snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class RandomForestClassifier(BaseTransformer):
71
64
  r"""A random forest classifier
72
65
  For more details on this class, see [sklearn.ensemble.RandomForestClassifier]
@@ -375,12 +368,7 @@ class RandomForestClassifier(BaseTransformer):
375
368
  )
376
369
  return selected_cols
377
370
 
378
- @telemetry.send_api_usage_telemetry(
379
- project=_PROJECT,
380
- subproject=_SUBPROJECT,
381
- custom_tags=dict([("autogen", True)]),
382
- )
383
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RandomForestClassifier":
371
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RandomForestClassifier":
384
372
  """Build a forest of trees from the training set (X, y)
385
373
  For more details on this function, see [sklearn.ensemble.RandomForestClassifier.fit]
386
374
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.fit)
@@ -407,12 +395,14 @@ class RandomForestClassifier(BaseTransformer):
407
395
 
408
396
  self._snowpark_cols = dataset.select(self.input_cols).columns
409
397
 
410
- # If we are already in a stored procedure, no need to kick off another one.
398
+ # If we are already in a stored procedure, no need to kick off another one.
411
399
  if SNOWML_SPROC_ENV in os.environ:
412
400
  statement_params = telemetry.get_function_usage_statement_params(
413
401
  project=_PROJECT,
414
402
  subproject=_SUBPROJECT,
415
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RandomForestClassifier.__class__.__name__),
403
+ function_name=telemetry.get_statement_params_full_func_name(
404
+ inspect.currentframe(), RandomForestClassifier.__class__.__name__
405
+ ),
416
406
  api_calls=[Session.call],
417
407
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
418
408
  )
@@ -433,27 +423,24 @@ class RandomForestClassifier(BaseTransformer):
433
423
  )
434
424
  self._sklearn_object = model_trainer.train()
435
425
  self._is_fitted = True
436
- self._get_model_signatures(dataset)
426
+ self._generate_model_signatures(dataset)
437
427
  return self
438
428
 
439
429
  def _batch_inference_validate_snowpark(
440
430
  self,
441
431
  dataset: DataFrame,
442
432
  inference_method: str,
443
- ) -> List[str]:
444
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
445
- return the available package that exists in the snowflake anaconda channel
433
+ ) -> None:
434
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
446
435
 
447
436
  Args:
448
437
  dataset: snowpark dataframe
449
438
  inference_method: the inference method such as predict, score...
450
-
439
+
451
440
  Raises:
452
441
  SnowflakeMLException: If the estimator is not fitted, raise error
453
442
  SnowflakeMLException: If the session is None, raise error
454
443
 
455
- Returns:
456
- A list of available package that exists in the snowflake anaconda channel
457
444
  """
458
445
  if not self._is_fitted:
459
446
  raise exceptions.SnowflakeMLException(
@@ -471,9 +458,7 @@ class RandomForestClassifier(BaseTransformer):
471
458
  "Session must not specified for snowpark dataset."
472
459
  ),
473
460
  )
474
- # Validate that key package version in user workspace are supported in snowflake conda channel
475
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
476
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
461
+
477
462
 
478
463
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
479
464
  @telemetry.send_api_usage_telemetry(
@@ -509,7 +494,9 @@ class RandomForestClassifier(BaseTransformer):
509
494
  # when it is classifier, infer the datatype from label columns
510
495
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
511
496
  # Batch inference takes a single expected output column type. Use the first columns type for now.
512
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
497
+ label_cols_signatures = [
498
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
499
+ ]
513
500
  if len(label_cols_signatures) == 0:
514
501
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
515
502
  raise exceptions.SnowflakeMLException(
@@ -517,25 +504,23 @@ class RandomForestClassifier(BaseTransformer):
517
504
  original_exception=ValueError(error_str),
518
505
  )
519
506
 
520
- expected_type_inferred = convert_sp_to_sf_type(
521
- label_cols_signatures[0].as_snowpark_type()
522
- )
507
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
523
508
 
524
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
525
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
509
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
510
+ self._deps = self._get_dependencies()
511
+ assert isinstance(
512
+ dataset._session, Session
513
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
526
514
 
527
515
  transform_kwargs = dict(
528
- session = dataset._session,
529
- dependencies = self._deps,
530
- drop_input_cols = self._drop_input_cols,
531
- expected_output_cols_type = expected_type_inferred,
516
+ session=dataset._session,
517
+ dependencies=self._deps,
518
+ drop_input_cols=self._drop_input_cols,
519
+ expected_output_cols_type=expected_type_inferred,
532
520
  )
533
521
 
534
522
  elif isinstance(dataset, pd.DataFrame):
535
- transform_kwargs = dict(
536
- snowpark_input_cols = self._snowpark_cols,
537
- drop_input_cols = self._drop_input_cols
538
- )
523
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
539
524
 
540
525
  transform_handlers = ModelTransformerBuilder.build(
541
526
  dataset=dataset,
@@ -575,7 +560,7 @@ class RandomForestClassifier(BaseTransformer):
575
560
  Transformed dataset.
576
561
  """
577
562
  super()._check_dataset_type(dataset)
578
- inference_method="transform"
563
+ inference_method = "transform"
579
564
 
580
565
  # This dictionary contains optional kwargs for batch inference. These kwargs
581
566
  # are specific to the type of dataset used.
@@ -605,24 +590,19 @@ class RandomForestClassifier(BaseTransformer):
605
590
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
606
591
  expected_dtype = convert_sp_to_sf_type(output_types[0])
607
592
 
608
- self._deps = self._batch_inference_validate_snowpark(
609
- dataset=dataset,
610
- inference_method=inference_method,
611
- )
593
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
594
+ self._deps = self._get_dependencies()
612
595
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
613
596
 
614
597
  transform_kwargs = dict(
615
- session = dataset._session,
616
- dependencies = self._deps,
617
- drop_input_cols = self._drop_input_cols,
618
- expected_output_cols_type = expected_dtype,
598
+ session=dataset._session,
599
+ dependencies=self._deps,
600
+ drop_input_cols=self._drop_input_cols,
601
+ expected_output_cols_type=expected_dtype,
619
602
  )
620
603
 
621
604
  elif isinstance(dataset, pd.DataFrame):
622
- transform_kwargs = dict(
623
- snowpark_input_cols = self._snowpark_cols,
624
- drop_input_cols = self._drop_input_cols
625
- )
605
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
626
606
 
627
607
  transform_handlers = ModelTransformerBuilder.build(
628
608
  dataset=dataset,
@@ -641,7 +621,11 @@ class RandomForestClassifier(BaseTransformer):
641
621
  return output_df
642
622
 
643
623
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
644
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
624
+ def fit_predict(
625
+ self,
626
+ dataset: Union[DataFrame, pd.DataFrame],
627
+ output_cols_prefix: str = "fit_predict_",
628
+ ) -> Union[DataFrame, pd.DataFrame]:
645
629
  """ Method not supported for this class.
646
630
 
647
631
 
@@ -666,22 +650,104 @@ class RandomForestClassifier(BaseTransformer):
666
650
  )
667
651
  output_result, fitted_estimator = model_trainer.train_fit_predict(
668
652
  drop_input_cols=self._drop_input_cols,
669
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
653
+ expected_output_cols_list=(
654
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
655
+ ),
670
656
  )
671
657
  self._sklearn_object = fitted_estimator
672
658
  self._is_fitted = True
673
659
  return output_result
674
660
 
661
+
662
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
663
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
664
+ """ Method not supported for this class.
665
+
675
666
 
676
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
677
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
678
- """
667
+ Raises:
668
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
669
+
670
+ Args:
671
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
672
+ Snowpark or Pandas DataFrame.
673
+ output_cols_prefix: Prefix for the response columns
679
674
  Returns:
680
675
  Transformed dataset.
681
676
  """
682
- self.fit(dataset)
683
- assert self._sklearn_object is not None
684
- return self._sklearn_object.embedding_
677
+ self._infer_input_output_cols(dataset)
678
+ super()._check_dataset_type(dataset)
679
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
680
+ estimator=self._sklearn_object,
681
+ dataset=dataset,
682
+ input_cols=self.input_cols,
683
+ label_cols=self.label_cols,
684
+ sample_weight_col=self.sample_weight_col,
685
+ autogenerated=self._autogenerated,
686
+ subproject=_SUBPROJECT,
687
+ )
688
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
689
+ drop_input_cols=self._drop_input_cols,
690
+ expected_output_cols_list=self.output_cols,
691
+ )
692
+ self._sklearn_object = fitted_estimator
693
+ self._is_fitted = True
694
+ return output_result
695
+
696
+
697
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
698
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
699
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
700
+ """
701
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
702
+ # The following condition is introduced for kneighbors methods, and not used in other methods
703
+ if output_cols:
704
+ output_cols = [
705
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
706
+ for c in output_cols
707
+ ]
708
+ elif getattr(self._sklearn_object, "classes_", None) is None:
709
+ output_cols = [output_cols_prefix]
710
+ elif self._sklearn_object is not None:
711
+ classes = self._sklearn_object.classes_
712
+ if isinstance(classes, numpy.ndarray):
713
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
714
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
715
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
716
+ output_cols = []
717
+ for i, cl in enumerate(classes):
718
+ # For binary classification, there is only one output column for each class
719
+ # ndarray as the two classes are complementary.
720
+ if len(cl) == 2:
721
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
722
+ else:
723
+ output_cols.extend([
724
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
725
+ ])
726
+ else:
727
+ output_cols = []
728
+
729
+ # Make sure column names are valid snowflake identifiers.
730
+ assert output_cols is not None # Make MyPy happy
731
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
732
+
733
+ return rv
734
+
735
+ def _align_expected_output_names(
736
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
737
+ ) -> List[str]:
738
+ # in case the inferred output column names dimension is different
739
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
740
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
741
+ output_df_columns = list(output_df_pd.columns)
742
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
743
+ if self.sample_weight_col:
744
+ output_df_columns_set -= set(self.sample_weight_col)
745
+ # if the dimension of inferred output column names is correct; use it
746
+ if len(expected_output_cols_list) == len(output_df_columns_set):
747
+ return expected_output_cols_list
748
+ # otherwise, use the sklearn estimator's output
749
+ else:
750
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
685
751
 
686
752
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
687
753
  @telemetry.send_api_usage_telemetry(
@@ -715,24 +781,26 @@ class RandomForestClassifier(BaseTransformer):
715
781
  # are specific to the type of dataset used.
716
782
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
717
783
 
784
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
785
+
718
786
  if isinstance(dataset, DataFrame):
719
- self._deps = self._batch_inference_validate_snowpark(
720
- dataset=dataset,
721
- inference_method=inference_method,
722
- )
723
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
787
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
788
+ self._deps = self._get_dependencies()
789
+ assert isinstance(
790
+ dataset._session, Session
791
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
724
792
  transform_kwargs = dict(
725
793
  session=dataset._session,
726
794
  dependencies=self._deps,
727
- drop_input_cols = self._drop_input_cols,
795
+ drop_input_cols=self._drop_input_cols,
728
796
  expected_output_cols_type="float",
729
797
  )
798
+ expected_output_cols = self._align_expected_output_names(
799
+ inference_method, dataset, expected_output_cols, output_cols_prefix
800
+ )
730
801
 
731
802
  elif isinstance(dataset, pd.DataFrame):
732
- transform_kwargs = dict(
733
- snowpark_input_cols = self._snowpark_cols,
734
- drop_input_cols = self._drop_input_cols
735
- )
803
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
736
804
 
737
805
  transform_handlers = ModelTransformerBuilder.build(
738
806
  dataset=dataset,
@@ -744,7 +812,7 @@ class RandomForestClassifier(BaseTransformer):
744
812
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
813
  inference_method=inference_method,
746
814
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
815
+ expected_output_cols=expected_output_cols,
748
816
  **transform_kwargs
749
817
  )
750
818
  return output_df
@@ -776,29 +844,30 @@ class RandomForestClassifier(BaseTransformer):
776
844
  Output dataset with log probability of the sample for each class in the model.
777
845
  """
778
846
  super()._check_dataset_type(dataset)
779
- inference_method="predict_log_proba"
847
+ inference_method = "predict_log_proba"
848
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
780
849
 
781
850
  # This dictionary contains optional kwargs for batch inference. These kwargs
782
851
  # are specific to the type of dataset used.
783
852
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
784
853
 
785
854
  if isinstance(dataset, DataFrame):
786
- self._deps = self._batch_inference_validate_snowpark(
787
- dataset=dataset,
788
- inference_method=inference_method,
789
- )
790
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
855
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
856
+ self._deps = self._get_dependencies()
857
+ assert isinstance(
858
+ dataset._session, Session
859
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
791
860
  transform_kwargs = dict(
792
861
  session=dataset._session,
793
862
  dependencies=self._deps,
794
- drop_input_cols = self._drop_input_cols,
863
+ drop_input_cols=self._drop_input_cols,
795
864
  expected_output_cols_type="float",
796
865
  )
866
+ expected_output_cols = self._align_expected_output_names(
867
+ inference_method, dataset, expected_output_cols, output_cols_prefix
868
+ )
797
869
  elif isinstance(dataset, pd.DataFrame):
798
- transform_kwargs = dict(
799
- snowpark_input_cols = self._snowpark_cols,
800
- drop_input_cols = self._drop_input_cols
801
- )
870
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
802
871
 
803
872
  transform_handlers = ModelTransformerBuilder.build(
804
873
  dataset=dataset,
@@ -811,7 +880,7 @@ class RandomForestClassifier(BaseTransformer):
811
880
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
812
881
  inference_method=inference_method,
813
882
  input_cols=self.input_cols,
814
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
883
+ expected_output_cols=expected_output_cols,
815
884
  **transform_kwargs
816
885
  )
817
886
  return output_df
@@ -837,30 +906,32 @@ class RandomForestClassifier(BaseTransformer):
837
906
  Output dataset with results of the decision function for the samples in input dataset.
838
907
  """
839
908
  super()._check_dataset_type(dataset)
840
- inference_method="decision_function"
909
+ inference_method = "decision_function"
841
910
 
842
911
  # This dictionary contains optional kwargs for batch inference. These kwargs
843
912
  # are specific to the type of dataset used.
844
913
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
845
914
 
915
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
916
+
846
917
  if isinstance(dataset, DataFrame):
847
- self._deps = self._batch_inference_validate_snowpark(
848
- dataset=dataset,
849
- inference_method=inference_method,
850
- )
851
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
918
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
919
+ self._deps = self._get_dependencies()
920
+ assert isinstance(
921
+ dataset._session, Session
922
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
852
923
  transform_kwargs = dict(
853
924
  session=dataset._session,
854
925
  dependencies=self._deps,
855
- drop_input_cols = self._drop_input_cols,
926
+ drop_input_cols=self._drop_input_cols,
856
927
  expected_output_cols_type="float",
857
928
  )
929
+ expected_output_cols = self._align_expected_output_names(
930
+ inference_method, dataset, expected_output_cols, output_cols_prefix
931
+ )
858
932
 
859
933
  elif isinstance(dataset, pd.DataFrame):
860
- transform_kwargs = dict(
861
- snowpark_input_cols = self._snowpark_cols,
862
- drop_input_cols = self._drop_input_cols
863
- )
934
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
864
935
 
865
936
  transform_handlers = ModelTransformerBuilder.build(
866
937
  dataset=dataset,
@@ -873,7 +944,7 @@ class RandomForestClassifier(BaseTransformer):
873
944
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
874
945
  inference_method=inference_method,
875
946
  input_cols=self.input_cols,
876
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
947
+ expected_output_cols=expected_output_cols,
877
948
  **transform_kwargs
878
949
  )
879
950
  return output_df
@@ -902,17 +973,17 @@ class RandomForestClassifier(BaseTransformer):
902
973
  Output dataset with probability of the sample for each class in the model.
903
974
  """
904
975
  super()._check_dataset_type(dataset)
905
- inference_method="score_samples"
976
+ inference_method = "score_samples"
906
977
 
907
978
  # This dictionary contains optional kwargs for batch inference. These kwargs
908
979
  # are specific to the type of dataset used.
909
980
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
910
981
 
982
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
983
+
911
984
  if isinstance(dataset, DataFrame):
912
- self._deps = self._batch_inference_validate_snowpark(
913
- dataset=dataset,
914
- inference_method=inference_method,
915
- )
985
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
986
+ self._deps = self._get_dependencies()
916
987
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
917
988
  transform_kwargs = dict(
918
989
  session=dataset._session,
@@ -920,6 +991,9 @@ class RandomForestClassifier(BaseTransformer):
920
991
  drop_input_cols = self._drop_input_cols,
921
992
  expected_output_cols_type="float",
922
993
  )
994
+ expected_output_cols = self._align_expected_output_names(
995
+ inference_method, dataset, expected_output_cols, output_cols_prefix
996
+ )
923
997
 
924
998
  elif isinstance(dataset, pd.DataFrame):
925
999
  transform_kwargs = dict(
@@ -938,7 +1012,7 @@ class RandomForestClassifier(BaseTransformer):
938
1012
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
939
1013
  inference_method=inference_method,
940
1014
  input_cols=self.input_cols,
941
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1015
+ expected_output_cols=expected_output_cols,
942
1016
  **transform_kwargs
943
1017
  )
944
1018
  return output_df
@@ -973,17 +1047,15 @@ class RandomForestClassifier(BaseTransformer):
973
1047
  transform_kwargs: ScoreKwargsTypedDict = dict()
974
1048
 
975
1049
  if isinstance(dataset, DataFrame):
976
- self._deps = self._batch_inference_validate_snowpark(
977
- dataset=dataset,
978
- inference_method="score",
979
- )
1050
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1051
+ self._deps = self._get_dependencies()
980
1052
  selected_cols = self._get_active_columns()
981
1053
  if len(selected_cols) > 0:
982
1054
  dataset = dataset.select(selected_cols)
983
1055
  assert isinstance(dataset._session, Session) # keep mypy happy
984
1056
  transform_kwargs = dict(
985
1057
  session=dataset._session,
986
- dependencies=["snowflake-snowpark-python"] + self._deps,
1058
+ dependencies=self._deps,
987
1059
  score_sproc_imports=['sklearn'],
988
1060
  )
989
1061
  elif isinstance(dataset, pd.DataFrame):
@@ -1048,11 +1120,8 @@ class RandomForestClassifier(BaseTransformer):
1048
1120
 
1049
1121
  if isinstance(dataset, DataFrame):
1050
1122
 
1051
- self._deps = self._batch_inference_validate_snowpark(
1052
- dataset=dataset,
1053
- inference_method=inference_method,
1054
-
1055
- )
1123
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1124
+ self._deps = self._get_dependencies()
1056
1125
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1057
1126
  transform_kwargs = dict(
1058
1127
  session = dataset._session,
@@ -1085,50 +1154,84 @@ class RandomForestClassifier(BaseTransformer):
1085
1154
  )
1086
1155
  return output_df
1087
1156
 
1157
+
1158
+
1159
+ def to_sklearn(self) -> Any:
1160
+ """Get sklearn.ensemble.RandomForestClassifier object.
1161
+ """
1162
+ if self._sklearn_object is None:
1163
+ self._sklearn_object = self._create_sklearn_object()
1164
+ return self._sklearn_object
1165
+
1166
+ def to_xgboost(self) -> Any:
1167
+ raise exceptions.SnowflakeMLException(
1168
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1169
+ original_exception=AttributeError(
1170
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1171
+ "to_xgboost()",
1172
+ "to_sklearn()"
1173
+ )
1174
+ ),
1175
+ )
1176
+
1177
+ def to_lightgbm(self) -> Any:
1178
+ raise exceptions.SnowflakeMLException(
1179
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1180
+ original_exception=AttributeError(
1181
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1182
+ "to_lightgbm()",
1183
+ "to_sklearn()"
1184
+ )
1185
+ ),
1186
+ )
1187
+
1188
+ def _get_dependencies(self) -> List[str]:
1189
+ return self._deps
1190
+
1088
1191
 
1089
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1192
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1090
1193
  self._model_signature_dict = dict()
1091
1194
 
1092
1195
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1093
1196
 
1094
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1197
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1095
1198
  outputs: List[BaseFeatureSpec] = []
1096
1199
  if hasattr(self, "predict"):
1097
1200
  # keep mypy happy
1098
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1201
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1099
1202
  # For classifier, the type of predict is the same as the type of label
1100
- if self._sklearn_object._estimator_type == 'classifier':
1101
- # label columns is the desired type for output
1203
+ if self._sklearn_object._estimator_type == "classifier":
1204
+ # label columns is the desired type for output
1102
1205
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1103
1206
  # rename the output columns
1104
1207
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1105
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1106
- ([] if self._drop_input_cols else inputs)
1107
- + outputs)
1208
+ self._model_signature_dict["predict"] = ModelSignature(
1209
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1210
+ )
1108
1211
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1109
1212
  # For outlier models, returns -1 for outliers and 1 for inliers.
1110
- # Clusterer returns int64 cluster labels.
1213
+ # Clusterer returns int64 cluster labels.
1111
1214
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1112
1215
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1113
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1114
- ([] if self._drop_input_cols else inputs)
1115
- + outputs)
1116
-
1216
+ self._model_signature_dict["predict"] = ModelSignature(
1217
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1218
+ )
1219
+
1117
1220
  # For regressor, the type of predict is float64
1118
- elif self._sklearn_object._estimator_type == 'regressor':
1221
+ elif self._sklearn_object._estimator_type == "regressor":
1119
1222
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1120
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1121
- ([] if self._drop_input_cols else inputs)
1122
- + outputs)
1123
-
1223
+ self._model_signature_dict["predict"] = ModelSignature(
1224
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1225
+ )
1226
+
1124
1227
  for prob_func in PROB_FUNCTIONS:
1125
1228
  if hasattr(self, prob_func):
1126
1229
  output_cols_prefix: str = f"{prob_func}_"
1127
1230
  output_column_names = self._get_output_column_names(output_cols_prefix)
1128
1231
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1129
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1130
- ([] if self._drop_input_cols else inputs)
1131
- + outputs)
1232
+ self._model_signature_dict[prob_func] = ModelSignature(
1233
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1234
+ )
1132
1235
 
1133
1236
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1134
1237
  items = list(self._model_signature_dict.items())
@@ -1141,10 +1244,10 @@ class RandomForestClassifier(BaseTransformer):
1141
1244
  """Returns model signature of current class.
1142
1245
 
1143
1246
  Raises:
1144
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1247
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1145
1248
 
1146
1249
  Returns:
1147
- Dict[str, ModelSignature]: each method and its input output signature
1250
+ Dict with each method and its input output signature
1148
1251
  """
1149
1252
  if self._model_signature_dict is None:
1150
1253
  raise exceptions.SnowflakeMLException(
@@ -1152,35 +1255,3 @@ class RandomForestClassifier(BaseTransformer):
1152
1255
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1153
1256
  )
1154
1257
  return self._model_signature_dict
1155
-
1156
- def to_sklearn(self) -> Any:
1157
- """Get sklearn.ensemble.RandomForestClassifier object.
1158
- """
1159
- if self._sklearn_object is None:
1160
- self._sklearn_object = self._create_sklearn_object()
1161
- return self._sklearn_object
1162
-
1163
- def to_xgboost(self) -> Any:
1164
- raise exceptions.SnowflakeMLException(
1165
- error_code=error_codes.METHOD_NOT_ALLOWED,
1166
- original_exception=AttributeError(
1167
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1168
- "to_xgboost()",
1169
- "to_sklearn()"
1170
- )
1171
- ),
1172
- )
1173
-
1174
- def to_lightgbm(self) -> Any:
1175
- raise exceptions.SnowflakeMLException(
1176
- error_code=error_codes.METHOD_NOT_ALLOWED,
1177
- original_exception=AttributeError(
1178
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1179
- "to_lightgbm()",
1180
- "to_sklearn()"
1181
- )
1182
- ),
1183
- )
1184
-
1185
- def _get_dependencies(self) -> List[str]:
1186
- return self._deps