snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn."
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class ExtraTreeRegressor(BaseTransformer):
71
64
  r"""An extremely randomized tree regressor
72
65
  For more details on this class, see [sklearn.tree.ExtraTreeRegressor]
@@ -304,12 +297,7 @@ class ExtraTreeRegressor(BaseTransformer):
304
297
  )
305
298
  return selected_cols
306
299
 
307
- @telemetry.send_api_usage_telemetry(
308
- project=_PROJECT,
309
- subproject=_SUBPROJECT,
310
- custom_tags=dict([("autogen", True)]),
311
- )
312
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeRegressor":
300
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeRegressor":
313
301
  """Build a decision tree regressor from the training set (X, y)
314
302
  For more details on this function, see [sklearn.tree.ExtraTreeRegressor.fit]
315
303
  (https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.html#sklearn.tree.ExtraTreeRegressor.fit)
@@ -336,12 +324,14 @@ class ExtraTreeRegressor(BaseTransformer):
336
324
 
337
325
  self._snowpark_cols = dataset.select(self.input_cols).columns
338
326
 
339
- # If we are already in a stored procedure, no need to kick off another one.
327
+ # If we are already in a stored procedure, no need to kick off another one.
340
328
  if SNOWML_SPROC_ENV in os.environ:
341
329
  statement_params = telemetry.get_function_usage_statement_params(
342
330
  project=_PROJECT,
343
331
  subproject=_SUBPROJECT,
344
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreeRegressor.__class__.__name__),
332
+ function_name=telemetry.get_statement_params_full_func_name(
333
+ inspect.currentframe(), ExtraTreeRegressor.__class__.__name__
334
+ ),
345
335
  api_calls=[Session.call],
346
336
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
347
337
  )
@@ -362,27 +352,24 @@ class ExtraTreeRegressor(BaseTransformer):
362
352
  )
363
353
  self._sklearn_object = model_trainer.train()
364
354
  self._is_fitted = True
365
- self._get_model_signatures(dataset)
355
+ self._generate_model_signatures(dataset)
366
356
  return self
367
357
 
368
358
  def _batch_inference_validate_snowpark(
369
359
  self,
370
360
  dataset: DataFrame,
371
361
  inference_method: str,
372
- ) -> List[str]:
373
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
374
- return the available package that exists in the snowflake anaconda channel
362
+ ) -> None:
363
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
375
364
 
376
365
  Args:
377
366
  dataset: snowpark dataframe
378
367
  inference_method: the inference method such as predict, score...
379
-
368
+
380
369
  Raises:
381
370
  SnowflakeMLException: If the estimator is not fitted, raise error
382
371
  SnowflakeMLException: If the session is None, raise error
383
372
 
384
- Returns:
385
- A list of available package that exists in the snowflake anaconda channel
386
373
  """
387
374
  if not self._is_fitted:
388
375
  raise exceptions.SnowflakeMLException(
@@ -400,9 +387,7 @@ class ExtraTreeRegressor(BaseTransformer):
400
387
  "Session must not specified for snowpark dataset."
401
388
  ),
402
389
  )
403
- # Validate that key package version in user workspace are supported in snowflake conda channel
404
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
405
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
390
+
406
391
 
407
392
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
408
393
  @telemetry.send_api_usage_telemetry(
@@ -438,7 +423,9 @@ class ExtraTreeRegressor(BaseTransformer):
438
423
  # when it is classifier, infer the datatype from label columns
439
424
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
440
425
  # Batch inference takes a single expected output column type. Use the first columns type for now.
441
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
426
+ label_cols_signatures = [
427
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
428
+ ]
442
429
  if len(label_cols_signatures) == 0:
443
430
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
444
431
  raise exceptions.SnowflakeMLException(
@@ -446,25 +433,23 @@ class ExtraTreeRegressor(BaseTransformer):
446
433
  original_exception=ValueError(error_str),
447
434
  )
448
435
 
449
- expected_type_inferred = convert_sp_to_sf_type(
450
- label_cols_signatures[0].as_snowpark_type()
451
- )
436
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
452
437
 
453
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
454
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
438
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
439
+ self._deps = self._get_dependencies()
440
+ assert isinstance(
441
+ dataset._session, Session
442
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
455
443
 
456
444
  transform_kwargs = dict(
457
- session = dataset._session,
458
- dependencies = self._deps,
459
- drop_input_cols = self._drop_input_cols,
460
- expected_output_cols_type = expected_type_inferred,
445
+ session=dataset._session,
446
+ dependencies=self._deps,
447
+ drop_input_cols=self._drop_input_cols,
448
+ expected_output_cols_type=expected_type_inferred,
461
449
  )
462
450
 
463
451
  elif isinstance(dataset, pd.DataFrame):
464
- transform_kwargs = dict(
465
- snowpark_input_cols = self._snowpark_cols,
466
- drop_input_cols = self._drop_input_cols
467
- )
452
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
468
453
 
469
454
  transform_handlers = ModelTransformerBuilder.build(
470
455
  dataset=dataset,
@@ -504,7 +489,7 @@ class ExtraTreeRegressor(BaseTransformer):
504
489
  Transformed dataset.
505
490
  """
506
491
  super()._check_dataset_type(dataset)
507
- inference_method="transform"
492
+ inference_method = "transform"
508
493
 
509
494
  # This dictionary contains optional kwargs for batch inference. These kwargs
510
495
  # are specific to the type of dataset used.
@@ -534,24 +519,19 @@ class ExtraTreeRegressor(BaseTransformer):
534
519
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
535
520
  expected_dtype = convert_sp_to_sf_type(output_types[0])
536
521
 
537
- self._deps = self._batch_inference_validate_snowpark(
538
- dataset=dataset,
539
- inference_method=inference_method,
540
- )
522
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
523
+ self._deps = self._get_dependencies()
541
524
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
542
525
 
543
526
  transform_kwargs = dict(
544
- session = dataset._session,
545
- dependencies = self._deps,
546
- drop_input_cols = self._drop_input_cols,
547
- expected_output_cols_type = expected_dtype,
527
+ session=dataset._session,
528
+ dependencies=self._deps,
529
+ drop_input_cols=self._drop_input_cols,
530
+ expected_output_cols_type=expected_dtype,
548
531
  )
549
532
 
550
533
  elif isinstance(dataset, pd.DataFrame):
551
- transform_kwargs = dict(
552
- snowpark_input_cols = self._snowpark_cols,
553
- drop_input_cols = self._drop_input_cols
554
- )
534
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
555
535
 
556
536
  transform_handlers = ModelTransformerBuilder.build(
557
537
  dataset=dataset,
@@ -570,7 +550,11 @@ class ExtraTreeRegressor(BaseTransformer):
570
550
  return output_df
571
551
 
572
552
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
573
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
553
+ def fit_predict(
554
+ self,
555
+ dataset: Union[DataFrame, pd.DataFrame],
556
+ output_cols_prefix: str = "fit_predict_",
557
+ ) -> Union[DataFrame, pd.DataFrame]:
574
558
  """ Method not supported for this class.
575
559
 
576
560
 
@@ -595,22 +579,104 @@ class ExtraTreeRegressor(BaseTransformer):
595
579
  )
596
580
  output_result, fitted_estimator = model_trainer.train_fit_predict(
597
581
  drop_input_cols=self._drop_input_cols,
598
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
582
+ expected_output_cols_list=(
583
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
584
+ ),
599
585
  )
600
586
  self._sklearn_object = fitted_estimator
601
587
  self._is_fitted = True
602
588
  return output_result
603
589
 
590
+
591
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
592
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
593
+ """ Method not supported for this class.
594
+
604
595
 
605
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
606
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
607
- """
596
+ Raises:
597
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
598
+
599
+ Args:
600
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
601
+ Snowpark or Pandas DataFrame.
602
+ output_cols_prefix: Prefix for the response columns
608
603
  Returns:
609
604
  Transformed dataset.
610
605
  """
611
- self.fit(dataset)
612
- assert self._sklearn_object is not None
613
- return self._sklearn_object.embedding_
606
+ self._infer_input_output_cols(dataset)
607
+ super()._check_dataset_type(dataset)
608
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
609
+ estimator=self._sklearn_object,
610
+ dataset=dataset,
611
+ input_cols=self.input_cols,
612
+ label_cols=self.label_cols,
613
+ sample_weight_col=self.sample_weight_col,
614
+ autogenerated=self._autogenerated,
615
+ subproject=_SUBPROJECT,
616
+ )
617
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
618
+ drop_input_cols=self._drop_input_cols,
619
+ expected_output_cols_list=self.output_cols,
620
+ )
621
+ self._sklearn_object = fitted_estimator
622
+ self._is_fitted = True
623
+ return output_result
624
+
625
+
626
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
627
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
628
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
629
+ """
630
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
631
+ # The following condition is introduced for kneighbors methods, and not used in other methods
632
+ if output_cols:
633
+ output_cols = [
634
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
635
+ for c in output_cols
636
+ ]
637
+ elif getattr(self._sklearn_object, "classes_", None) is None:
638
+ output_cols = [output_cols_prefix]
639
+ elif self._sklearn_object is not None:
640
+ classes = self._sklearn_object.classes_
641
+ if isinstance(classes, numpy.ndarray):
642
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
643
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
644
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
645
+ output_cols = []
646
+ for i, cl in enumerate(classes):
647
+ # For binary classification, there is only one output column for each class
648
+ # ndarray as the two classes are complementary.
649
+ if len(cl) == 2:
650
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
651
+ else:
652
+ output_cols.extend([
653
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
654
+ ])
655
+ else:
656
+ output_cols = []
657
+
658
+ # Make sure column names are valid snowflake identifiers.
659
+ assert output_cols is not None # Make MyPy happy
660
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
661
+
662
+ return rv
663
+
664
+ def _align_expected_output_names(
665
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
666
+ ) -> List[str]:
667
+ # in case the inferred output column names dimension is different
668
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
669
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
670
+ output_df_columns = list(output_df_pd.columns)
671
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
672
+ if self.sample_weight_col:
673
+ output_df_columns_set -= set(self.sample_weight_col)
674
+ # if the dimension of inferred output column names is correct; use it
675
+ if len(expected_output_cols_list) == len(output_df_columns_set):
676
+ return expected_output_cols_list
677
+ # otherwise, use the sklearn estimator's output
678
+ else:
679
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
614
680
 
615
681
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
616
682
  @telemetry.send_api_usage_telemetry(
@@ -642,24 +708,26 @@ class ExtraTreeRegressor(BaseTransformer):
642
708
  # are specific to the type of dataset used.
643
709
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
644
710
 
711
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
712
+
645
713
  if isinstance(dataset, DataFrame):
646
- self._deps = self._batch_inference_validate_snowpark(
647
- dataset=dataset,
648
- inference_method=inference_method,
649
- )
650
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
714
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
715
+ self._deps = self._get_dependencies()
716
+ assert isinstance(
717
+ dataset._session, Session
718
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
651
719
  transform_kwargs = dict(
652
720
  session=dataset._session,
653
721
  dependencies=self._deps,
654
- drop_input_cols = self._drop_input_cols,
722
+ drop_input_cols=self._drop_input_cols,
655
723
  expected_output_cols_type="float",
656
724
  )
725
+ expected_output_cols = self._align_expected_output_names(
726
+ inference_method, dataset, expected_output_cols, output_cols_prefix
727
+ )
657
728
 
658
729
  elif isinstance(dataset, pd.DataFrame):
659
- transform_kwargs = dict(
660
- snowpark_input_cols = self._snowpark_cols,
661
- drop_input_cols = self._drop_input_cols
662
- )
730
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
663
731
 
664
732
  transform_handlers = ModelTransformerBuilder.build(
665
733
  dataset=dataset,
@@ -671,7 +739,7 @@ class ExtraTreeRegressor(BaseTransformer):
671
739
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
672
740
  inference_method=inference_method,
673
741
  input_cols=self.input_cols,
674
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
742
+ expected_output_cols=expected_output_cols,
675
743
  **transform_kwargs
676
744
  )
677
745
  return output_df
@@ -701,29 +769,30 @@ class ExtraTreeRegressor(BaseTransformer):
701
769
  Output dataset with log probability of the sample for each class in the model.
702
770
  """
703
771
  super()._check_dataset_type(dataset)
704
- inference_method="predict_log_proba"
772
+ inference_method = "predict_log_proba"
773
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
705
774
 
706
775
  # This dictionary contains optional kwargs for batch inference. These kwargs
707
776
  # are specific to the type of dataset used.
708
777
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
709
778
 
710
779
  if isinstance(dataset, DataFrame):
711
- self._deps = self._batch_inference_validate_snowpark(
712
- dataset=dataset,
713
- inference_method=inference_method,
714
- )
715
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
780
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
781
+ self._deps = self._get_dependencies()
782
+ assert isinstance(
783
+ dataset._session, Session
784
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
716
785
  transform_kwargs = dict(
717
786
  session=dataset._session,
718
787
  dependencies=self._deps,
719
- drop_input_cols = self._drop_input_cols,
788
+ drop_input_cols=self._drop_input_cols,
720
789
  expected_output_cols_type="float",
721
790
  )
791
+ expected_output_cols = self._align_expected_output_names(
792
+ inference_method, dataset, expected_output_cols, output_cols_prefix
793
+ )
722
794
  elif isinstance(dataset, pd.DataFrame):
723
- transform_kwargs = dict(
724
- snowpark_input_cols = self._snowpark_cols,
725
- drop_input_cols = self._drop_input_cols
726
- )
795
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
727
796
 
728
797
  transform_handlers = ModelTransformerBuilder.build(
729
798
  dataset=dataset,
@@ -736,7 +805,7 @@ class ExtraTreeRegressor(BaseTransformer):
736
805
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
737
806
  inference_method=inference_method,
738
807
  input_cols=self.input_cols,
739
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
808
+ expected_output_cols=expected_output_cols,
740
809
  **transform_kwargs
741
810
  )
742
811
  return output_df
@@ -762,30 +831,32 @@ class ExtraTreeRegressor(BaseTransformer):
762
831
  Output dataset with results of the decision function for the samples in input dataset.
763
832
  """
764
833
  super()._check_dataset_type(dataset)
765
- inference_method="decision_function"
834
+ inference_method = "decision_function"
766
835
 
767
836
  # This dictionary contains optional kwargs for batch inference. These kwargs
768
837
  # are specific to the type of dataset used.
769
838
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
770
839
 
840
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
841
+
771
842
  if isinstance(dataset, DataFrame):
772
- self._deps = self._batch_inference_validate_snowpark(
773
- dataset=dataset,
774
- inference_method=inference_method,
775
- )
776
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
843
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
844
+ self._deps = self._get_dependencies()
845
+ assert isinstance(
846
+ dataset._session, Session
847
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
777
848
  transform_kwargs = dict(
778
849
  session=dataset._session,
779
850
  dependencies=self._deps,
780
- drop_input_cols = self._drop_input_cols,
851
+ drop_input_cols=self._drop_input_cols,
781
852
  expected_output_cols_type="float",
782
853
  )
854
+ expected_output_cols = self._align_expected_output_names(
855
+ inference_method, dataset, expected_output_cols, output_cols_prefix
856
+ )
783
857
 
784
858
  elif isinstance(dataset, pd.DataFrame):
785
- transform_kwargs = dict(
786
- snowpark_input_cols = self._snowpark_cols,
787
- drop_input_cols = self._drop_input_cols
788
- )
859
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
789
860
 
790
861
  transform_handlers = ModelTransformerBuilder.build(
791
862
  dataset=dataset,
@@ -798,7 +869,7 @@ class ExtraTreeRegressor(BaseTransformer):
798
869
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
799
870
  inference_method=inference_method,
800
871
  input_cols=self.input_cols,
801
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
872
+ expected_output_cols=expected_output_cols,
802
873
  **transform_kwargs
803
874
  )
804
875
  return output_df
@@ -827,17 +898,17 @@ class ExtraTreeRegressor(BaseTransformer):
827
898
  Output dataset with probability of the sample for each class in the model.
828
899
  """
829
900
  super()._check_dataset_type(dataset)
830
- inference_method="score_samples"
901
+ inference_method = "score_samples"
831
902
 
832
903
  # This dictionary contains optional kwargs for batch inference. These kwargs
833
904
  # are specific to the type of dataset used.
834
905
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
835
906
 
907
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
908
+
836
909
  if isinstance(dataset, DataFrame):
837
- self._deps = self._batch_inference_validate_snowpark(
838
- dataset=dataset,
839
- inference_method=inference_method,
840
- )
910
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
911
+ self._deps = self._get_dependencies()
841
912
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
842
913
  transform_kwargs = dict(
843
914
  session=dataset._session,
@@ -845,6 +916,9 @@ class ExtraTreeRegressor(BaseTransformer):
845
916
  drop_input_cols = self._drop_input_cols,
846
917
  expected_output_cols_type="float",
847
918
  )
919
+ expected_output_cols = self._align_expected_output_names(
920
+ inference_method, dataset, expected_output_cols, output_cols_prefix
921
+ )
848
922
 
849
923
  elif isinstance(dataset, pd.DataFrame):
850
924
  transform_kwargs = dict(
@@ -863,7 +937,7 @@ class ExtraTreeRegressor(BaseTransformer):
863
937
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
864
938
  inference_method=inference_method,
865
939
  input_cols=self.input_cols,
866
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
940
+ expected_output_cols=expected_output_cols,
867
941
  **transform_kwargs
868
942
  )
869
943
  return output_df
@@ -898,17 +972,15 @@ class ExtraTreeRegressor(BaseTransformer):
898
972
  transform_kwargs: ScoreKwargsTypedDict = dict()
899
973
 
900
974
  if isinstance(dataset, DataFrame):
901
- self._deps = self._batch_inference_validate_snowpark(
902
- dataset=dataset,
903
- inference_method="score",
904
- )
975
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
976
+ self._deps = self._get_dependencies()
905
977
  selected_cols = self._get_active_columns()
906
978
  if len(selected_cols) > 0:
907
979
  dataset = dataset.select(selected_cols)
908
980
  assert isinstance(dataset._session, Session) # keep mypy happy
909
981
  transform_kwargs = dict(
910
982
  session=dataset._session,
911
- dependencies=["snowflake-snowpark-python"] + self._deps,
983
+ dependencies=self._deps,
912
984
  score_sproc_imports=['sklearn'],
913
985
  )
914
986
  elif isinstance(dataset, pd.DataFrame):
@@ -973,11 +1045,8 @@ class ExtraTreeRegressor(BaseTransformer):
973
1045
 
974
1046
  if isinstance(dataset, DataFrame):
975
1047
 
976
- self._deps = self._batch_inference_validate_snowpark(
977
- dataset=dataset,
978
- inference_method=inference_method,
979
-
980
- )
1048
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1049
+ self._deps = self._get_dependencies()
981
1050
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
982
1051
  transform_kwargs = dict(
983
1052
  session = dataset._session,
@@ -1010,50 +1079,84 @@ class ExtraTreeRegressor(BaseTransformer):
1010
1079
  )
1011
1080
  return output_df
1012
1081
 
1082
+
1083
+
1084
+ def to_sklearn(self) -> Any:
1085
+ """Get sklearn.tree.ExtraTreeRegressor object.
1086
+ """
1087
+ if self._sklearn_object is None:
1088
+ self._sklearn_object = self._create_sklearn_object()
1089
+ return self._sklearn_object
1090
+
1091
+ def to_xgboost(self) -> Any:
1092
+ raise exceptions.SnowflakeMLException(
1093
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1094
+ original_exception=AttributeError(
1095
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1096
+ "to_xgboost()",
1097
+ "to_sklearn()"
1098
+ )
1099
+ ),
1100
+ )
1101
+
1102
+ def to_lightgbm(self) -> Any:
1103
+ raise exceptions.SnowflakeMLException(
1104
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1105
+ original_exception=AttributeError(
1106
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1107
+ "to_lightgbm()",
1108
+ "to_sklearn()"
1109
+ )
1110
+ ),
1111
+ )
1112
+
1113
+ def _get_dependencies(self) -> List[str]:
1114
+ return self._deps
1115
+
1013
1116
 
1014
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1117
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1015
1118
  self._model_signature_dict = dict()
1016
1119
 
1017
1120
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1018
1121
 
1019
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1122
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1020
1123
  outputs: List[BaseFeatureSpec] = []
1021
1124
  if hasattr(self, "predict"):
1022
1125
  # keep mypy happy
1023
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1126
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1024
1127
  # For classifier, the type of predict is the same as the type of label
1025
- if self._sklearn_object._estimator_type == 'classifier':
1026
- # label columns is the desired type for output
1128
+ if self._sklearn_object._estimator_type == "classifier":
1129
+ # label columns is the desired type for output
1027
1130
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1028
1131
  # rename the output columns
1029
1132
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1030
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1031
- ([] if self._drop_input_cols else inputs)
1032
- + outputs)
1133
+ self._model_signature_dict["predict"] = ModelSignature(
1134
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1135
+ )
1033
1136
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1034
1137
  # For outlier models, returns -1 for outliers and 1 for inliers.
1035
- # Clusterer returns int64 cluster labels.
1138
+ # Clusterer returns int64 cluster labels.
1036
1139
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1037
1140
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1038
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1041
-
1141
+ self._model_signature_dict["predict"] = ModelSignature(
1142
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1143
+ )
1144
+
1042
1145
  # For regressor, the type of predict is float64
1043
- elif self._sklearn_object._estimator_type == 'regressor':
1146
+ elif self._sklearn_object._estimator_type == "regressor":
1044
1147
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1045
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1046
- ([] if self._drop_input_cols else inputs)
1047
- + outputs)
1048
-
1148
+ self._model_signature_dict["predict"] = ModelSignature(
1149
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1150
+ )
1151
+
1049
1152
  for prob_func in PROB_FUNCTIONS:
1050
1153
  if hasattr(self, prob_func):
1051
1154
  output_cols_prefix: str = f"{prob_func}_"
1052
1155
  output_column_names = self._get_output_column_names(output_cols_prefix)
1053
1156
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1054
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1055
- ([] if self._drop_input_cols else inputs)
1056
- + outputs)
1157
+ self._model_signature_dict[prob_func] = ModelSignature(
1158
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1159
+ )
1057
1160
 
1058
1161
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1059
1162
  items = list(self._model_signature_dict.items())
@@ -1066,10 +1169,10 @@ class ExtraTreeRegressor(BaseTransformer):
1066
1169
  """Returns model signature of current class.
1067
1170
 
1068
1171
  Raises:
1069
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1172
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1070
1173
 
1071
1174
  Returns:
1072
- Dict[str, ModelSignature]: each method and its input output signature
1175
+ Dict with each method and its input output signature
1073
1176
  """
1074
1177
  if self._model_signature_dict is None:
1075
1178
  raise exceptions.SnowflakeMLException(
@@ -1077,35 +1180,3 @@ class ExtraTreeRegressor(BaseTransformer):
1077
1180
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1078
1181
  )
1079
1182
  return self._model_signature_dict
1080
-
1081
- def to_sklearn(self) -> Any:
1082
- """Get sklearn.tree.ExtraTreeRegressor object.
1083
- """
1084
- if self._sklearn_object is None:
1085
- self._sklearn_object = self._create_sklearn_object()
1086
- return self._sklearn_object
1087
-
1088
- def to_xgboost(self) -> Any:
1089
- raise exceptions.SnowflakeMLException(
1090
- error_code=error_codes.METHOD_NOT_ALLOWED,
1091
- original_exception=AttributeError(
1092
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1093
- "to_xgboost()",
1094
- "to_sklearn()"
1095
- )
1096
- ),
1097
- )
1098
-
1099
- def to_lightgbm(self) -> Any:
1100
- raise exceptions.SnowflakeMLException(
1101
- error_code=error_codes.METHOD_NOT_ALLOWED,
1102
- original_exception=AttributeError(
1103
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1104
- "to_lightgbm()",
1105
- "to_sklearn()"
1106
- )
1107
- ),
1108
- )
1109
-
1110
- def _get_dependencies(self) -> List[str]:
1111
- return self._deps