snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class NearestCentroid(BaseTransformer):
71
64
  r"""Nearest centroid classifier
72
65
  For more details on this class, see [sklearn.neighbors.NearestCentroid]
@@ -213,12 +206,7 @@ class NearestCentroid(BaseTransformer):
213
206
  )
214
207
  return selected_cols
215
208
 
216
- @telemetry.send_api_usage_telemetry(
217
- project=_PROJECT,
218
- subproject=_SUBPROJECT,
219
- custom_tags=dict([("autogen", True)]),
220
- )
221
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NearestCentroid":
209
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NearestCentroid":
222
210
  """Fit the NearestCentroid model according to the given training data
223
211
  For more details on this function, see [sklearn.neighbors.NearestCentroid.fit]
224
212
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid.fit)
@@ -245,12 +233,14 @@ class NearestCentroid(BaseTransformer):
245
233
 
246
234
  self._snowpark_cols = dataset.select(self.input_cols).columns
247
235
 
248
- # If we are already in a stored procedure, no need to kick off another one.
236
+ # If we are already in a stored procedure, no need to kick off another one.
249
237
  if SNOWML_SPROC_ENV in os.environ:
250
238
  statement_params = telemetry.get_function_usage_statement_params(
251
239
  project=_PROJECT,
252
240
  subproject=_SUBPROJECT,
253
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NearestCentroid.__class__.__name__),
241
+ function_name=telemetry.get_statement_params_full_func_name(
242
+ inspect.currentframe(), NearestCentroid.__class__.__name__
243
+ ),
254
244
  api_calls=[Session.call],
255
245
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
256
246
  )
@@ -271,27 +261,24 @@ class NearestCentroid(BaseTransformer):
271
261
  )
272
262
  self._sklearn_object = model_trainer.train()
273
263
  self._is_fitted = True
274
- self._get_model_signatures(dataset)
264
+ self._generate_model_signatures(dataset)
275
265
  return self
276
266
 
277
267
  def _batch_inference_validate_snowpark(
278
268
  self,
279
269
  dataset: DataFrame,
280
270
  inference_method: str,
281
- ) -> List[str]:
282
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
283
- return the available package that exists in the snowflake anaconda channel
271
+ ) -> None:
272
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
284
273
 
285
274
  Args:
286
275
  dataset: snowpark dataframe
287
276
  inference_method: the inference method such as predict, score...
288
-
277
+
289
278
  Raises:
290
279
  SnowflakeMLException: If the estimator is not fitted, raise error
291
280
  SnowflakeMLException: If the session is None, raise error
292
281
 
293
- Returns:
294
- A list of available package that exists in the snowflake anaconda channel
295
282
  """
296
283
  if not self._is_fitted:
297
284
  raise exceptions.SnowflakeMLException(
@@ -309,9 +296,7 @@ class NearestCentroid(BaseTransformer):
309
296
  "Session must not specified for snowpark dataset."
310
297
  ),
311
298
  )
312
- # Validate that key package version in user workspace are supported in snowflake conda channel
313
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
314
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
299
+
315
300
 
316
301
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
317
302
  @telemetry.send_api_usage_telemetry(
@@ -347,7 +332,9 @@ class NearestCentroid(BaseTransformer):
347
332
  # when it is classifier, infer the datatype from label columns
348
333
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
349
334
  # Batch inference takes a single expected output column type. Use the first columns type for now.
350
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
335
+ label_cols_signatures = [
336
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
337
+ ]
351
338
  if len(label_cols_signatures) == 0:
352
339
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
353
340
  raise exceptions.SnowflakeMLException(
@@ -355,25 +342,23 @@ class NearestCentroid(BaseTransformer):
355
342
  original_exception=ValueError(error_str),
356
343
  )
357
344
 
358
- expected_type_inferred = convert_sp_to_sf_type(
359
- label_cols_signatures[0].as_snowpark_type()
360
- )
345
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
361
346
 
362
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
363
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
347
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
348
+ self._deps = self._get_dependencies()
349
+ assert isinstance(
350
+ dataset._session, Session
351
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
364
352
 
365
353
  transform_kwargs = dict(
366
- session = dataset._session,
367
- dependencies = self._deps,
368
- drop_input_cols = self._drop_input_cols,
369
- expected_output_cols_type = expected_type_inferred,
354
+ session=dataset._session,
355
+ dependencies=self._deps,
356
+ drop_input_cols=self._drop_input_cols,
357
+ expected_output_cols_type=expected_type_inferred,
370
358
  )
371
359
 
372
360
  elif isinstance(dataset, pd.DataFrame):
373
- transform_kwargs = dict(
374
- snowpark_input_cols = self._snowpark_cols,
375
- drop_input_cols = self._drop_input_cols
376
- )
361
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
377
362
 
378
363
  transform_handlers = ModelTransformerBuilder.build(
379
364
  dataset=dataset,
@@ -413,7 +398,7 @@ class NearestCentroid(BaseTransformer):
413
398
  Transformed dataset.
414
399
  """
415
400
  super()._check_dataset_type(dataset)
416
- inference_method="transform"
401
+ inference_method = "transform"
417
402
 
418
403
  # This dictionary contains optional kwargs for batch inference. These kwargs
419
404
  # are specific to the type of dataset used.
@@ -443,24 +428,19 @@ class NearestCentroid(BaseTransformer):
443
428
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
444
429
  expected_dtype = convert_sp_to_sf_type(output_types[0])
445
430
 
446
- self._deps = self._batch_inference_validate_snowpark(
447
- dataset=dataset,
448
- inference_method=inference_method,
449
- )
431
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
+ self._deps = self._get_dependencies()
450
433
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
451
434
 
452
435
  transform_kwargs = dict(
453
- session = dataset._session,
454
- dependencies = self._deps,
455
- drop_input_cols = self._drop_input_cols,
456
- expected_output_cols_type = expected_dtype,
436
+ session=dataset._session,
437
+ dependencies=self._deps,
438
+ drop_input_cols=self._drop_input_cols,
439
+ expected_output_cols_type=expected_dtype,
457
440
  )
458
441
 
459
442
  elif isinstance(dataset, pd.DataFrame):
460
- transform_kwargs = dict(
461
- snowpark_input_cols = self._snowpark_cols,
462
- drop_input_cols = self._drop_input_cols
463
- )
443
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
464
444
 
465
445
  transform_handlers = ModelTransformerBuilder.build(
466
446
  dataset=dataset,
@@ -479,7 +459,11 @@ class NearestCentroid(BaseTransformer):
479
459
  return output_df
480
460
 
481
461
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
482
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
462
+ def fit_predict(
463
+ self,
464
+ dataset: Union[DataFrame, pd.DataFrame],
465
+ output_cols_prefix: str = "fit_predict_",
466
+ ) -> Union[DataFrame, pd.DataFrame]:
483
467
  """ Method not supported for this class.
484
468
 
485
469
 
@@ -504,22 +488,104 @@ class NearestCentroid(BaseTransformer):
504
488
  )
505
489
  output_result, fitted_estimator = model_trainer.train_fit_predict(
506
490
  drop_input_cols=self._drop_input_cols,
507
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
491
+ expected_output_cols_list=(
492
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
493
+ ),
508
494
  )
509
495
  self._sklearn_object = fitted_estimator
510
496
  self._is_fitted = True
511
497
  return output_result
512
498
 
499
+
500
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
501
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
502
+ """ Method not supported for this class.
503
+
513
504
 
514
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
515
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
516
- """
505
+ Raises:
506
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
507
+
508
+ Args:
509
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
510
+ Snowpark or Pandas DataFrame.
511
+ output_cols_prefix: Prefix for the response columns
517
512
  Returns:
518
513
  Transformed dataset.
519
514
  """
520
- self.fit(dataset)
521
- assert self._sklearn_object is not None
522
- return self._sklearn_object.embedding_
515
+ self._infer_input_output_cols(dataset)
516
+ super()._check_dataset_type(dataset)
517
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
518
+ estimator=self._sklearn_object,
519
+ dataset=dataset,
520
+ input_cols=self.input_cols,
521
+ label_cols=self.label_cols,
522
+ sample_weight_col=self.sample_weight_col,
523
+ autogenerated=self._autogenerated,
524
+ subproject=_SUBPROJECT,
525
+ )
526
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
527
+ drop_input_cols=self._drop_input_cols,
528
+ expected_output_cols_list=self.output_cols,
529
+ )
530
+ self._sklearn_object = fitted_estimator
531
+ self._is_fitted = True
532
+ return output_result
533
+
534
+
535
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
536
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
537
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
538
+ """
539
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
540
+ # The following condition is introduced for kneighbors methods, and not used in other methods
541
+ if output_cols:
542
+ output_cols = [
543
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
544
+ for c in output_cols
545
+ ]
546
+ elif getattr(self._sklearn_object, "classes_", None) is None:
547
+ output_cols = [output_cols_prefix]
548
+ elif self._sklearn_object is not None:
549
+ classes = self._sklearn_object.classes_
550
+ if isinstance(classes, numpy.ndarray):
551
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
552
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
553
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
554
+ output_cols = []
555
+ for i, cl in enumerate(classes):
556
+ # For binary classification, there is only one output column for each class
557
+ # ndarray as the two classes are complementary.
558
+ if len(cl) == 2:
559
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
560
+ else:
561
+ output_cols.extend([
562
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
563
+ ])
564
+ else:
565
+ output_cols = []
566
+
567
+ # Make sure column names are valid snowflake identifiers.
568
+ assert output_cols is not None # Make MyPy happy
569
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
570
+
571
+ return rv
572
+
573
+ def _align_expected_output_names(
574
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
575
+ ) -> List[str]:
576
+ # in case the inferred output column names dimension is different
577
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
578
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
579
+ output_df_columns = list(output_df_pd.columns)
580
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
581
+ if self.sample_weight_col:
582
+ output_df_columns_set -= set(self.sample_weight_col)
583
+ # if the dimension of inferred output column names is correct; use it
584
+ if len(expected_output_cols_list) == len(output_df_columns_set):
585
+ return expected_output_cols_list
586
+ # otherwise, use the sklearn estimator's output
587
+ else:
588
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
523
589
 
524
590
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
525
591
  @telemetry.send_api_usage_telemetry(
@@ -551,24 +617,26 @@ class NearestCentroid(BaseTransformer):
551
617
  # are specific to the type of dataset used.
552
618
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
553
619
 
620
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
621
+
554
622
  if isinstance(dataset, DataFrame):
555
- self._deps = self._batch_inference_validate_snowpark(
556
- dataset=dataset,
557
- inference_method=inference_method,
558
- )
559
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
623
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
624
+ self._deps = self._get_dependencies()
625
+ assert isinstance(
626
+ dataset._session, Session
627
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
560
628
  transform_kwargs = dict(
561
629
  session=dataset._session,
562
630
  dependencies=self._deps,
563
- drop_input_cols = self._drop_input_cols,
631
+ drop_input_cols=self._drop_input_cols,
564
632
  expected_output_cols_type="float",
565
633
  )
634
+ expected_output_cols = self._align_expected_output_names(
635
+ inference_method, dataset, expected_output_cols, output_cols_prefix
636
+ )
566
637
 
567
638
  elif isinstance(dataset, pd.DataFrame):
568
- transform_kwargs = dict(
569
- snowpark_input_cols = self._snowpark_cols,
570
- drop_input_cols = self._drop_input_cols
571
- )
639
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
572
640
 
573
641
  transform_handlers = ModelTransformerBuilder.build(
574
642
  dataset=dataset,
@@ -580,7 +648,7 @@ class NearestCentroid(BaseTransformer):
580
648
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
581
649
  inference_method=inference_method,
582
650
  input_cols=self.input_cols,
583
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
651
+ expected_output_cols=expected_output_cols,
584
652
  **transform_kwargs
585
653
  )
586
654
  return output_df
@@ -610,29 +678,30 @@ class NearestCentroid(BaseTransformer):
610
678
  Output dataset with log probability of the sample for each class in the model.
611
679
  """
612
680
  super()._check_dataset_type(dataset)
613
- inference_method="predict_log_proba"
681
+ inference_method = "predict_log_proba"
682
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
614
683
 
615
684
  # This dictionary contains optional kwargs for batch inference. These kwargs
616
685
  # are specific to the type of dataset used.
617
686
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
618
687
 
619
688
  if isinstance(dataset, DataFrame):
620
- self._deps = self._batch_inference_validate_snowpark(
621
- dataset=dataset,
622
- inference_method=inference_method,
623
- )
624
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
689
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
690
+ self._deps = self._get_dependencies()
691
+ assert isinstance(
692
+ dataset._session, Session
693
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
625
694
  transform_kwargs = dict(
626
695
  session=dataset._session,
627
696
  dependencies=self._deps,
628
- drop_input_cols = self._drop_input_cols,
697
+ drop_input_cols=self._drop_input_cols,
629
698
  expected_output_cols_type="float",
630
699
  )
700
+ expected_output_cols = self._align_expected_output_names(
701
+ inference_method, dataset, expected_output_cols, output_cols_prefix
702
+ )
631
703
  elif isinstance(dataset, pd.DataFrame):
632
- transform_kwargs = dict(
633
- snowpark_input_cols = self._snowpark_cols,
634
- drop_input_cols = self._drop_input_cols
635
- )
704
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
636
705
 
637
706
  transform_handlers = ModelTransformerBuilder.build(
638
707
  dataset=dataset,
@@ -645,7 +714,7 @@ class NearestCentroid(BaseTransformer):
645
714
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
646
715
  inference_method=inference_method,
647
716
  input_cols=self.input_cols,
648
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
717
+ expected_output_cols=expected_output_cols,
649
718
  **transform_kwargs
650
719
  )
651
720
  return output_df
@@ -671,30 +740,32 @@ class NearestCentroid(BaseTransformer):
671
740
  Output dataset with results of the decision function for the samples in input dataset.
672
741
  """
673
742
  super()._check_dataset_type(dataset)
674
- inference_method="decision_function"
743
+ inference_method = "decision_function"
675
744
 
676
745
  # This dictionary contains optional kwargs for batch inference. These kwargs
677
746
  # are specific to the type of dataset used.
678
747
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
679
748
 
749
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
750
+
680
751
  if isinstance(dataset, DataFrame):
681
- self._deps = self._batch_inference_validate_snowpark(
682
- dataset=dataset,
683
- inference_method=inference_method,
684
- )
685
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
752
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
753
+ self._deps = self._get_dependencies()
754
+ assert isinstance(
755
+ dataset._session, Session
756
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
757
  transform_kwargs = dict(
687
758
  session=dataset._session,
688
759
  dependencies=self._deps,
689
- drop_input_cols = self._drop_input_cols,
760
+ drop_input_cols=self._drop_input_cols,
690
761
  expected_output_cols_type="float",
691
762
  )
763
+ expected_output_cols = self._align_expected_output_names(
764
+ inference_method, dataset, expected_output_cols, output_cols_prefix
765
+ )
692
766
 
693
767
  elif isinstance(dataset, pd.DataFrame):
694
- transform_kwargs = dict(
695
- snowpark_input_cols = self._snowpark_cols,
696
- drop_input_cols = self._drop_input_cols
697
- )
768
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
698
769
 
699
770
  transform_handlers = ModelTransformerBuilder.build(
700
771
  dataset=dataset,
@@ -707,7 +778,7 @@ class NearestCentroid(BaseTransformer):
707
778
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
708
779
  inference_method=inference_method,
709
780
  input_cols=self.input_cols,
710
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
781
+ expected_output_cols=expected_output_cols,
711
782
  **transform_kwargs
712
783
  )
713
784
  return output_df
@@ -736,17 +807,17 @@ class NearestCentroid(BaseTransformer):
736
807
  Output dataset with probability of the sample for each class in the model.
737
808
  """
738
809
  super()._check_dataset_type(dataset)
739
- inference_method="score_samples"
810
+ inference_method = "score_samples"
740
811
 
741
812
  # This dictionary contains optional kwargs for batch inference. These kwargs
742
813
  # are specific to the type of dataset used.
743
814
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
744
815
 
816
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
817
+
745
818
  if isinstance(dataset, DataFrame):
746
- self._deps = self._batch_inference_validate_snowpark(
747
- dataset=dataset,
748
- inference_method=inference_method,
749
- )
819
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
820
+ self._deps = self._get_dependencies()
750
821
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
822
  transform_kwargs = dict(
752
823
  session=dataset._session,
@@ -754,6 +825,9 @@ class NearestCentroid(BaseTransformer):
754
825
  drop_input_cols = self._drop_input_cols,
755
826
  expected_output_cols_type="float",
756
827
  )
828
+ expected_output_cols = self._align_expected_output_names(
829
+ inference_method, dataset, expected_output_cols, output_cols_prefix
830
+ )
757
831
 
758
832
  elif isinstance(dataset, pd.DataFrame):
759
833
  transform_kwargs = dict(
@@ -772,7 +846,7 @@ class NearestCentroid(BaseTransformer):
772
846
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
773
847
  inference_method=inference_method,
774
848
  input_cols=self.input_cols,
775
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
849
+ expected_output_cols=expected_output_cols,
776
850
  **transform_kwargs
777
851
  )
778
852
  return output_df
@@ -807,17 +881,15 @@ class NearestCentroid(BaseTransformer):
807
881
  transform_kwargs: ScoreKwargsTypedDict = dict()
808
882
 
809
883
  if isinstance(dataset, DataFrame):
810
- self._deps = self._batch_inference_validate_snowpark(
811
- dataset=dataset,
812
- inference_method="score",
813
- )
884
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
885
+ self._deps = self._get_dependencies()
814
886
  selected_cols = self._get_active_columns()
815
887
  if len(selected_cols) > 0:
816
888
  dataset = dataset.select(selected_cols)
817
889
  assert isinstance(dataset._session, Session) # keep mypy happy
818
890
  transform_kwargs = dict(
819
891
  session=dataset._session,
820
- dependencies=["snowflake-snowpark-python"] + self._deps,
892
+ dependencies=self._deps,
821
893
  score_sproc_imports=['sklearn'],
822
894
  )
823
895
  elif isinstance(dataset, pd.DataFrame):
@@ -882,11 +954,8 @@ class NearestCentroid(BaseTransformer):
882
954
 
883
955
  if isinstance(dataset, DataFrame):
884
956
 
885
- self._deps = self._batch_inference_validate_snowpark(
886
- dataset=dataset,
887
- inference_method=inference_method,
888
-
889
- )
957
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
958
+ self._deps = self._get_dependencies()
890
959
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
891
960
  transform_kwargs = dict(
892
961
  session = dataset._session,
@@ -919,50 +988,84 @@ class NearestCentroid(BaseTransformer):
919
988
  )
920
989
  return output_df
921
990
 
991
+
992
+
993
+ def to_sklearn(self) -> Any:
994
+ """Get sklearn.neighbors.NearestCentroid object.
995
+ """
996
+ if self._sklearn_object is None:
997
+ self._sklearn_object = self._create_sklearn_object()
998
+ return self._sklearn_object
999
+
1000
+ def to_xgboost(self) -> Any:
1001
+ raise exceptions.SnowflakeMLException(
1002
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1003
+ original_exception=AttributeError(
1004
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1005
+ "to_xgboost()",
1006
+ "to_sklearn()"
1007
+ )
1008
+ ),
1009
+ )
1010
+
1011
+ def to_lightgbm(self) -> Any:
1012
+ raise exceptions.SnowflakeMLException(
1013
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1014
+ original_exception=AttributeError(
1015
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1016
+ "to_lightgbm()",
1017
+ "to_sklearn()"
1018
+ )
1019
+ ),
1020
+ )
1021
+
1022
+ def _get_dependencies(self) -> List[str]:
1023
+ return self._deps
1024
+
922
1025
 
923
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1026
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
924
1027
  self._model_signature_dict = dict()
925
1028
 
926
1029
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
927
1030
 
928
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1031
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
929
1032
  outputs: List[BaseFeatureSpec] = []
930
1033
  if hasattr(self, "predict"):
931
1034
  # keep mypy happy
932
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1035
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
933
1036
  # For classifier, the type of predict is the same as the type of label
934
- if self._sklearn_object._estimator_type == 'classifier':
935
- # label columns is the desired type for output
1037
+ if self._sklearn_object._estimator_type == "classifier":
1038
+ # label columns is the desired type for output
936
1039
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
937
1040
  # rename the output columns
938
1041
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
939
- self._model_signature_dict["predict"] = ModelSignature(inputs,
940
- ([] if self._drop_input_cols else inputs)
941
- + outputs)
1042
+ self._model_signature_dict["predict"] = ModelSignature(
1043
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1044
+ )
942
1045
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
943
1046
  # For outlier models, returns -1 for outliers and 1 for inliers.
944
- # Clusterer returns int64 cluster labels.
1047
+ # Clusterer returns int64 cluster labels.
945
1048
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
946
1049
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
947
- self._model_signature_dict["predict"] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
950
-
1050
+ self._model_signature_dict["predict"] = ModelSignature(
1051
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1052
+ )
1053
+
951
1054
  # For regressor, the type of predict is float64
952
- elif self._sklearn_object._estimator_type == 'regressor':
1055
+ elif self._sklearn_object._estimator_type == "regressor":
953
1056
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
954
- self._model_signature_dict["predict"] = ModelSignature(inputs,
955
- ([] if self._drop_input_cols else inputs)
956
- + outputs)
957
-
1057
+ self._model_signature_dict["predict"] = ModelSignature(
1058
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1059
+ )
1060
+
958
1061
  for prob_func in PROB_FUNCTIONS:
959
1062
  if hasattr(self, prob_func):
960
1063
  output_cols_prefix: str = f"{prob_func}_"
961
1064
  output_column_names = self._get_output_column_names(output_cols_prefix)
962
1065
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
963
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
964
- ([] if self._drop_input_cols else inputs)
965
- + outputs)
1066
+ self._model_signature_dict[prob_func] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
966
1069
 
967
1070
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
968
1071
  items = list(self._model_signature_dict.items())
@@ -975,10 +1078,10 @@ class NearestCentroid(BaseTransformer):
975
1078
  """Returns model signature of current class.
976
1079
 
977
1080
  Raises:
978
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1081
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
979
1082
 
980
1083
  Returns:
981
- Dict[str, ModelSignature]: each method and its input output signature
1084
+ Dict with each method and its input output signature
982
1085
  """
983
1086
  if self._model_signature_dict is None:
984
1087
  raise exceptions.SnowflakeMLException(
@@ -986,35 +1089,3 @@ class NearestCentroid(BaseTransformer):
986
1089
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
987
1090
  )
988
1091
  return self._model_signature_dict
989
-
990
- def to_sklearn(self) -> Any:
991
- """Get sklearn.neighbors.NearestCentroid object.
992
- """
993
- if self._sklearn_object is None:
994
- self._sklearn_object = self._create_sklearn_object()
995
- return self._sklearn_object
996
-
997
- def to_xgboost(self) -> Any:
998
- raise exceptions.SnowflakeMLException(
999
- error_code=error_codes.METHOD_NOT_ALLOWED,
1000
- original_exception=AttributeError(
1001
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1002
- "to_xgboost()",
1003
- "to_sklearn()"
1004
- )
1005
- ),
1006
- )
1007
-
1008
- def to_lightgbm(self) -> Any:
1009
- raise exceptions.SnowflakeMLException(
1010
- error_code=error_codes.METHOD_NOT_ALLOWED,
1011
- original_exception=AttributeError(
1012
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1013
- "to_lightgbm()",
1014
- "to_sklearn()"
1015
- )
1016
- ),
1017
- )
1018
-
1019
- def _get_dependencies(self) -> List[str]:
1020
- return self._deps