snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class PassiveAggressiveRegressor(BaseTransformer):
71
64
  r"""Passive Aggressive Regressor
72
65
  For more details on this class, see [sklearn.linear_model.PassiveAggressiveRegressor]
@@ -287,12 +280,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
287
280
  )
288
281
  return selected_cols
289
282
 
290
- @telemetry.send_api_usage_telemetry(
291
- project=_PROJECT,
292
- subproject=_SUBPROJECT,
293
- custom_tags=dict([("autogen", True)]),
294
- )
295
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PassiveAggressiveRegressor":
283
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PassiveAggressiveRegressor":
296
284
  """Fit linear model with Passive Aggressive algorithm
297
285
  For more details on this function, see [sklearn.linear_model.PassiveAggressiveRegressor.fit]
298
286
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html#sklearn.linear_model.PassiveAggressiveRegressor.fit)
@@ -319,12 +307,14 @@ class PassiveAggressiveRegressor(BaseTransformer):
319
307
 
320
308
  self._snowpark_cols = dataset.select(self.input_cols).columns
321
309
 
322
- # If we are already in a stored procedure, no need to kick off another one.
310
+ # If we are already in a stored procedure, no need to kick off another one.
323
311
  if SNOWML_SPROC_ENV in os.environ:
324
312
  statement_params = telemetry.get_function_usage_statement_params(
325
313
  project=_PROJECT,
326
314
  subproject=_SUBPROJECT,
327
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__),
315
+ function_name=telemetry.get_statement_params_full_func_name(
316
+ inspect.currentframe(), PassiveAggressiveRegressor.__class__.__name__
317
+ ),
328
318
  api_calls=[Session.call],
329
319
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
330
320
  )
@@ -345,27 +335,24 @@ class PassiveAggressiveRegressor(BaseTransformer):
345
335
  )
346
336
  self._sklearn_object = model_trainer.train()
347
337
  self._is_fitted = True
348
- self._get_model_signatures(dataset)
338
+ self._generate_model_signatures(dataset)
349
339
  return self
350
340
 
351
341
  def _batch_inference_validate_snowpark(
352
342
  self,
353
343
  dataset: DataFrame,
354
344
  inference_method: str,
355
- ) -> List[str]:
356
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
357
- return the available package that exists in the snowflake anaconda channel
345
+ ) -> None:
346
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
358
347
 
359
348
  Args:
360
349
  dataset: snowpark dataframe
361
350
  inference_method: the inference method such as predict, score...
362
-
351
+
363
352
  Raises:
364
353
  SnowflakeMLException: If the estimator is not fitted, raise error
365
354
  SnowflakeMLException: If the session is None, raise error
366
355
 
367
- Returns:
368
- A list of available package that exists in the snowflake anaconda channel
369
356
  """
370
357
  if not self._is_fitted:
371
358
  raise exceptions.SnowflakeMLException(
@@ -383,9 +370,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
383
370
  "Session must not specified for snowpark dataset."
384
371
  ),
385
372
  )
386
- # Validate that key package version in user workspace are supported in snowflake conda channel
387
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
388
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
373
+
389
374
 
390
375
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
391
376
  @telemetry.send_api_usage_telemetry(
@@ -421,7 +406,9 @@ class PassiveAggressiveRegressor(BaseTransformer):
421
406
  # when it is classifier, infer the datatype from label columns
422
407
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
423
408
  # Batch inference takes a single expected output column type. Use the first columns type for now.
424
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
409
+ label_cols_signatures = [
410
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
411
+ ]
425
412
  if len(label_cols_signatures) == 0:
426
413
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
427
414
  raise exceptions.SnowflakeMLException(
@@ -429,25 +416,23 @@ class PassiveAggressiveRegressor(BaseTransformer):
429
416
  original_exception=ValueError(error_str),
430
417
  )
431
418
 
432
- expected_type_inferred = convert_sp_to_sf_type(
433
- label_cols_signatures[0].as_snowpark_type()
434
- )
419
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
435
420
 
436
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
437
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
421
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
422
+ self._deps = self._get_dependencies()
423
+ assert isinstance(
424
+ dataset._session, Session
425
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
438
426
 
439
427
  transform_kwargs = dict(
440
- session = dataset._session,
441
- dependencies = self._deps,
442
- drop_input_cols = self._drop_input_cols,
443
- expected_output_cols_type = expected_type_inferred,
428
+ session=dataset._session,
429
+ dependencies=self._deps,
430
+ drop_input_cols=self._drop_input_cols,
431
+ expected_output_cols_type=expected_type_inferred,
444
432
  )
445
433
 
446
434
  elif isinstance(dataset, pd.DataFrame):
447
- transform_kwargs = dict(
448
- snowpark_input_cols = self._snowpark_cols,
449
- drop_input_cols = self._drop_input_cols
450
- )
435
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
451
436
 
452
437
  transform_handlers = ModelTransformerBuilder.build(
453
438
  dataset=dataset,
@@ -487,7 +472,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
487
472
  Transformed dataset.
488
473
  """
489
474
  super()._check_dataset_type(dataset)
490
- inference_method="transform"
475
+ inference_method = "transform"
491
476
 
492
477
  # This dictionary contains optional kwargs for batch inference. These kwargs
493
478
  # are specific to the type of dataset used.
@@ -517,24 +502,19 @@ class PassiveAggressiveRegressor(BaseTransformer):
517
502
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
518
503
  expected_dtype = convert_sp_to_sf_type(output_types[0])
519
504
 
520
- self._deps = self._batch_inference_validate_snowpark(
521
- dataset=dataset,
522
- inference_method=inference_method,
523
- )
505
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
506
+ self._deps = self._get_dependencies()
524
507
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
525
508
 
526
509
  transform_kwargs = dict(
527
- session = dataset._session,
528
- dependencies = self._deps,
529
- drop_input_cols = self._drop_input_cols,
530
- expected_output_cols_type = expected_dtype,
510
+ session=dataset._session,
511
+ dependencies=self._deps,
512
+ drop_input_cols=self._drop_input_cols,
513
+ expected_output_cols_type=expected_dtype,
531
514
  )
532
515
 
533
516
  elif isinstance(dataset, pd.DataFrame):
534
- transform_kwargs = dict(
535
- snowpark_input_cols = self._snowpark_cols,
536
- drop_input_cols = self._drop_input_cols
537
- )
517
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
538
518
 
539
519
  transform_handlers = ModelTransformerBuilder.build(
540
520
  dataset=dataset,
@@ -553,7 +533,11 @@ class PassiveAggressiveRegressor(BaseTransformer):
553
533
  return output_df
554
534
 
555
535
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
556
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
536
+ def fit_predict(
537
+ self,
538
+ dataset: Union[DataFrame, pd.DataFrame],
539
+ output_cols_prefix: str = "fit_predict_",
540
+ ) -> Union[DataFrame, pd.DataFrame]:
557
541
  """ Method not supported for this class.
558
542
 
559
543
 
@@ -578,22 +562,104 @@ class PassiveAggressiveRegressor(BaseTransformer):
578
562
  )
579
563
  output_result, fitted_estimator = model_trainer.train_fit_predict(
580
564
  drop_input_cols=self._drop_input_cols,
581
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
565
+ expected_output_cols_list=(
566
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
567
+ ),
582
568
  )
583
569
  self._sklearn_object = fitted_estimator
584
570
  self._is_fitted = True
585
571
  return output_result
586
572
 
573
+
574
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
575
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
576
+ """ Method not supported for this class.
577
+
587
578
 
588
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
589
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
590
- """
579
+ Raises:
580
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
581
+
582
+ Args:
583
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
584
+ Snowpark or Pandas DataFrame.
585
+ output_cols_prefix: Prefix for the response columns
591
586
  Returns:
592
587
  Transformed dataset.
593
588
  """
594
- self.fit(dataset)
595
- assert self._sklearn_object is not None
596
- return self._sklearn_object.embedding_
589
+ self._infer_input_output_cols(dataset)
590
+ super()._check_dataset_type(dataset)
591
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
592
+ estimator=self._sklearn_object,
593
+ dataset=dataset,
594
+ input_cols=self.input_cols,
595
+ label_cols=self.label_cols,
596
+ sample_weight_col=self.sample_weight_col,
597
+ autogenerated=self._autogenerated,
598
+ subproject=_SUBPROJECT,
599
+ )
600
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
601
+ drop_input_cols=self._drop_input_cols,
602
+ expected_output_cols_list=self.output_cols,
603
+ )
604
+ self._sklearn_object = fitted_estimator
605
+ self._is_fitted = True
606
+ return output_result
607
+
608
+
609
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
610
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
611
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
612
+ """
613
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
614
+ # The following condition is introduced for kneighbors methods, and not used in other methods
615
+ if output_cols:
616
+ output_cols = [
617
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
618
+ for c in output_cols
619
+ ]
620
+ elif getattr(self._sklearn_object, "classes_", None) is None:
621
+ output_cols = [output_cols_prefix]
622
+ elif self._sklearn_object is not None:
623
+ classes = self._sklearn_object.classes_
624
+ if isinstance(classes, numpy.ndarray):
625
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
626
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
627
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
628
+ output_cols = []
629
+ for i, cl in enumerate(classes):
630
+ # For binary classification, there is only one output column for each class
631
+ # ndarray as the two classes are complementary.
632
+ if len(cl) == 2:
633
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
634
+ else:
635
+ output_cols.extend([
636
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
637
+ ])
638
+ else:
639
+ output_cols = []
640
+
641
+ # Make sure column names are valid snowflake identifiers.
642
+ assert output_cols is not None # Make MyPy happy
643
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
644
+
645
+ return rv
646
+
647
+ def _align_expected_output_names(
648
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
649
+ ) -> List[str]:
650
+ # in case the inferred output column names dimension is different
651
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
652
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
653
+ output_df_columns = list(output_df_pd.columns)
654
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
655
+ if self.sample_weight_col:
656
+ output_df_columns_set -= set(self.sample_weight_col)
657
+ # if the dimension of inferred output column names is correct; use it
658
+ if len(expected_output_cols_list) == len(output_df_columns_set):
659
+ return expected_output_cols_list
660
+ # otherwise, use the sklearn estimator's output
661
+ else:
662
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
597
663
 
598
664
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
599
665
  @telemetry.send_api_usage_telemetry(
@@ -625,24 +691,26 @@ class PassiveAggressiveRegressor(BaseTransformer):
625
691
  # are specific to the type of dataset used.
626
692
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
627
693
 
694
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
695
+
628
696
  if isinstance(dataset, DataFrame):
629
- self._deps = self._batch_inference_validate_snowpark(
630
- dataset=dataset,
631
- inference_method=inference_method,
632
- )
633
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
697
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
698
+ self._deps = self._get_dependencies()
699
+ assert isinstance(
700
+ dataset._session, Session
701
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
702
  transform_kwargs = dict(
635
703
  session=dataset._session,
636
704
  dependencies=self._deps,
637
- drop_input_cols = self._drop_input_cols,
705
+ drop_input_cols=self._drop_input_cols,
638
706
  expected_output_cols_type="float",
639
707
  )
708
+ expected_output_cols = self._align_expected_output_names(
709
+ inference_method, dataset, expected_output_cols, output_cols_prefix
710
+ )
640
711
 
641
712
  elif isinstance(dataset, pd.DataFrame):
642
- transform_kwargs = dict(
643
- snowpark_input_cols = self._snowpark_cols,
644
- drop_input_cols = self._drop_input_cols
645
- )
713
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
646
714
 
647
715
  transform_handlers = ModelTransformerBuilder.build(
648
716
  dataset=dataset,
@@ -654,7 +722,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
654
722
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
655
723
  inference_method=inference_method,
656
724
  input_cols=self.input_cols,
657
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
725
+ expected_output_cols=expected_output_cols,
658
726
  **transform_kwargs
659
727
  )
660
728
  return output_df
@@ -684,29 +752,30 @@ class PassiveAggressiveRegressor(BaseTransformer):
684
752
  Output dataset with log probability of the sample for each class in the model.
685
753
  """
686
754
  super()._check_dataset_type(dataset)
687
- inference_method="predict_log_proba"
755
+ inference_method = "predict_log_proba"
756
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
688
757
 
689
758
  # This dictionary contains optional kwargs for batch inference. These kwargs
690
759
  # are specific to the type of dataset used.
691
760
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
692
761
 
693
762
  if isinstance(dataset, DataFrame):
694
- self._deps = self._batch_inference_validate_snowpark(
695
- dataset=dataset,
696
- inference_method=inference_method,
697
- )
698
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
763
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
764
+ self._deps = self._get_dependencies()
765
+ assert isinstance(
766
+ dataset._session, Session
767
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
699
768
  transform_kwargs = dict(
700
769
  session=dataset._session,
701
770
  dependencies=self._deps,
702
- drop_input_cols = self._drop_input_cols,
771
+ drop_input_cols=self._drop_input_cols,
703
772
  expected_output_cols_type="float",
704
773
  )
774
+ expected_output_cols = self._align_expected_output_names(
775
+ inference_method, dataset, expected_output_cols, output_cols_prefix
776
+ )
705
777
  elif isinstance(dataset, pd.DataFrame):
706
- transform_kwargs = dict(
707
- snowpark_input_cols = self._snowpark_cols,
708
- drop_input_cols = self._drop_input_cols
709
- )
778
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
710
779
 
711
780
  transform_handlers = ModelTransformerBuilder.build(
712
781
  dataset=dataset,
@@ -719,7 +788,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
719
788
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
720
789
  inference_method=inference_method,
721
790
  input_cols=self.input_cols,
722
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
791
+ expected_output_cols=expected_output_cols,
723
792
  **transform_kwargs
724
793
  )
725
794
  return output_df
@@ -745,30 +814,32 @@ class PassiveAggressiveRegressor(BaseTransformer):
745
814
  Output dataset with results of the decision function for the samples in input dataset.
746
815
  """
747
816
  super()._check_dataset_type(dataset)
748
- inference_method="decision_function"
817
+ inference_method = "decision_function"
749
818
 
750
819
  # This dictionary contains optional kwargs for batch inference. These kwargs
751
820
  # are specific to the type of dataset used.
752
821
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
753
822
 
823
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
824
+
754
825
  if isinstance(dataset, DataFrame):
755
- self._deps = self._batch_inference_validate_snowpark(
756
- dataset=dataset,
757
- inference_method=inference_method,
758
- )
759
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
826
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
827
+ self._deps = self._get_dependencies()
828
+ assert isinstance(
829
+ dataset._session, Session
830
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
760
831
  transform_kwargs = dict(
761
832
  session=dataset._session,
762
833
  dependencies=self._deps,
763
- drop_input_cols = self._drop_input_cols,
834
+ drop_input_cols=self._drop_input_cols,
764
835
  expected_output_cols_type="float",
765
836
  )
837
+ expected_output_cols = self._align_expected_output_names(
838
+ inference_method, dataset, expected_output_cols, output_cols_prefix
839
+ )
766
840
 
767
841
  elif isinstance(dataset, pd.DataFrame):
768
- transform_kwargs = dict(
769
- snowpark_input_cols = self._snowpark_cols,
770
- drop_input_cols = self._drop_input_cols
771
- )
842
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
772
843
 
773
844
  transform_handlers = ModelTransformerBuilder.build(
774
845
  dataset=dataset,
@@ -781,7 +852,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
781
852
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
782
853
  inference_method=inference_method,
783
854
  input_cols=self.input_cols,
784
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
855
+ expected_output_cols=expected_output_cols,
785
856
  **transform_kwargs
786
857
  )
787
858
  return output_df
@@ -810,17 +881,17 @@ class PassiveAggressiveRegressor(BaseTransformer):
810
881
  Output dataset with probability of the sample for each class in the model.
811
882
  """
812
883
  super()._check_dataset_type(dataset)
813
- inference_method="score_samples"
884
+ inference_method = "score_samples"
814
885
 
815
886
  # This dictionary contains optional kwargs for batch inference. These kwargs
816
887
  # are specific to the type of dataset used.
817
888
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
818
889
 
890
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
891
+
819
892
  if isinstance(dataset, DataFrame):
820
- self._deps = self._batch_inference_validate_snowpark(
821
- dataset=dataset,
822
- inference_method=inference_method,
823
- )
893
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
894
+ self._deps = self._get_dependencies()
824
895
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
825
896
  transform_kwargs = dict(
826
897
  session=dataset._session,
@@ -828,6 +899,9 @@ class PassiveAggressiveRegressor(BaseTransformer):
828
899
  drop_input_cols = self._drop_input_cols,
829
900
  expected_output_cols_type="float",
830
901
  )
902
+ expected_output_cols = self._align_expected_output_names(
903
+ inference_method, dataset, expected_output_cols, output_cols_prefix
904
+ )
831
905
 
832
906
  elif isinstance(dataset, pd.DataFrame):
833
907
  transform_kwargs = dict(
@@ -846,7 +920,7 @@ class PassiveAggressiveRegressor(BaseTransformer):
846
920
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
847
921
  inference_method=inference_method,
848
922
  input_cols=self.input_cols,
849
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
923
+ expected_output_cols=expected_output_cols,
850
924
  **transform_kwargs
851
925
  )
852
926
  return output_df
@@ -881,17 +955,15 @@ class PassiveAggressiveRegressor(BaseTransformer):
881
955
  transform_kwargs: ScoreKwargsTypedDict = dict()
882
956
 
883
957
  if isinstance(dataset, DataFrame):
884
- self._deps = self._batch_inference_validate_snowpark(
885
- dataset=dataset,
886
- inference_method="score",
887
- )
958
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
959
+ self._deps = self._get_dependencies()
888
960
  selected_cols = self._get_active_columns()
889
961
  if len(selected_cols) > 0:
890
962
  dataset = dataset.select(selected_cols)
891
963
  assert isinstance(dataset._session, Session) # keep mypy happy
892
964
  transform_kwargs = dict(
893
965
  session=dataset._session,
894
- dependencies=["snowflake-snowpark-python"] + self._deps,
966
+ dependencies=self._deps,
895
967
  score_sproc_imports=['sklearn'],
896
968
  )
897
969
  elif isinstance(dataset, pd.DataFrame):
@@ -956,11 +1028,8 @@ class PassiveAggressiveRegressor(BaseTransformer):
956
1028
 
957
1029
  if isinstance(dataset, DataFrame):
958
1030
 
959
- self._deps = self._batch_inference_validate_snowpark(
960
- dataset=dataset,
961
- inference_method=inference_method,
962
-
963
- )
1031
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1032
+ self._deps = self._get_dependencies()
964
1033
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
965
1034
  transform_kwargs = dict(
966
1035
  session = dataset._session,
@@ -993,50 +1062,84 @@ class PassiveAggressiveRegressor(BaseTransformer):
993
1062
  )
994
1063
  return output_df
995
1064
 
1065
+
1066
+
1067
+ def to_sklearn(self) -> Any:
1068
+ """Get sklearn.linear_model.PassiveAggressiveRegressor object.
1069
+ """
1070
+ if self._sklearn_object is None:
1071
+ self._sklearn_object = self._create_sklearn_object()
1072
+ return self._sklearn_object
1073
+
1074
+ def to_xgboost(self) -> Any:
1075
+ raise exceptions.SnowflakeMLException(
1076
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1077
+ original_exception=AttributeError(
1078
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
+ "to_xgboost()",
1080
+ "to_sklearn()"
1081
+ )
1082
+ ),
1083
+ )
1084
+
1085
+ def to_lightgbm(self) -> Any:
1086
+ raise exceptions.SnowflakeMLException(
1087
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1088
+ original_exception=AttributeError(
1089
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1090
+ "to_lightgbm()",
1091
+ "to_sklearn()"
1092
+ )
1093
+ ),
1094
+ )
1095
+
1096
+ def _get_dependencies(self) -> List[str]:
1097
+ return self._deps
1098
+
996
1099
 
997
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1100
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
998
1101
  self._model_signature_dict = dict()
999
1102
 
1000
1103
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1001
1104
 
1002
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1105
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1003
1106
  outputs: List[BaseFeatureSpec] = []
1004
1107
  if hasattr(self, "predict"):
1005
1108
  # keep mypy happy
1006
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1109
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1007
1110
  # For classifier, the type of predict is the same as the type of label
1008
- if self._sklearn_object._estimator_type == 'classifier':
1009
- # label columns is the desired type for output
1111
+ if self._sklearn_object._estimator_type == "classifier":
1112
+ # label columns is the desired type for output
1010
1113
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1011
1114
  # rename the output columns
1012
1115
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1013
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1014
- ([] if self._drop_input_cols else inputs)
1015
- + outputs)
1116
+ self._model_signature_dict["predict"] = ModelSignature(
1117
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1118
+ )
1016
1119
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1017
1120
  # For outlier models, returns -1 for outliers and 1 for inliers.
1018
- # Clusterer returns int64 cluster labels.
1121
+ # Clusterer returns int64 cluster labels.
1019
1122
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1020
1123
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1021
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1022
- ([] if self._drop_input_cols else inputs)
1023
- + outputs)
1024
-
1124
+ self._model_signature_dict["predict"] = ModelSignature(
1125
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1126
+ )
1127
+
1025
1128
  # For regressor, the type of predict is float64
1026
- elif self._sklearn_object._estimator_type == 'regressor':
1129
+ elif self._sklearn_object._estimator_type == "regressor":
1027
1130
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1028
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1029
- ([] if self._drop_input_cols else inputs)
1030
- + outputs)
1031
-
1131
+ self._model_signature_dict["predict"] = ModelSignature(
1132
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1133
+ )
1134
+
1032
1135
  for prob_func in PROB_FUNCTIONS:
1033
1136
  if hasattr(self, prob_func):
1034
1137
  output_cols_prefix: str = f"{prob_func}_"
1035
1138
  output_column_names = self._get_output_column_names(output_cols_prefix)
1036
1139
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1037
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1038
- ([] if self._drop_input_cols else inputs)
1039
- + outputs)
1140
+ self._model_signature_dict[prob_func] = ModelSignature(
1141
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1142
+ )
1040
1143
 
1041
1144
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1042
1145
  items = list(self._model_signature_dict.items())
@@ -1049,10 +1152,10 @@ class PassiveAggressiveRegressor(BaseTransformer):
1049
1152
  """Returns model signature of current class.
1050
1153
 
1051
1154
  Raises:
1052
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1155
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1053
1156
 
1054
1157
  Returns:
1055
- Dict[str, ModelSignature]: each method and its input output signature
1158
+ Dict with each method and its input output signature
1056
1159
  """
1057
1160
  if self._model_signature_dict is None:
1058
1161
  raise exceptions.SnowflakeMLException(
@@ -1060,35 +1163,3 @@ class PassiveAggressiveRegressor(BaseTransformer):
1060
1163
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1061
1164
  )
1062
1165
  return self._model_signature_dict
1063
-
1064
- def to_sklearn(self) -> Any:
1065
- """Get sklearn.linear_model.PassiveAggressiveRegressor object.
1066
- """
1067
- if self._sklearn_object is None:
1068
- self._sklearn_object = self._create_sklearn_object()
1069
- return self._sklearn_object
1070
-
1071
- def to_xgboost(self) -> Any:
1072
- raise exceptions.SnowflakeMLException(
1073
- error_code=error_codes.METHOD_NOT_ALLOWED,
1074
- original_exception=AttributeError(
1075
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1076
- "to_xgboost()",
1077
- "to_sklearn()"
1078
- )
1079
- ),
1080
- )
1081
-
1082
- def to_lightgbm(self) -> Any:
1083
- raise exceptions.SnowflakeMLException(
1084
- error_code=error_codes.METHOD_NOT_ALLOWED,
1085
- original_exception=AttributeError(
1086
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1087
- "to_lightgbm()",
1088
- "to_sklearn()"
1089
- )
1090
- ),
1091
- )
1092
-
1093
- def _get_dependencies(self) -> List[str]:
1094
- return self._deps