snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
32
32
|
BatchInferenceKwargsTypedDict,
|
33
33
|
ScoreKwargsTypedDict
|
34
34
|
)
|
35
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
36
|
+
from snowflake.ml.model.model_signature import (
|
37
|
+
BaseFeatureSpec,
|
38
|
+
DataType,
|
39
|
+
FeatureSpec,
|
40
|
+
ModelSignature,
|
41
|
+
_infer_signature,
|
42
|
+
_rename_signature_with_snowflake_identifiers,
|
43
|
+
)
|
35
44
|
|
36
45
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
37
46
|
|
@@ -42,16 +51,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
42
51
|
validate_sklearn_args,
|
43
52
|
)
|
44
53
|
|
45
|
-
from snowflake.ml.model.model_signature import (
|
46
|
-
DataType,
|
47
|
-
FeatureSpec,
|
48
|
-
ModelSignature,
|
49
|
-
_infer_signature,
|
50
|
-
_rename_signature_with_snowflake_identifiers,
|
51
|
-
BaseFeatureSpec,
|
52
|
-
)
|
53
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
54
|
-
|
55
54
|
_PROJECT = "ModelDevelopment"
|
56
55
|
# Derive subproject from module name by removing "sklearn"
|
57
56
|
# and converting module name from underscore to CamelCase
|
@@ -60,12 +59,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "")
|
|
60
59
|
|
61
60
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
62
61
|
|
63
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
64
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
65
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
66
|
-
return check
|
67
|
-
|
68
|
-
|
69
62
|
class XGBRFRegressor(BaseTransformer):
|
70
63
|
r"""scikit-learn API for XGBoost random forest regression
|
71
64
|
For more details on this class, see [xgboost.XGBRFRegressor]
|
@@ -426,12 +419,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
426
419
|
)
|
427
420
|
return selected_cols
|
428
421
|
|
429
|
-
|
430
|
-
project=_PROJECT,
|
431
|
-
subproject=_SUBPROJECT,
|
432
|
-
custom_tags=dict([("autogen", True)]),
|
433
|
-
)
|
434
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFRegressor":
|
422
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFRegressor":
|
435
423
|
"""Fit gradient boosting model
|
436
424
|
For more details on this function, see [xgboost.XGBRFRegressor.fit]
|
437
425
|
(https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFRegressor.fit)
|
@@ -458,12 +446,14 @@ class XGBRFRegressor(BaseTransformer):
|
|
458
446
|
|
459
447
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
460
448
|
|
461
|
-
|
449
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
462
450
|
if SNOWML_SPROC_ENV in os.environ:
|
463
451
|
statement_params = telemetry.get_function_usage_statement_params(
|
464
452
|
project=_PROJECT,
|
465
453
|
subproject=_SUBPROJECT,
|
466
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
454
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
455
|
+
inspect.currentframe(), XGBRFRegressor.__class__.__name__
|
456
|
+
),
|
467
457
|
api_calls=[Session.call],
|
468
458
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
469
459
|
)
|
@@ -484,27 +474,24 @@ class XGBRFRegressor(BaseTransformer):
|
|
484
474
|
)
|
485
475
|
self._sklearn_object = model_trainer.train()
|
486
476
|
self._is_fitted = True
|
487
|
-
self.
|
477
|
+
self._generate_model_signatures(dataset)
|
488
478
|
return self
|
489
479
|
|
490
480
|
def _batch_inference_validate_snowpark(
|
491
481
|
self,
|
492
482
|
dataset: DataFrame,
|
493
483
|
inference_method: str,
|
494
|
-
) ->
|
495
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
496
|
-
return the available package that exists in the snowflake anaconda channel
|
484
|
+
) -> None:
|
485
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
497
486
|
|
498
487
|
Args:
|
499
488
|
dataset: snowpark dataframe
|
500
489
|
inference_method: the inference method such as predict, score...
|
501
|
-
|
490
|
+
|
502
491
|
Raises:
|
503
492
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
504
493
|
SnowflakeMLException: If the session is None, raise error
|
505
494
|
|
506
|
-
Returns:
|
507
|
-
A list of available package that exists in the snowflake anaconda channel
|
508
495
|
"""
|
509
496
|
if not self._is_fitted:
|
510
497
|
raise exceptions.SnowflakeMLException(
|
@@ -522,9 +509,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
522
509
|
"Session must not specified for snowpark dataset."
|
523
510
|
),
|
524
511
|
)
|
525
|
-
|
526
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
527
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
512
|
+
|
528
513
|
|
529
514
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
530
515
|
@telemetry.send_api_usage_telemetry(
|
@@ -560,7 +545,9 @@ class XGBRFRegressor(BaseTransformer):
|
|
560
545
|
# when it is classifier, infer the datatype from label columns
|
561
546
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
562
547
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
563
|
-
label_cols_signatures = [
|
548
|
+
label_cols_signatures = [
|
549
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
550
|
+
]
|
564
551
|
if len(label_cols_signatures) == 0:
|
565
552
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
566
553
|
raise exceptions.SnowflakeMLException(
|
@@ -568,25 +555,23 @@ class XGBRFRegressor(BaseTransformer):
|
|
568
555
|
original_exception=ValueError(error_str),
|
569
556
|
)
|
570
557
|
|
571
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
572
|
-
label_cols_signatures[0].as_snowpark_type()
|
573
|
-
)
|
558
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
574
559
|
|
575
|
-
self.
|
576
|
-
|
560
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
561
|
+
self._deps = self._get_dependencies()
|
562
|
+
assert isinstance(
|
563
|
+
dataset._session, Session
|
564
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
577
565
|
|
578
566
|
transform_kwargs = dict(
|
579
|
-
session
|
580
|
-
dependencies
|
581
|
-
drop_input_cols
|
582
|
-
expected_output_cols_type
|
567
|
+
session=dataset._session,
|
568
|
+
dependencies=self._deps,
|
569
|
+
drop_input_cols=self._drop_input_cols,
|
570
|
+
expected_output_cols_type=expected_type_inferred,
|
583
571
|
)
|
584
572
|
|
585
573
|
elif isinstance(dataset, pd.DataFrame):
|
586
|
-
transform_kwargs = dict(
|
587
|
-
snowpark_input_cols = self._snowpark_cols,
|
588
|
-
drop_input_cols = self._drop_input_cols
|
589
|
-
)
|
574
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
590
575
|
|
591
576
|
transform_handlers = ModelTransformerBuilder.build(
|
592
577
|
dataset=dataset,
|
@@ -626,7 +611,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
626
611
|
Transformed dataset.
|
627
612
|
"""
|
628
613
|
super()._check_dataset_type(dataset)
|
629
|
-
inference_method="transform"
|
614
|
+
inference_method = "transform"
|
630
615
|
|
631
616
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
632
617
|
# are specific to the type of dataset used.
|
@@ -656,24 +641,19 @@ class XGBRFRegressor(BaseTransformer):
|
|
656
641
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
657
642
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
658
643
|
|
659
|
-
self.
|
660
|
-
|
661
|
-
inference_method=inference_method,
|
662
|
-
)
|
644
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
645
|
+
self._deps = self._get_dependencies()
|
663
646
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
664
647
|
|
665
648
|
transform_kwargs = dict(
|
666
|
-
session
|
667
|
-
dependencies
|
668
|
-
drop_input_cols
|
669
|
-
expected_output_cols_type
|
649
|
+
session=dataset._session,
|
650
|
+
dependencies=self._deps,
|
651
|
+
drop_input_cols=self._drop_input_cols,
|
652
|
+
expected_output_cols_type=expected_dtype,
|
670
653
|
)
|
671
654
|
|
672
655
|
elif isinstance(dataset, pd.DataFrame):
|
673
|
-
transform_kwargs = dict(
|
674
|
-
snowpark_input_cols = self._snowpark_cols,
|
675
|
-
drop_input_cols = self._drop_input_cols
|
676
|
-
)
|
656
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
677
657
|
|
678
658
|
transform_handlers = ModelTransformerBuilder.build(
|
679
659
|
dataset=dataset,
|
@@ -692,7 +672,11 @@ class XGBRFRegressor(BaseTransformer):
|
|
692
672
|
return output_df
|
693
673
|
|
694
674
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
695
|
-
def fit_predict(
|
675
|
+
def fit_predict(
|
676
|
+
self,
|
677
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
678
|
+
output_cols_prefix: str = "fit_predict_",
|
679
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
696
680
|
""" Method not supported for this class.
|
697
681
|
|
698
682
|
|
@@ -717,22 +701,104 @@ class XGBRFRegressor(BaseTransformer):
|
|
717
701
|
)
|
718
702
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
719
703
|
drop_input_cols=self._drop_input_cols,
|
720
|
-
expected_output_cols_list=
|
704
|
+
expected_output_cols_list=(
|
705
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
706
|
+
),
|
721
707
|
)
|
722
708
|
self._sklearn_object = fitted_estimator
|
723
709
|
self._is_fitted = True
|
724
710
|
return output_result
|
725
711
|
|
712
|
+
|
713
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
714
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
715
|
+
""" Method not supported for this class.
|
716
|
+
|
726
717
|
|
727
|
-
|
728
|
-
|
729
|
-
|
718
|
+
Raises:
|
719
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
720
|
+
|
721
|
+
Args:
|
722
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
723
|
+
Snowpark or Pandas DataFrame.
|
724
|
+
output_cols_prefix: Prefix for the response columns
|
730
725
|
Returns:
|
731
726
|
Transformed dataset.
|
732
727
|
"""
|
733
|
-
self.
|
734
|
-
|
735
|
-
|
728
|
+
self._infer_input_output_cols(dataset)
|
729
|
+
super()._check_dataset_type(dataset)
|
730
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
731
|
+
estimator=self._sklearn_object,
|
732
|
+
dataset=dataset,
|
733
|
+
input_cols=self.input_cols,
|
734
|
+
label_cols=self.label_cols,
|
735
|
+
sample_weight_col=self.sample_weight_col,
|
736
|
+
autogenerated=self._autogenerated,
|
737
|
+
subproject=_SUBPROJECT,
|
738
|
+
)
|
739
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
740
|
+
drop_input_cols=self._drop_input_cols,
|
741
|
+
expected_output_cols_list=self.output_cols,
|
742
|
+
)
|
743
|
+
self._sklearn_object = fitted_estimator
|
744
|
+
self._is_fitted = True
|
745
|
+
return output_result
|
746
|
+
|
747
|
+
|
748
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
749
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
750
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
751
|
+
"""
|
752
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
753
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
754
|
+
if output_cols:
|
755
|
+
output_cols = [
|
756
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
757
|
+
for c in output_cols
|
758
|
+
]
|
759
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
760
|
+
output_cols = [output_cols_prefix]
|
761
|
+
elif self._sklearn_object is not None:
|
762
|
+
classes = self._sklearn_object.classes_
|
763
|
+
if isinstance(classes, numpy.ndarray):
|
764
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
765
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
766
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
767
|
+
output_cols = []
|
768
|
+
for i, cl in enumerate(classes):
|
769
|
+
# For binary classification, there is only one output column for each class
|
770
|
+
# ndarray as the two classes are complementary.
|
771
|
+
if len(cl) == 2:
|
772
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
773
|
+
else:
|
774
|
+
output_cols.extend([
|
775
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
776
|
+
])
|
777
|
+
else:
|
778
|
+
output_cols = []
|
779
|
+
|
780
|
+
# Make sure column names are valid snowflake identifiers.
|
781
|
+
assert output_cols is not None # Make MyPy happy
|
782
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
783
|
+
|
784
|
+
return rv
|
785
|
+
|
786
|
+
def _align_expected_output_names(
|
787
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
788
|
+
) -> List[str]:
|
789
|
+
# in case the inferred output column names dimension is different
|
790
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
791
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
792
|
+
output_df_columns = list(output_df_pd.columns)
|
793
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
794
|
+
if self.sample_weight_col:
|
795
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
796
|
+
# if the dimension of inferred output column names is correct; use it
|
797
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
798
|
+
return expected_output_cols_list
|
799
|
+
# otherwise, use the sklearn estimator's output
|
800
|
+
else:
|
801
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
736
802
|
|
737
803
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
738
804
|
@telemetry.send_api_usage_telemetry(
|
@@ -764,24 +830,26 @@ class XGBRFRegressor(BaseTransformer):
|
|
764
830
|
# are specific to the type of dataset used.
|
765
831
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
766
832
|
|
833
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
834
|
+
|
767
835
|
if isinstance(dataset, DataFrame):
|
768
|
-
self.
|
769
|
-
|
770
|
-
|
771
|
-
|
772
|
-
|
836
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
837
|
+
self._deps = self._get_dependencies()
|
838
|
+
assert isinstance(
|
839
|
+
dataset._session, Session
|
840
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
773
841
|
transform_kwargs = dict(
|
774
842
|
session=dataset._session,
|
775
843
|
dependencies=self._deps,
|
776
|
-
drop_input_cols
|
844
|
+
drop_input_cols=self._drop_input_cols,
|
777
845
|
expected_output_cols_type="float",
|
778
846
|
)
|
847
|
+
expected_output_cols = self._align_expected_output_names(
|
848
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
849
|
+
)
|
779
850
|
|
780
851
|
elif isinstance(dataset, pd.DataFrame):
|
781
|
-
transform_kwargs = dict(
|
782
|
-
snowpark_input_cols = self._snowpark_cols,
|
783
|
-
drop_input_cols = self._drop_input_cols
|
784
|
-
)
|
852
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
785
853
|
|
786
854
|
transform_handlers = ModelTransformerBuilder.build(
|
787
855
|
dataset=dataset,
|
@@ -793,7 +861,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
793
861
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
794
862
|
inference_method=inference_method,
|
795
863
|
input_cols=self.input_cols,
|
796
|
-
expected_output_cols=
|
864
|
+
expected_output_cols=expected_output_cols,
|
797
865
|
**transform_kwargs
|
798
866
|
)
|
799
867
|
return output_df
|
@@ -823,29 +891,30 @@ class XGBRFRegressor(BaseTransformer):
|
|
823
891
|
Output dataset with log probability of the sample for each class in the model.
|
824
892
|
"""
|
825
893
|
super()._check_dataset_type(dataset)
|
826
|
-
inference_method="predict_log_proba"
|
894
|
+
inference_method = "predict_log_proba"
|
895
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
827
896
|
|
828
897
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
829
898
|
# are specific to the type of dataset used.
|
830
899
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
831
900
|
|
832
901
|
if isinstance(dataset, DataFrame):
|
833
|
-
self.
|
834
|
-
|
835
|
-
|
836
|
-
|
837
|
-
|
902
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
903
|
+
self._deps = self._get_dependencies()
|
904
|
+
assert isinstance(
|
905
|
+
dataset._session, Session
|
906
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
838
907
|
transform_kwargs = dict(
|
839
908
|
session=dataset._session,
|
840
909
|
dependencies=self._deps,
|
841
|
-
drop_input_cols
|
910
|
+
drop_input_cols=self._drop_input_cols,
|
842
911
|
expected_output_cols_type="float",
|
843
912
|
)
|
913
|
+
expected_output_cols = self._align_expected_output_names(
|
914
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
915
|
+
)
|
844
916
|
elif isinstance(dataset, pd.DataFrame):
|
845
|
-
transform_kwargs = dict(
|
846
|
-
snowpark_input_cols = self._snowpark_cols,
|
847
|
-
drop_input_cols = self._drop_input_cols
|
848
|
-
)
|
917
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
849
918
|
|
850
919
|
transform_handlers = ModelTransformerBuilder.build(
|
851
920
|
dataset=dataset,
|
@@ -858,7 +927,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
858
927
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
859
928
|
inference_method=inference_method,
|
860
929
|
input_cols=self.input_cols,
|
861
|
-
expected_output_cols=
|
930
|
+
expected_output_cols=expected_output_cols,
|
862
931
|
**transform_kwargs
|
863
932
|
)
|
864
933
|
return output_df
|
@@ -884,30 +953,32 @@ class XGBRFRegressor(BaseTransformer):
|
|
884
953
|
Output dataset with results of the decision function for the samples in input dataset.
|
885
954
|
"""
|
886
955
|
super()._check_dataset_type(dataset)
|
887
|
-
inference_method="decision_function"
|
956
|
+
inference_method = "decision_function"
|
888
957
|
|
889
958
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
890
959
|
# are specific to the type of dataset used.
|
891
960
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
892
961
|
|
962
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
963
|
+
|
893
964
|
if isinstance(dataset, DataFrame):
|
894
|
-
self.
|
895
|
-
|
896
|
-
|
897
|
-
|
898
|
-
|
965
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
966
|
+
self._deps = self._get_dependencies()
|
967
|
+
assert isinstance(
|
968
|
+
dataset._session, Session
|
969
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
899
970
|
transform_kwargs = dict(
|
900
971
|
session=dataset._session,
|
901
972
|
dependencies=self._deps,
|
902
|
-
drop_input_cols
|
973
|
+
drop_input_cols=self._drop_input_cols,
|
903
974
|
expected_output_cols_type="float",
|
904
975
|
)
|
976
|
+
expected_output_cols = self._align_expected_output_names(
|
977
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
978
|
+
)
|
905
979
|
|
906
980
|
elif isinstance(dataset, pd.DataFrame):
|
907
|
-
transform_kwargs = dict(
|
908
|
-
snowpark_input_cols = self._snowpark_cols,
|
909
|
-
drop_input_cols = self._drop_input_cols
|
910
|
-
)
|
981
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
911
982
|
|
912
983
|
transform_handlers = ModelTransformerBuilder.build(
|
913
984
|
dataset=dataset,
|
@@ -920,7 +991,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
920
991
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
921
992
|
inference_method=inference_method,
|
922
993
|
input_cols=self.input_cols,
|
923
|
-
expected_output_cols=
|
994
|
+
expected_output_cols=expected_output_cols,
|
924
995
|
**transform_kwargs
|
925
996
|
)
|
926
997
|
return output_df
|
@@ -949,17 +1020,17 @@ class XGBRFRegressor(BaseTransformer):
|
|
949
1020
|
Output dataset with probability of the sample for each class in the model.
|
950
1021
|
"""
|
951
1022
|
super()._check_dataset_type(dataset)
|
952
|
-
inference_method="score_samples"
|
1023
|
+
inference_method = "score_samples"
|
953
1024
|
|
954
1025
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
955
1026
|
# are specific to the type of dataset used.
|
956
1027
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
957
1028
|
|
1029
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
1030
|
+
|
958
1031
|
if isinstance(dataset, DataFrame):
|
959
|
-
self.
|
960
|
-
|
961
|
-
inference_method=inference_method,
|
962
|
-
)
|
1032
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1033
|
+
self._deps = self._get_dependencies()
|
963
1034
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
964
1035
|
transform_kwargs = dict(
|
965
1036
|
session=dataset._session,
|
@@ -967,6 +1038,9 @@ class XGBRFRegressor(BaseTransformer):
|
|
967
1038
|
drop_input_cols = self._drop_input_cols,
|
968
1039
|
expected_output_cols_type="float",
|
969
1040
|
)
|
1041
|
+
expected_output_cols = self._align_expected_output_names(
|
1042
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
1043
|
+
)
|
970
1044
|
|
971
1045
|
elif isinstance(dataset, pd.DataFrame):
|
972
1046
|
transform_kwargs = dict(
|
@@ -985,7 +1059,7 @@ class XGBRFRegressor(BaseTransformer):
|
|
985
1059
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
986
1060
|
inference_method=inference_method,
|
987
1061
|
input_cols=self.input_cols,
|
988
|
-
expected_output_cols=
|
1062
|
+
expected_output_cols=expected_output_cols,
|
989
1063
|
**transform_kwargs
|
990
1064
|
)
|
991
1065
|
return output_df
|
@@ -1020,17 +1094,15 @@ class XGBRFRegressor(BaseTransformer):
|
|
1020
1094
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
1021
1095
|
|
1022
1096
|
if isinstance(dataset, DataFrame):
|
1023
|
-
self.
|
1024
|
-
|
1025
|
-
inference_method="score",
|
1026
|
-
)
|
1097
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
1098
|
+
self._deps = self._get_dependencies()
|
1027
1099
|
selected_cols = self._get_active_columns()
|
1028
1100
|
if len(selected_cols) > 0:
|
1029
1101
|
dataset = dataset.select(selected_cols)
|
1030
1102
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
1031
1103
|
transform_kwargs = dict(
|
1032
1104
|
session=dataset._session,
|
1033
|
-
dependencies=
|
1105
|
+
dependencies=self._deps,
|
1034
1106
|
score_sproc_imports=['xgboost'],
|
1035
1107
|
)
|
1036
1108
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -1095,11 +1167,8 @@ class XGBRFRegressor(BaseTransformer):
|
|
1095
1167
|
|
1096
1168
|
if isinstance(dataset, DataFrame):
|
1097
1169
|
|
1098
|
-
self.
|
1099
|
-
|
1100
|
-
inference_method=inference_method,
|
1101
|
-
|
1102
|
-
)
|
1170
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1171
|
+
self._deps = self._get_dependencies()
|
1103
1172
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
1104
1173
|
transform_kwargs = dict(
|
1105
1174
|
session = dataset._session,
|
@@ -1132,50 +1201,84 @@ class XGBRFRegressor(BaseTransformer):
|
|
1132
1201
|
)
|
1133
1202
|
return output_df
|
1134
1203
|
|
1204
|
+
|
1205
|
+
|
1206
|
+
def to_xgboost(self) -> Any:
|
1207
|
+
"""Get xgboost.XGBRFRegressor object.
|
1208
|
+
"""
|
1209
|
+
if self._sklearn_object is None:
|
1210
|
+
self._sklearn_object = self._create_sklearn_object()
|
1211
|
+
return self._sklearn_object
|
1212
|
+
|
1213
|
+
def to_sklearn(self) -> Any:
|
1214
|
+
raise exceptions.SnowflakeMLException(
|
1215
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1216
|
+
original_exception=AttributeError(
|
1217
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1218
|
+
"to_sklearn()",
|
1219
|
+
"to_xgboost()"
|
1220
|
+
)
|
1221
|
+
),
|
1222
|
+
)
|
1223
|
+
|
1224
|
+
def to_lightgbm(self) -> Any:
|
1225
|
+
raise exceptions.SnowflakeMLException(
|
1226
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1227
|
+
original_exception=AttributeError(
|
1228
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1229
|
+
"to_lightgbm()",
|
1230
|
+
"to_xgboost()"
|
1231
|
+
)
|
1232
|
+
),
|
1233
|
+
)
|
1234
|
+
|
1235
|
+
def _get_dependencies(self) -> List[str]:
|
1236
|
+
return self._deps
|
1237
|
+
|
1135
1238
|
|
1136
|
-
def
|
1239
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1137
1240
|
self._model_signature_dict = dict()
|
1138
1241
|
|
1139
1242
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1140
1243
|
|
1141
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1244
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1142
1245
|
outputs: List[BaseFeatureSpec] = []
|
1143
1246
|
if hasattr(self, "predict"):
|
1144
1247
|
# keep mypy happy
|
1145
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1248
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1146
1249
|
# For classifier, the type of predict is the same as the type of label
|
1147
|
-
if self._sklearn_object._estimator_type ==
|
1148
|
-
|
1250
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1251
|
+
# label columns is the desired type for output
|
1149
1252
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1150
1253
|
# rename the output columns
|
1151
1254
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1152
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1153
|
-
|
1154
|
-
|
1255
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1256
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1257
|
+
)
|
1155
1258
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1156
1259
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1157
|
-
# Clusterer returns int64 cluster labels.
|
1260
|
+
# Clusterer returns int64 cluster labels.
|
1158
1261
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1159
1262
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1160
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1161
|
-
|
1162
|
-
|
1163
|
-
|
1263
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1264
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1265
|
+
)
|
1266
|
+
|
1164
1267
|
# For regressor, the type of predict is float64
|
1165
|
-
elif self._sklearn_object._estimator_type ==
|
1268
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1166
1269
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1167
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1168
|
-
|
1169
|
-
|
1170
|
-
|
1270
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1271
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1272
|
+
)
|
1273
|
+
|
1171
1274
|
for prob_func in PROB_FUNCTIONS:
|
1172
1275
|
if hasattr(self, prob_func):
|
1173
1276
|
output_cols_prefix: str = f"{prob_func}_"
|
1174
1277
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1175
1278
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1176
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1177
|
-
|
1178
|
-
|
1279
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1280
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1281
|
+
)
|
1179
1282
|
|
1180
1283
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1181
1284
|
items = list(self._model_signature_dict.items())
|
@@ -1188,10 +1291,10 @@ class XGBRFRegressor(BaseTransformer):
|
|
1188
1291
|
"""Returns model signature of current class.
|
1189
1292
|
|
1190
1293
|
Raises:
|
1191
|
-
|
1294
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1192
1295
|
|
1193
1296
|
Returns:
|
1194
|
-
Dict
|
1297
|
+
Dict with each method and its input output signature
|
1195
1298
|
"""
|
1196
1299
|
if self._model_signature_dict is None:
|
1197
1300
|
raise exceptions.SnowflakeMLException(
|
@@ -1199,35 +1302,3 @@ class XGBRFRegressor(BaseTransformer):
|
|
1199
1302
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1200
1303
|
)
|
1201
1304
|
return self._model_signature_dict
|
1202
|
-
|
1203
|
-
def to_xgboost(self) -> Any:
|
1204
|
-
"""Get xgboost.XGBRFRegressor object.
|
1205
|
-
"""
|
1206
|
-
if self._sklearn_object is None:
|
1207
|
-
self._sklearn_object = self._create_sklearn_object()
|
1208
|
-
return self._sklearn_object
|
1209
|
-
|
1210
|
-
def to_sklearn(self) -> Any:
|
1211
|
-
raise exceptions.SnowflakeMLException(
|
1212
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1213
|
-
original_exception=AttributeError(
|
1214
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1215
|
-
"to_sklearn()",
|
1216
|
-
"to_xgboost()"
|
1217
|
-
)
|
1218
|
-
),
|
1219
|
-
)
|
1220
|
-
|
1221
|
-
def to_lightgbm(self) -> Any:
|
1222
|
-
raise exceptions.SnowflakeMLException(
|
1223
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1224
|
-
original_exception=AttributeError(
|
1225
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1226
|
-
"to_lightgbm()",
|
1227
|
-
"to_xgboost()"
|
1228
|
-
)
|
1229
|
-
),
|
1230
|
-
)
|
1231
|
-
|
1232
|
-
def _get_dependencies(self) -> List[str]:
|
1233
|
-
return self._deps
|