000
- # Clusterer returns int64 cluster labels.
1103
+ # Clusterer returns int64 cluster labels.
1001
1104
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1002
1105
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1003
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1004
- ([] if self._drop_input_cols else inputs)
1005
- + outputs)
1006
-
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1109
+
1007
1110
  # For regressor, the type of predict is float64
1008
- elif self._sklearn_object._estimator_type == 'regressor':
1111
+ elif self._sklearn_object._estimator_type == "regressor":
1009
1112
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1010
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1011
- ([] if self._drop_input_cols else inputs)
1012
- + outputs)
1013
-
1113
+ self._model_signature_dict["predict"] = ModelSignature(
1114
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1115
+ )
1116
+
1014
1117
  for prob_func in PROB_FUNCTIONS:
1015
1118
  if hasattr(self, prob_func):
1016
1119
  output_cols_prefix: str = f"{prob_func}_"
1017
1120
  output_column_names = self._get_output_column_names(output_cols_prefix)
1018
1121
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1019
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1020
- ([] if self._drop_input_cols else inputs)
1021
- + outputs)
1122
+ self._model_signature_dict[prob_func] = ModelSignature(
1123
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1124
+ )
1022
1125
 
1023
1126
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1024
1127
  items = list(self._model_signature_dict.items())
@@ -1031,10 +1134,10 @@ class LarsCV(BaseTransformer):
1031
1134
  """Returns model signature of current class.
1032
1135
 
1033
1136
  Raises:
1034
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1137
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1035
1138
 
1036
1139
  Returns:
1037
- Dict[str, ModelSignature]: each method and its input output signature
1140
+ Dict with each method and its input output signature
1038
1141
  """
1039
1142
  if self._model_signature_dict is None:
1040
1143
  raise exceptions.SnowflakeMLException(
@@ -1042,35 +1145,3 @@ class LarsCV(BaseTransformer):
1042
1145
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1043
1146
  )
1044
1147
  return self._model_signature_dict
1045
-
1046
- def to_sklearn(self) -> Any:
1047
- """Get sklearn.linear_model.LarsCV object.
1048
- """
1049
- if self._sklearn_object is None:
1050
- self._sklearn_object = self._create_sklearn_object()
1051
- return self._sklearn_object
1052
-
1053
- def to_xgboost(self) -> Any:
1054
- raise exceptions.SnowflakeMLException(
1055
- error_code=error_codes.METHOD_NOT_ALLOWED,
1056
- original_exception=AttributeError(
1057
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1058
- "to_xgboost()",
1059
- "to_sklearn()"
1060
- )
1061
- ),
1062
- )
1063
-
1064
- def to_lightgbm(self) -> Any:
1065
- raise exceptions.SnowflakeMLException(
1066
- error_code=error_codes.METHOD_NOT_ALLOWED,
1067
- original_exception=AttributeError(
1068
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1069
- "to_lightgbm()",
1070
- "to_sklearn()"
1071
- )
1072
- ),
1073
- )
1074
-
1075
- def _get_dependencies(self) -> List[str]:
1076
- return self._deps