snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class GraphicalLassoCV(BaseTransformer):
71
64
  r"""Sparse inverse covariance w/ cross-validated choice of the l1 penalty
72
65
  For more details on this class, see [sklearn.covariance.GraphicalLassoCV]
@@ -276,12 +269,7 @@ class GraphicalLassoCV(BaseTransformer):
276
269
  )
277
270
  return selected_cols
278
271
 
279
- @telemetry.send_api_usage_telemetry(
280
- project=_PROJECT,
281
- subproject=_SUBPROJECT,
282
- custom_tags=dict([("autogen", True)]),
283
- )
284
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GraphicalLassoCV":
272
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GraphicalLassoCV":
285
273
  """Fit the GraphicalLasso covariance model to X
286
274
  For more details on this function, see [sklearn.covariance.GraphicalLassoCV.fit]
287
275
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.GraphicalLassoCV.html#sklearn.covariance.GraphicalLassoCV.fit)
@@ -308,12 +296,14 @@ class GraphicalLassoCV(BaseTransformer):
308
296
 
309
297
  self._snowpark_cols = dataset.select(self.input_cols).columns
310
298
 
311
- # If we are already in a stored procedure, no need to kick off another one.
299
+ # If we are already in a stored procedure, no need to kick off another one.
312
300
  if SNOWML_SPROC_ENV in os.environ:
313
301
  statement_params = telemetry.get_function_usage_statement_params(
314
302
  project=_PROJECT,
315
303
  subproject=_SUBPROJECT,
316
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GraphicalLassoCV.__class__.__name__),
304
+ function_name=telemetry.get_statement_params_full_func_name(
305
+ inspect.currentframe(), GraphicalLassoCV.__class__.__name__
306
+ ),
317
307
  api_calls=[Session.call],
318
308
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
319
309
  )
@@ -334,27 +324,24 @@ class GraphicalLassoCV(BaseTransformer):
334
324
  )
335
325
  self._sklearn_object = model_trainer.train()
336
326
  self._is_fitted = True
337
- self._get_model_signatures(dataset)
327
+ self._generate_model_signatures(dataset)
338
328
  return self
339
329
 
340
330
  def _batch_inference_validate_snowpark(
341
331
  self,
342
332
  dataset: DataFrame,
343
333
  inference_method: str,
344
- ) -> List[str]:
345
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
346
- return the available package that exists in the snowflake anaconda channel
334
+ ) -> None:
335
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
347
336
 
348
337
  Args:
349
338
  dataset: snowpark dataframe
350
339
  inference_method: the inference method such as predict, score...
351
-
340
+
352
341
  Raises:
353
342
  SnowflakeMLException: If the estimator is not fitted, raise error
354
343
  SnowflakeMLException: If the session is None, raise error
355
344
 
356
- Returns:
357
- A list of available package that exists in the snowflake anaconda channel
358
345
  """
359
346
  if not self._is_fitted:
360
347
  raise exceptions.SnowflakeMLException(
@@ -372,9 +359,7 @@ class GraphicalLassoCV(BaseTransformer):
372
359
  "Session must not specified for snowpark dataset."
373
360
  ),
374
361
  )
375
- # Validate that key package version in user workspace are supported in snowflake conda channel
376
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
377
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
362
+
378
363
 
379
364
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
380
365
  @telemetry.send_api_usage_telemetry(
@@ -408,7 +393,9 @@ class GraphicalLassoCV(BaseTransformer):
408
393
  # when it is classifier, infer the datatype from label columns
409
394
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
410
395
  # Batch inference takes a single expected output column type. Use the first columns type for now.
411
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
396
+ label_cols_signatures = [
397
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
398
+ ]
412
399
  if len(label_cols_signatures) == 0:
413
400
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
414
401
  raise exceptions.SnowflakeMLException(
@@ -416,25 +403,23 @@ class GraphicalLassoCV(BaseTransformer):
416
403
  original_exception=ValueError(error_str),
417
404
  )
418
405
 
419
- expected_type_inferred = convert_sp_to_sf_type(
420
- label_cols_signatures[0].as_snowpark_type()
421
- )
406
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
422
407
 
423
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
424
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
408
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
409
+ self._deps = self._get_dependencies()
410
+ assert isinstance(
411
+ dataset._session, Session
412
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
425
413
 
426
414
  transform_kwargs = dict(
427
- session = dataset._session,
428
- dependencies = self._deps,
429
- drop_input_cols = self._drop_input_cols,
430
- expected_output_cols_type = expected_type_inferred,
415
+ session=dataset._session,
416
+ dependencies=self._deps,
417
+ drop_input_cols=self._drop_input_cols,
418
+ expected_output_cols_type=expected_type_inferred,
431
419
  )
432
420
 
433
421
  elif isinstance(dataset, pd.DataFrame):
434
- transform_kwargs = dict(
435
- snowpark_input_cols = self._snowpark_cols,
436
- drop_input_cols = self._drop_input_cols
437
- )
422
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
438
423
 
439
424
  transform_handlers = ModelTransformerBuilder.build(
440
425
  dataset=dataset,
@@ -474,7 +459,7 @@ class GraphicalLassoCV(BaseTransformer):
474
459
  Transformed dataset.
475
460
  """
476
461
  super()._check_dataset_type(dataset)
477
- inference_method="transform"
462
+ inference_method = "transform"
478
463
 
479
464
  # This dictionary contains optional kwargs for batch inference. These kwargs
480
465
  # are specific to the type of dataset used.
@@ -504,24 +489,19 @@ class GraphicalLassoCV(BaseTransformer):
504
489
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
505
490
  expected_dtype = convert_sp_to_sf_type(output_types[0])
506
491
 
507
- self._deps = self._batch_inference_validate_snowpark(
508
- dataset=dataset,
509
- inference_method=inference_method,
510
- )
492
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
493
+ self._deps = self._get_dependencies()
511
494
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
512
495
 
513
496
  transform_kwargs = dict(
514
- session = dataset._session,
515
- dependencies = self._deps,
516
- drop_input_cols = self._drop_input_cols,
517
- expected_output_cols_type = expected_dtype,
497
+ session=dataset._session,
498
+ dependencies=self._deps,
499
+ drop_input_cols=self._drop_input_cols,
500
+ expected_output_cols_type=expected_dtype,
518
501
  )
519
502
 
520
503
  elif isinstance(dataset, pd.DataFrame):
521
- transform_kwargs = dict(
522
- snowpark_input_cols = self._snowpark_cols,
523
- drop_input_cols = self._drop_input_cols
524
- )
504
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
525
505
 
526
506
  transform_handlers = ModelTransformerBuilder.build(
527
507
  dataset=dataset,
@@ -540,7 +520,11 @@ class GraphicalLassoCV(BaseTransformer):
540
520
  return output_df
541
521
 
542
522
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
543
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
523
+ def fit_predict(
524
+ self,
525
+ dataset: Union[DataFrame, pd.DataFrame],
526
+ output_cols_prefix: str = "fit_predict_",
527
+ ) -> Union[DataFrame, pd.DataFrame]:
544
528
  """ Method not supported for this class.
545
529
 
546
530
 
@@ -565,22 +549,104 @@ class GraphicalLassoCV(BaseTransformer):
565
549
  )
566
550
  output_result, fitted_estimator = model_trainer.train_fit_predict(
567
551
  drop_input_cols=self._drop_input_cols,
568
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
552
+ expected_output_cols_list=(
553
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
554
+ ),
569
555
  )
570
556
  self._sklearn_object = fitted_estimator
571
557
  self._is_fitted = True
572
558
  return output_result
573
559
 
560
+
561
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
562
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
563
+ """ Method not supported for this class.
564
+
574
565
 
575
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
576
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
577
- """
566
+ Raises:
567
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
568
+
569
+ Args:
570
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
571
+ Snowpark or Pandas DataFrame.
572
+ output_cols_prefix: Prefix for the response columns
578
573
  Returns:
579
574
  Transformed dataset.
580
575
  """
581
- self.fit(dataset)
582
- assert self._sklearn_object is not None
583
- return self._sklearn_object.embedding_
576
+ self._infer_input_output_cols(dataset)
577
+ super()._check_dataset_type(dataset)
578
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
579
+ estimator=self._sklearn_object,
580
+ dataset=dataset,
581
+ input_cols=self.input_cols,
582
+ label_cols=self.label_cols,
583
+ sample_weight_col=self.sample_weight_col,
584
+ autogenerated=self._autogenerated,
585
+ subproject=_SUBPROJECT,
586
+ )
587
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
588
+ drop_input_cols=self._drop_input_cols,
589
+ expected_output_cols_list=self.output_cols,
590
+ )
591
+ self._sklearn_object = fitted_estimator
592
+ self._is_fitted = True
593
+ return output_result
594
+
595
+
596
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
597
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
598
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
599
+ """
600
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
601
+ # The following condition is introduced for kneighbors methods, and not used in other methods
602
+ if output_cols:
603
+ output_cols = [
604
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
605
+ for c in output_cols
606
+ ]
607
+ elif getattr(self._sklearn_object, "classes_", None) is None:
608
+ output_cols = [output_cols_prefix]
609
+ elif self._sklearn_object is not None:
610
+ classes = self._sklearn_object.classes_
611
+ if isinstance(classes, numpy.ndarray):
612
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
613
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
614
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
615
+ output_cols = []
616
+ for i, cl in enumerate(classes):
617
+ # For binary classification, there is only one output column for each class
618
+ # ndarray as the two classes are complementary.
619
+ if len(cl) == 2:
620
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
621
+ else:
622
+ output_cols.extend([
623
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
624
+ ])
625
+ else:
626
+ output_cols = []
627
+
628
+ # Make sure column names are valid snowflake identifiers.
629
+ assert output_cols is not None # Make MyPy happy
630
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
631
+
632
+ return rv
633
+
634
+ def _align_expected_output_names(
635
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
636
+ ) -> List[str]:
637
+ # in case the inferred output column names dimension is different
638
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
639
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
640
+ output_df_columns = list(output_df_pd.columns)
641
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
642
+ if self.sample_weight_col:
643
+ output_df_columns_set -= set(self.sample_weight_col)
644
+ # if the dimension of inferred output column names is correct; use it
645
+ if len(expected_output_cols_list) == len(output_df_columns_set):
646
+ return expected_output_cols_list
647
+ # otherwise, use the sklearn estimator's output
648
+ else:
649
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
584
650
 
585
651
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
586
652
  @telemetry.send_api_usage_telemetry(
@@ -612,24 +678,26 @@ class GraphicalLassoCV(BaseTransformer):
612
678
  # are specific to the type of dataset used.
613
679
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
614
680
 
681
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
682
+
615
683
  if isinstance(dataset, DataFrame):
616
- self._deps = self._batch_inference_validate_snowpark(
617
- dataset=dataset,
618
- inference_method=inference_method,
619
- )
620
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
684
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
685
+ self._deps = self._get_dependencies()
686
+ assert isinstance(
687
+ dataset._session, Session
688
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
621
689
  transform_kwargs = dict(
622
690
  session=dataset._session,
623
691
  dependencies=self._deps,
624
- drop_input_cols = self._drop_input_cols,
692
+ drop_input_cols=self._drop_input_cols,
625
693
  expected_output_cols_type="float",
626
694
  )
695
+ expected_output_cols = self._align_expected_output_names(
696
+ inference_method, dataset, expected_output_cols, output_cols_prefix
697
+ )
627
698
 
628
699
  elif isinstance(dataset, pd.DataFrame):
629
- transform_kwargs = dict(
630
- snowpark_input_cols = self._snowpark_cols,
631
- drop_input_cols = self._drop_input_cols
632
- )
700
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
633
701
 
634
702
  transform_handlers = ModelTransformerBuilder.build(
635
703
  dataset=dataset,
@@ -641,7 +709,7 @@ class GraphicalLassoCV(BaseTransformer):
641
709
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
642
710
  inference_method=inference_method,
643
711
  input_cols=self.input_cols,
644
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
712
+ expected_output_cols=expected_output_cols,
645
713
  **transform_kwargs
646
714
  )
647
715
  return output_df
@@ -671,29 +739,30 @@ class GraphicalLassoCV(BaseTransformer):
671
739
  Output dataset with log probability of the sample for each class in the model.
672
740
  """
673
741
  super()._check_dataset_type(dataset)
674
- inference_method="predict_log_proba"
742
+ inference_method = "predict_log_proba"
743
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
675
744
 
676
745
  # This dictionary contains optional kwargs for batch inference. These kwargs
677
746
  # are specific to the type of dataset used.
678
747
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
679
748
 
680
749
  if isinstance(dataset, DataFrame):
681
- self._deps = self._batch_inference_validate_snowpark(
682
- dataset=dataset,
683
- inference_method=inference_method,
684
- )
685
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
750
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
751
+ self._deps = self._get_dependencies()
752
+ assert isinstance(
753
+ dataset._session, Session
754
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
755
  transform_kwargs = dict(
687
756
  session=dataset._session,
688
757
  dependencies=self._deps,
689
- drop_input_cols = self._drop_input_cols,
758
+ drop_input_cols=self._drop_input_cols,
690
759
  expected_output_cols_type="float",
691
760
  )
761
+ expected_output_cols = self._align_expected_output_names(
762
+ inference_method, dataset, expected_output_cols, output_cols_prefix
763
+ )
692
764
  elif isinstance(dataset, pd.DataFrame):
693
- transform_kwargs = dict(
694
- snowpark_input_cols = self._snowpark_cols,
695
- drop_input_cols = self._drop_input_cols
696
- )
765
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
697
766
 
698
767
  transform_handlers = ModelTransformerBuilder.build(
699
768
  dataset=dataset,
@@ -706,7 +775,7 @@ class GraphicalLassoCV(BaseTransformer):
706
775
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
707
776
  inference_method=inference_method,
708
777
  input_cols=self.input_cols,
709
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
778
+ expected_output_cols=expected_output_cols,
710
779
  **transform_kwargs
711
780
  )
712
781
  return output_df
@@ -732,30 +801,32 @@ class GraphicalLassoCV(BaseTransformer):
732
801
  Output dataset with results of the decision function for the samples in input dataset.
733
802
  """
734
803
  super()._check_dataset_type(dataset)
735
- inference_method="decision_function"
804
+ inference_method = "decision_function"
736
805
 
737
806
  # This dictionary contains optional kwargs for batch inference. These kwargs
738
807
  # are specific to the type of dataset used.
739
808
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
740
809
 
810
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
811
+
741
812
  if isinstance(dataset, DataFrame):
742
- self._deps = self._batch_inference_validate_snowpark(
743
- dataset=dataset,
744
- inference_method=inference_method,
745
- )
746
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
813
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
814
+ self._deps = self._get_dependencies()
815
+ assert isinstance(
816
+ dataset._session, Session
817
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
747
818
  transform_kwargs = dict(
748
819
  session=dataset._session,
749
820
  dependencies=self._deps,
750
- drop_input_cols = self._drop_input_cols,
821
+ drop_input_cols=self._drop_input_cols,
751
822
  expected_output_cols_type="float",
752
823
  )
824
+ expected_output_cols = self._align_expected_output_names(
825
+ inference_method, dataset, expected_output_cols, output_cols_prefix
826
+ )
753
827
 
754
828
  elif isinstance(dataset, pd.DataFrame):
755
- transform_kwargs = dict(
756
- snowpark_input_cols = self._snowpark_cols,
757
- drop_input_cols = self._drop_input_cols
758
- )
829
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
759
830
 
760
831
  transform_handlers = ModelTransformerBuilder.build(
761
832
  dataset=dataset,
@@ -768,7 +839,7 @@ class GraphicalLassoCV(BaseTransformer):
768
839
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
769
840
  inference_method=inference_method,
770
841
  input_cols=self.input_cols,
771
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
842
+ expected_output_cols=expected_output_cols,
772
843
  **transform_kwargs
773
844
  )
774
845
  return output_df
@@ -797,17 +868,17 @@ class GraphicalLassoCV(BaseTransformer):
797
868
  Output dataset with probability of the sample for each class in the model.
798
869
  """
799
870
  super()._check_dataset_type(dataset)
800
- inference_method="score_samples"
871
+ inference_method = "score_samples"
801
872
 
802
873
  # This dictionary contains optional kwargs for batch inference. These kwargs
803
874
  # are specific to the type of dataset used.
804
875
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
805
876
 
877
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
878
+
806
879
  if isinstance(dataset, DataFrame):
807
- self._deps = self._batch_inference_validate_snowpark(
808
- dataset=dataset,
809
- inference_method=inference_method,
810
- )
880
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
881
+ self._deps = self._get_dependencies()
811
882
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
812
883
  transform_kwargs = dict(
813
884
  session=dataset._session,
@@ -815,6 +886,9 @@ class GraphicalLassoCV(BaseTransformer):
815
886
  drop_input_cols = self._drop_input_cols,
816
887
  expected_output_cols_type="float",
817
888
  )
889
+ expected_output_cols = self._align_expected_output_names(
890
+ inference_method, dataset, expected_output_cols, output_cols_prefix
891
+ )
818
892
 
819
893
  elif isinstance(dataset, pd.DataFrame):
820
894
  transform_kwargs = dict(
@@ -833,7 +907,7 @@ class GraphicalLassoCV(BaseTransformer):
833
907
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
834
908
  inference_method=inference_method,
835
909
  input_cols=self.input_cols,
836
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
910
+ expected_output_cols=expected_output_cols,
837
911
  **transform_kwargs
838
912
  )
839
913
  return output_df
@@ -868,17 +942,15 @@ class GraphicalLassoCV(BaseTransformer):
868
942
  transform_kwargs: ScoreKwargsTypedDict = dict()
869
943
 
870
944
  if isinstance(dataset, DataFrame):
871
- self._deps = self._batch_inference_validate_snowpark(
872
- dataset=dataset,
873
- inference_method="score",
874
- )
945
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
946
+ self._deps = self._get_dependencies()
875
947
  selected_cols = self._get_active_columns()
876
948
  if len(selected_cols) > 0:
877
949
  dataset = dataset.select(selected_cols)
878
950
  assert isinstance(dataset._session, Session) # keep mypy happy
879
951
  transform_kwargs = dict(
880
952
  session=dataset._session,
881
- dependencies=["snowflake-snowpark-python"] + self._deps,
953
+ dependencies=self._deps,
882
954
  score_sproc_imports=['sklearn'],
883
955
  )
884
956
  elif isinstance(dataset, pd.DataFrame):
@@ -943,11 +1015,8 @@ class GraphicalLassoCV(BaseTransformer):
943
1015
 
944
1016
  if isinstance(dataset, DataFrame):
945
1017
 
946
- self._deps = self._batch_inference_validate_snowpark(
947
- dataset=dataset,
948
- inference_method=inference_method,
949
-
950
- )
1018
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1019
+ self._deps = self._get_dependencies()
951
1020
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
952
1021
  transform_kwargs = dict(
953
1022
  session = dataset._session,
@@ -980,50 +1049,84 @@ class GraphicalLassoCV(BaseTransformer):
980
1049
  )
981
1050
  return output_df
982
1051
 
1052
+
1053
+
1054
+ def to_sklearn(self) -> Any:
1055
+ """Get sklearn.covariance.GraphicalLassoCV object.
1056
+ """
1057
+ if self._sklearn_object is None:
1058
+ self._sklearn_object = self._create_sklearn_object()
1059
+ return self._sklearn_object
1060
+
1061
+ def to_xgboost(self) -> Any:
1062
+ raise exceptions.SnowflakeMLException(
1063
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1064
+ original_exception=AttributeError(
1065
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1066
+ "to_xgboost()",
1067
+ "to_sklearn()"
1068
+ )
1069
+ ),
1070
+ )
1071
+
1072
+ def to_lightgbm(self) -> Any:
1073
+ raise exceptions.SnowflakeMLException(
1074
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1075
+ original_exception=AttributeError(
1076
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1077
+ "to_lightgbm()",
1078
+ "to_sklearn()"
1079
+ )
1080
+ ),
1081
+ )
1082
+
1083
+ def _get_dependencies(self) -> List[str]:
1084
+ return self._deps
1085
+
983
1086
 
984
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1087
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
985
1088
  self._model_signature_dict = dict()
986
1089
 
987
1090
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
988
1091
 
989
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1092
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
990
1093
  outputs: List[BaseFeatureSpec] = []
991
1094
  if hasattr(self, "predict"):
992
1095
  # keep mypy happy
993
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1096
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
994
1097
  # For classifier, the type of predict is the same as the type of label
995
- if self._sklearn_object._estimator_type == 'classifier':
996
- # label columns is the desired type for output
1098
+ if self._sklearn_object._estimator_type == "classifier":
1099
+ # label columns is the desired type for output
997
1100
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
998
1101
  # rename the output columns
999
1102
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1000
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1001
- ([] if self._drop_input_cols else inputs)
1002
- + outputs)
1103
+ self._model_signature_dict["predict"] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1003
1106
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1004
1107
  # For outlier models, returns -1 for outliers and 1 for inliers.
1005
- # Clusterer returns int64 cluster labels.
1108
+ # Clusterer returns int64 cluster labels.
1006
1109
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1007
1110
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1011
-
1111
+ self._model_signature_dict["predict"] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1114
+
1012
1115
  # For regressor, the type of predict is float64
1013
- elif self._sklearn_object._estimator_type == 'regressor':
1116
+ elif self._sklearn_object._estimator_type == "regressor":
1014
1117
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1015
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1016
- ([] if self._drop_input_cols else inputs)
1017
- + outputs)
1018
-
1118
+ self._model_signature_dict["predict"] = ModelSignature(
1119
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1120
+ )
1121
+
1019
1122
  for prob_func in PROB_FUNCTIONS:
1020
1123
  if hasattr(self, prob_func):
1021
1124
  output_cols_prefix: str = f"{prob_func}_"
1022
1125
  output_column_names = self._get_output_column_names(output_cols_prefix)
1023
1126
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1024
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1025
- ([] if self._drop_input_cols else inputs)
1026
- + outputs)
1127
+ self._model_signature_dict[prob_func] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1027
1130
 
1028
1131
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1029
1132
  items = list(self._model_signature_dict.items())
@@ -1036,10 +1139,10 @@ class GraphicalLassoCV(BaseTransformer):
1036
1139
  """Returns model signature of current class.
1037
1140
 
1038
1141
  Raises:
1039
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1142
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1040
1143
 
1041
1144
  Returns:
1042
- Dict[str, ModelSignature]: each method and its input output signature
1145
+ Dict with each method and its input output signature
1043
1146
  """
1044
1147
  if self._model_signature_dict is None:
1045
1148
  raise exceptions.SnowflakeMLException(
@@ -1047,35 +1150,3 @@ class GraphicalLassoCV(BaseTransformer):
1047
1150
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1048
1151
  )
1049
1152
  return self._model_signature_dict
1050
-
1051
- def to_sklearn(self) -> Any:
1052
- """Get sklearn.covariance.GraphicalLassoCV object.
1053
- """
1054
- if self._sklearn_object is None:
1055
- self._sklearn_object = self._create_sklearn_object()
1056
- return self._sklearn_object
1057
-
1058
- def to_xgboost(self) -> Any:
1059
- raise exceptions.SnowflakeMLException(
1060
- error_code=error_codes.METHOD_NOT_ALLOWED,
1061
- original_exception=AttributeError(
1062
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1063
- "to_xgboost()",
1064
- "to_sklearn()"
1065
- )
1066
- ),
1067
- )
1068
-
1069
- def to_lightgbm(self) -> Any:
1070
- raise exceptions.SnowflakeMLException(
1071
- error_code=error_codes.METHOD_NOT_ALLOWED,
1072
- original_exception=AttributeError(
1073
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1074
- "to_lightgbm()",
1075
- "to_sklearn()"
1076
- )
1077
- ),
1078
- )
1079
-
1080
- def _get_dependencies(self) -> List[str]:
1081
- return self._deps