snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MLPClassifier(BaseTransformer):
71
64
  r"""Multi-layer Perceptron classifier
72
65
  For more details on this class, see [sklearn.neural_network.MLPClassifier]
@@ -387,12 +380,7 @@ class MLPClassifier(BaseTransformer):
387
380
  )
388
381
  return selected_cols
389
382
 
390
- @telemetry.send_api_usage_telemetry(
391
- project=_PROJECT,
392
- subproject=_SUBPROJECT,
393
- custom_tags=dict([("autogen", True)]),
394
- )
395
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MLPClassifier":
383
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MLPClassifier":
396
384
  """Fit the model to data matrix X and target(s) y
397
385
  For more details on this function, see [sklearn.neural_network.MLPClassifier.fit]
398
386
  (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier.fit)
@@ -419,12 +407,14 @@ class MLPClassifier(BaseTransformer):
419
407
 
420
408
  self._snowpark_cols = dataset.select(self.input_cols).columns
421
409
 
422
- # If we are already in a stored procedure, no need to kick off another one.
410
+ # If we are already in a stored procedure, no need to kick off another one.
423
411
  if SNOWML_SPROC_ENV in os.environ:
424
412
  statement_params = telemetry.get_function_usage_statement_params(
425
413
  project=_PROJECT,
426
414
  subproject=_SUBPROJECT,
427
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPClassifier.__class__.__name__),
415
+ function_name=telemetry.get_statement_params_full_func_name(
416
+ inspect.currentframe(), MLPClassifier.__class__.__name__
417
+ ),
428
418
  api_calls=[Session.call],
429
419
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
430
420
  )
@@ -445,27 +435,24 @@ class MLPClassifier(BaseTransformer):
445
435
  )
446
436
  self._sklearn_object = model_trainer.train()
447
437
  self._is_fitted = True
448
- self._get_model_signatures(dataset)
438
+ self._generate_model_signatures(dataset)
449
439
  return self
450
440
 
451
441
  def _batch_inference_validate_snowpark(
452
442
  self,
453
443
  dataset: DataFrame,
454
444
  inference_method: str,
455
- ) -> List[str]:
456
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
457
- return the available package that exists in the snowflake anaconda channel
445
+ ) -> None:
446
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
458
447
 
459
448
  Args:
460
449
  dataset: snowpark dataframe
461
450
  inference_method: the inference method such as predict, score...
462
-
451
+
463
452
  Raises:
464
453
  SnowflakeMLException: If the estimator is not fitted, raise error
465
454
  SnowflakeMLException: If the session is None, raise error
466
455
 
467
- Returns:
468
- A list of available package that exists in the snowflake anaconda channel
469
456
  """
470
457
  if not self._is_fitted:
471
458
  raise exceptions.SnowflakeMLException(
@@ -483,9 +470,7 @@ class MLPClassifier(BaseTransformer):
483
470
  "Session must not specified for snowpark dataset."
484
471
  ),
485
472
  )
486
- # Validate that key package version in user workspace are supported in snowflake conda channel
487
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
488
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
473
+
489
474
 
490
475
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
491
476
  @telemetry.send_api_usage_telemetry(
@@ -521,7 +506,9 @@ class MLPClassifier(BaseTransformer):
521
506
  # when it is classifier, infer the datatype from label columns
522
507
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
523
508
  # Batch inference takes a single expected output column type. Use the first columns type for now.
524
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
509
+ label_cols_signatures = [
510
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
511
+ ]
525
512
  if len(label_cols_signatures) == 0:
526
513
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
527
514
  raise exceptions.SnowflakeMLException(
@@ -529,25 +516,23 @@ class MLPClassifier(BaseTransformer):
529
516
  original_exception=ValueError(error_str),
530
517
  )
531
518
 
532
- expected_type_inferred = convert_sp_to_sf_type(
533
- label_cols_signatures[0].as_snowpark_type()
534
- )
519
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
535
520
 
536
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
537
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
521
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
522
+ self._deps = self._get_dependencies()
523
+ assert isinstance(
524
+ dataset._session, Session
525
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
538
526
 
539
527
  transform_kwargs = dict(
540
- session = dataset._session,
541
- dependencies = self._deps,
542
- drop_input_cols = self._drop_input_cols,
543
- expected_output_cols_type = expected_type_inferred,
528
+ session=dataset._session,
529
+ dependencies=self._deps,
530
+ drop_input_cols=self._drop_input_cols,
531
+ expected_output_cols_type=expected_type_inferred,
544
532
  )
545
533
 
546
534
  elif isinstance(dataset, pd.DataFrame):
547
- transform_kwargs = dict(
548
- snowpark_input_cols = self._snowpark_cols,
549
- drop_input_cols = self._drop_input_cols
550
- )
535
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
551
536
 
552
537
  transform_handlers = ModelTransformerBuilder.build(
553
538
  dataset=dataset,
@@ -587,7 +572,7 @@ class MLPClassifier(BaseTransformer):
587
572
  Transformed dataset.
588
573
  """
589
574
  super()._check_dataset_type(dataset)
590
- inference_method="transform"
575
+ inference_method = "transform"
591
576
 
592
577
  # This dictionary contains optional kwargs for batch inference. These kwargs
593
578
  # are specific to the type of dataset used.
@@ -617,24 +602,19 @@ class MLPClassifier(BaseTransformer):
617
602
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
618
603
  expected_dtype = convert_sp_to_sf_type(output_types[0])
619
604
 
620
- self._deps = self._batch_inference_validate_snowpark(
621
- dataset=dataset,
622
- inference_method=inference_method,
623
- )
605
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
606
+ self._deps = self._get_dependencies()
624
607
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
625
608
 
626
609
  transform_kwargs = dict(
627
- session = dataset._session,
628
- dependencies = self._deps,
629
- drop_input_cols = self._drop_input_cols,
630
- expected_output_cols_type = expected_dtype,
610
+ session=dataset._session,
611
+ dependencies=self._deps,
612
+ drop_input_cols=self._drop_input_cols,
613
+ expected_output_cols_type=expected_dtype,
631
614
  )
632
615
 
633
616
  elif isinstance(dataset, pd.DataFrame):
634
- transform_kwargs = dict(
635
- snowpark_input_cols = self._snowpark_cols,
636
- drop_input_cols = self._drop_input_cols
637
- )
617
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
638
618
 
639
619
  transform_handlers = ModelTransformerBuilder.build(
640
620
  dataset=dataset,
@@ -653,7 +633,11 @@ class MLPClassifier(BaseTransformer):
653
633
  return output_df
654
634
 
655
635
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
656
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
636
+ def fit_predict(
637
+ self,
638
+ dataset: Union[DataFrame, pd.DataFrame],
639
+ output_cols_prefix: str = "fit_predict_",
640
+ ) -> Union[DataFrame, pd.DataFrame]:
657
641
  """ Method not supported for this class.
658
642
 
659
643
 
@@ -678,22 +662,104 @@ class MLPClassifier(BaseTransformer):
678
662
  )
679
663
  output_result, fitted_estimator = model_trainer.train_fit_predict(
680
664
  drop_input_cols=self._drop_input_cols,
681
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
665
+ expected_output_cols_list=(
666
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
667
+ ),
682
668
  )
683
669
  self._sklearn_object = fitted_estimator
684
670
  self._is_fitted = True
685
671
  return output_result
686
672
 
673
+
674
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
675
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
676
+ """ Method not supported for this class.
677
+
687
678
 
688
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
689
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
690
- """
679
+ Raises:
680
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
681
+
682
+ Args:
683
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
684
+ Snowpark or Pandas DataFrame.
685
+ output_cols_prefix: Prefix for the response columns
691
686
  Returns:
692
687
  Transformed dataset.
693
688
  """
694
- self.fit(dataset)
695
- assert self._sklearn_object is not None
696
- return self._sklearn_object.embedding_
689
+ self._infer_input_output_cols(dataset)
690
+ super()._check_dataset_type(dataset)
691
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
692
+ estimator=self._sklearn_object,
693
+ dataset=dataset,
694
+ input_cols=self.input_cols,
695
+ label_cols=self.label_cols,
696
+ sample_weight_col=self.sample_weight_col,
697
+ autogenerated=self._autogenerated,
698
+ subproject=_SUBPROJECT,
699
+ )
700
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
701
+ drop_input_cols=self._drop_input_cols,
702
+ expected_output_cols_list=self.output_cols,
703
+ )
704
+ self._sklearn_object = fitted_estimator
705
+ self._is_fitted = True
706
+ return output_result
707
+
708
+
709
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
710
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
711
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
712
+ """
713
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
714
+ # The following condition is introduced for kneighbors methods, and not used in other methods
715
+ if output_cols:
716
+ output_cols = [
717
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
718
+ for c in output_cols
719
+ ]
720
+ elif getattr(self._sklearn_object, "classes_", None) is None:
721
+ output_cols = [output_cols_prefix]
722
+ elif self._sklearn_object is not None:
723
+ classes = self._sklearn_object.classes_
724
+ if isinstance(classes, numpy.ndarray):
725
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
726
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
727
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
728
+ output_cols = []
729
+ for i, cl in enumerate(classes):
730
+ # For binary classification, there is only one output column for each class
731
+ # ndarray as the two classes are complementary.
732
+ if len(cl) == 2:
733
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
734
+ else:
735
+ output_cols.extend([
736
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
737
+ ])
738
+ else:
739
+ output_cols = []
740
+
741
+ # Make sure column names are valid snowflake identifiers.
742
+ assert output_cols is not None # Make MyPy happy
743
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
744
+
745
+ return rv
746
+
747
+ def _align_expected_output_names(
748
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
749
+ ) -> List[str]:
750
+ # in case the inferred output column names dimension is different
751
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
752
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
753
+ output_df_columns = list(output_df_pd.columns)
754
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
755
+ if self.sample_weight_col:
756
+ output_df_columns_set -= set(self.sample_weight_col)
757
+ # if the dimension of inferred output column names is correct; use it
758
+ if len(expected_output_cols_list) == len(output_df_columns_set):
759
+ return expected_output_cols_list
760
+ # otherwise, use the sklearn estimator's output
761
+ else:
762
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
697
763
 
698
764
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
699
765
  @telemetry.send_api_usage_telemetry(
@@ -727,24 +793,26 @@ class MLPClassifier(BaseTransformer):
727
793
  # are specific to the type of dataset used.
728
794
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
729
795
 
796
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
797
+
730
798
  if isinstance(dataset, DataFrame):
731
- self._deps = self._batch_inference_validate_snowpark(
732
- dataset=dataset,
733
- inference_method=inference_method,
734
- )
735
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
799
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
800
+ self._deps = self._get_dependencies()
801
+ assert isinstance(
802
+ dataset._session, Session
803
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
804
  transform_kwargs = dict(
737
805
  session=dataset._session,
738
806
  dependencies=self._deps,
739
- drop_input_cols = self._drop_input_cols,
807
+ drop_input_cols=self._drop_input_cols,
740
808
  expected_output_cols_type="float",
741
809
  )
810
+ expected_output_cols = self._align_expected_output_names(
811
+ inference_method, dataset, expected_output_cols, output_cols_prefix
812
+ )
742
813
 
743
814
  elif isinstance(dataset, pd.DataFrame):
744
- transform_kwargs = dict(
745
- snowpark_input_cols = self._snowpark_cols,
746
- drop_input_cols = self._drop_input_cols
747
- )
815
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
748
816
 
749
817
  transform_handlers = ModelTransformerBuilder.build(
750
818
  dataset=dataset,
@@ -756,7 +824,7 @@ class MLPClassifier(BaseTransformer):
756
824
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
757
825
  inference_method=inference_method,
758
826
  input_cols=self.input_cols,
759
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
827
+ expected_output_cols=expected_output_cols,
760
828
  **transform_kwargs
761
829
  )
762
830
  return output_df
@@ -788,29 +856,30 @@ class MLPClassifier(BaseTransformer):
788
856
  Output dataset with log probability of the sample for each class in the model.
789
857
  """
790
858
  super()._check_dataset_type(dataset)
791
- inference_method="predict_log_proba"
859
+ inference_method = "predict_log_proba"
860
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
792
861
 
793
862
  # This dictionary contains optional kwargs for batch inference. These kwargs
794
863
  # are specific to the type of dataset used.
795
864
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
796
865
 
797
866
  if isinstance(dataset, DataFrame):
798
- self._deps = self._batch_inference_validate_snowpark(
799
- dataset=dataset,
800
- inference_method=inference_method,
801
- )
802
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
867
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
868
+ self._deps = self._get_dependencies()
869
+ assert isinstance(
870
+ dataset._session, Session
871
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
803
872
  transform_kwargs = dict(
804
873
  session=dataset._session,
805
874
  dependencies=self._deps,
806
- drop_input_cols = self._drop_input_cols,
875
+ drop_input_cols=self._drop_input_cols,
807
876
  expected_output_cols_type="float",
808
877
  )
878
+ expected_output_cols = self._align_expected_output_names(
879
+ inference_method, dataset, expected_output_cols, output_cols_prefix
880
+ )
809
881
  elif isinstance(dataset, pd.DataFrame):
810
- transform_kwargs = dict(
811
- snowpark_input_cols = self._snowpark_cols,
812
- drop_input_cols = self._drop_input_cols
813
- )
882
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
814
883
 
815
884
  transform_handlers = ModelTransformerBuilder.build(
816
885
  dataset=dataset,
@@ -823,7 +892,7 @@ class MLPClassifier(BaseTransformer):
823
892
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
824
893
  inference_method=inference_method,
825
894
  input_cols=self.input_cols,
826
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
895
+ expected_output_cols=expected_output_cols,
827
896
  **transform_kwargs
828
897
  )
829
898
  return output_df
@@ -849,30 +918,32 @@ class MLPClassifier(BaseTransformer):
849
918
  Output dataset with results of the decision function for the samples in input dataset.
850
919
  """
851
920
  super()._check_dataset_type(dataset)
852
- inference_method="decision_function"
921
+ inference_method = "decision_function"
853
922
 
854
923
  # This dictionary contains optional kwargs for batch inference. These kwargs
855
924
  # are specific to the type of dataset used.
856
925
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
857
926
 
927
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
928
+
858
929
  if isinstance(dataset, DataFrame):
859
- self._deps = self._batch_inference_validate_snowpark(
860
- dataset=dataset,
861
- inference_method=inference_method,
862
- )
863
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
930
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
931
+ self._deps = self._get_dependencies()
932
+ assert isinstance(
933
+ dataset._session, Session
934
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
864
935
  transform_kwargs = dict(
865
936
  session=dataset._session,
866
937
  dependencies=self._deps,
867
- drop_input_cols = self._drop_input_cols,
938
+ drop_input_cols=self._drop_input_cols,
868
939
  expected_output_cols_type="float",
869
940
  )
941
+ expected_output_cols = self._align_expected_output_names(
942
+ inference_method, dataset, expected_output_cols, output_cols_prefix
943
+ )
870
944
 
871
945
  elif isinstance(dataset, pd.DataFrame):
872
- transform_kwargs = dict(
873
- snowpark_input_cols = self._snowpark_cols,
874
- drop_input_cols = self._drop_input_cols
875
- )
946
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
876
947
 
877
948
  transform_handlers = ModelTransformerBuilder.build(
878
949
  dataset=dataset,
@@ -885,7 +956,7 @@ class MLPClassifier(BaseTransformer):
885
956
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
886
957
  inference_method=inference_method,
887
958
  input_cols=self.input_cols,
888
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
959
+ expected_output_cols=expected_output_cols,
889
960
  **transform_kwargs
890
961
  )
891
962
  return output_df
@@ -914,17 +985,17 @@ class MLPClassifier(BaseTransformer):
914
985
  Output dataset with probability of the sample for each class in the model.
915
986
  """
916
987
  super()._check_dataset_type(dataset)
917
- inference_method="score_samples"
988
+ inference_method = "score_samples"
918
989
 
919
990
  # This dictionary contains optional kwargs for batch inference. These kwargs
920
991
  # are specific to the type of dataset used.
921
992
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
922
993
 
994
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
995
+
923
996
  if isinstance(dataset, DataFrame):
924
- self._deps = self._batch_inference_validate_snowpark(
925
- dataset=dataset,
926
- inference_method=inference_method,
927
- )
997
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
998
+ self._deps = self._get_dependencies()
928
999
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
929
1000
  transform_kwargs = dict(
930
1001
  session=dataset._session,
@@ -932,6 +1003,9 @@ class MLPClassifier(BaseTransformer):
932
1003
  drop_input_cols = self._drop_input_cols,
933
1004
  expected_output_cols_type="float",
934
1005
  )
1006
+ expected_output_cols = self._align_expected_output_names(
1007
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1008
+ )
935
1009
 
936
1010
  elif isinstance(dataset, pd.DataFrame):
937
1011
  transform_kwargs = dict(
@@ -950,7 +1024,7 @@ class MLPClassifier(BaseTransformer):
950
1024
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
951
1025
  inference_method=inference_method,
952
1026
  input_cols=self.input_cols,
953
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1027
+ expected_output_cols=expected_output_cols,
954
1028
  **transform_kwargs
955
1029
  )
956
1030
  return output_df
@@ -985,17 +1059,15 @@ class MLPClassifier(BaseTransformer):
985
1059
  transform_kwargs: ScoreKwargsTypedDict = dict()
986
1060
 
987
1061
  if isinstance(dataset, DataFrame):
988
- self._deps = self._batch_inference_validate_snowpark(
989
- dataset=dataset,
990
- inference_method="score",
991
- )
1062
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1063
+ self._deps = self._get_dependencies()
992
1064
  selected_cols = self._get_active_columns()
993
1065
  if len(selected_cols) > 0:
994
1066
  dataset = dataset.select(selected_cols)
995
1067
  assert isinstance(dataset._session, Session) # keep mypy happy
996
1068
  transform_kwargs = dict(
997
1069
  session=dataset._session,
998
- dependencies=["snowflake-snowpark-python"] + self._deps,
1070
+ dependencies=self._deps,
999
1071
  score_sproc_imports=['sklearn'],
1000
1072
  )
1001
1073
  elif isinstance(dataset, pd.DataFrame):
@@ -1060,11 +1132,8 @@ class MLPClassifier(BaseTransformer):
1060
1132
 
1061
1133
  if isinstance(dataset, DataFrame):
1062
1134
 
1063
- self._deps = self._batch_inference_validate_snowpark(
1064
- dataset=dataset,
1065
- inference_method=inference_method,
1066
-
1067
- )
1135
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1136
+ self._deps = self._get_dependencies()
1068
1137
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1069
1138
  transform_kwargs = dict(
1070
1139
  session = dataset._session,
@@ -1097,50 +1166,84 @@ class MLPClassifier(BaseTransformer):
1097
1166
  )
1098
1167
  return output_df
1099
1168
 
1169
+
1170
+
1171
+ def to_sklearn(self) -> Any:
1172
+ """Get sklearn.neural_network.MLPClassifier object.
1173
+ """
1174
+ if self._sklearn_object is None:
1175
+ self._sklearn_object = self._create_sklearn_object()
1176
+ return self._sklearn_object
1177
+
1178
+ def to_xgboost(self) -> Any:
1179
+ raise exceptions.SnowflakeMLException(
1180
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1181
+ original_exception=AttributeError(
1182
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1183
+ "to_xgboost()",
1184
+ "to_sklearn()"
1185
+ )
1186
+ ),
1187
+ )
1188
+
1189
+ def to_lightgbm(self) -> Any:
1190
+ raise exceptions.SnowflakeMLException(
1191
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1192
+ original_exception=AttributeError(
1193
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1194
+ "to_lightgbm()",
1195
+ "to_sklearn()"
1196
+ )
1197
+ ),
1198
+ )
1199
+
1200
+ def _get_dependencies(self) -> List[str]:
1201
+ return self._deps
1202
+
1100
1203
 
1101
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1204
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1102
1205
  self._model_signature_dict = dict()
1103
1206
 
1104
1207
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1105
1208
 
1106
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1209
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1107
1210
  outputs: List[BaseFeatureSpec] = []
1108
1211
  if hasattr(self, "predict"):
1109
1212
  # keep mypy happy
1110
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1213
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1111
1214
  # For classifier, the type of predict is the same as the type of label
1112
- if self._sklearn_object._estimator_type == 'classifier':
1113
- # label columns is the desired type for output
1215
+ if self._sklearn_object._estimator_type == "classifier":
1216
+ # label columns is the desired type for output
1114
1217
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1115
1218
  # rename the output columns
1116
1219
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1117
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1118
- ([] if self._drop_input_cols else inputs)
1119
- + outputs)
1220
+ self._model_signature_dict["predict"] = ModelSignature(
1221
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1222
+ )
1120
1223
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1121
1224
  # For outlier models, returns -1 for outliers and 1 for inliers.
1122
- # Clusterer returns int64 cluster labels.
1225
+ # Clusterer returns int64 cluster labels.
1123
1226
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1124
1227
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1125
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1126
- ([] if self._drop_input_cols else inputs)
1127
- + outputs)
1128
-
1228
+ self._model_signature_dict["predict"] = ModelSignature(
1229
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1230
+ )
1231
+
1129
1232
  # For regressor, the type of predict is float64
1130
- elif self._sklearn_object._estimator_type == 'regressor':
1233
+ elif self._sklearn_object._estimator_type == "regressor":
1131
1234
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1132
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1133
- ([] if self._drop_input_cols else inputs)
1134
- + outputs)
1135
-
1235
+ self._model_signature_dict["predict"] = ModelSignature(
1236
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1237
+ )
1238
+
1136
1239
  for prob_func in PROB_FUNCTIONS:
1137
1240
  if hasattr(self, prob_func):
1138
1241
  output_cols_prefix: str = f"{prob_func}_"
1139
1242
  output_column_names = self._get_output_column_names(output_cols_prefix)
1140
1243
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1141
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1142
- ([] if self._drop_input_cols else inputs)
1143
- + outputs)
1244
+ self._model_signature_dict[prob_func] = ModelSignature(
1245
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1246
+ )
1144
1247
 
1145
1248
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1146
1249
  items = list(self._model_signature_dict.items())
@@ -1153,10 +1256,10 @@ class MLPClassifier(BaseTransformer):
1153
1256
  """Returns model signature of current class.
1154
1257
 
1155
1258
  Raises:
1156
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1259
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1157
1260
 
1158
1261
  Returns:
1159
- Dict[str, ModelSignature]: each method and its input output signature
1262
+ Dict with each method and its input output signature
1160
1263
  """
1161
1264
  if self._model_signature_dict is None:
1162
1265
  raise exceptions.SnowflakeMLException(
@@ -1164,35 +1267,3 @@ class MLPClassifier(BaseTransformer):
1164
1267
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1165
1268
  )
1166
1269
  return self._model_signature_dict
1167
-
1168
- def to_sklearn(self) -> Any:
1169
- """Get sklearn.neural_network.MLPClassifier object.
1170
- """
1171
- if self._sklearn_object is None:
1172
- self._sklearn_object = self._create_sklearn_object()
1173
- return self._sklearn_object
1174
-
1175
- def to_xgboost(self) -> Any:
1176
- raise exceptions.SnowflakeMLException(
1177
- error_code=error_codes.METHOD_NOT_ALLOWED,
1178
- original_exception=AttributeError(
1179
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1180
- "to_xgboost()",
1181
- "to_sklearn()"
1182
- )
1183
- ),
1184
- )
1185
-
1186
- def to_lightgbm(self) -> Any:
1187
- raise exceptions.SnowflakeMLException(
1188
- error_code=error_codes.METHOD_NOT_ALLOWED,
1189
- original_exception=AttributeError(
1190
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1191
- "to_lightgbm()",
1192
- "to_sklearn()"
1193
- )
1194
- ),
1195
- )
1196
-
1197
- def _get_dependencies(self) -> List[str]:
1198
- return self._deps