snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class HuberRegressor(BaseTransformer):
|
71
64
|
r"""L2-regularized linear regression model that is robust to outliers
|
72
65
|
For more details on this class, see [sklearn.linear_model.HuberRegressor]
|
@@ -232,12 +225,7 @@ class HuberRegressor(BaseTransformer):
|
|
232
225
|
)
|
233
226
|
return selected_cols
|
234
227
|
|
235
|
-
|
236
|
-
project=_PROJECT,
|
237
|
-
subproject=_SUBPROJECT,
|
238
|
-
custom_tags=dict([("autogen", True)]),
|
239
|
-
)
|
240
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HuberRegressor":
|
228
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HuberRegressor":
|
241
229
|
"""Fit the model according to the given training data
|
242
230
|
For more details on this function, see [sklearn.linear_model.HuberRegressor.fit]
|
243
231
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor.fit)
|
@@ -264,12 +252,14 @@ class HuberRegressor(BaseTransformer):
|
|
264
252
|
|
265
253
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
266
254
|
|
267
|
-
|
255
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
268
256
|
if SNOWML_SPROC_ENV in os.environ:
|
269
257
|
statement_params = telemetry.get_function_usage_statement_params(
|
270
258
|
project=_PROJECT,
|
271
259
|
subproject=_SUBPROJECT,
|
272
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
260
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
261
|
+
inspect.currentframe(), HuberRegressor.__class__.__name__
|
262
|
+
),
|
273
263
|
api_calls=[Session.call],
|
274
264
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
275
265
|
)
|
@@ -290,27 +280,24 @@ class HuberRegressor(BaseTransformer):
|
|
290
280
|
)
|
291
281
|
self._sklearn_object = model_trainer.train()
|
292
282
|
self._is_fitted = True
|
293
|
-
self.
|
283
|
+
self._generate_model_signatures(dataset)
|
294
284
|
return self
|
295
285
|
|
296
286
|
def _batch_inference_validate_snowpark(
|
297
287
|
self,
|
298
288
|
dataset: DataFrame,
|
299
289
|
inference_method: str,
|
300
|
-
) ->
|
301
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
302
|
-
return the available package that exists in the snowflake anaconda channel
|
290
|
+
) -> None:
|
291
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
303
292
|
|
304
293
|
Args:
|
305
294
|
dataset: snowpark dataframe
|
306
295
|
inference_method: the inference method such as predict, score...
|
307
|
-
|
296
|
+
|
308
297
|
Raises:
|
309
298
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
310
299
|
SnowflakeMLException: If the session is None, raise error
|
311
300
|
|
312
|
-
Returns:
|
313
|
-
A list of available package that exists in the snowflake anaconda channel
|
314
301
|
"""
|
315
302
|
if not self._is_fitted:
|
316
303
|
raise exceptions.SnowflakeMLException(
|
@@ -328,9 +315,7 @@ class HuberRegressor(BaseTransformer):
|
|
328
315
|
"Session must not specified for snowpark dataset."
|
329
316
|
),
|
330
317
|
)
|
331
|
-
|
332
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
333
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
318
|
+
|
334
319
|
|
335
320
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
336
321
|
@telemetry.send_api_usage_telemetry(
|
@@ -366,7 +351,9 @@ class HuberRegressor(BaseTransformer):
|
|
366
351
|
# when it is classifier, infer the datatype from label columns
|
367
352
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
368
353
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
369
|
-
label_cols_signatures = [
|
354
|
+
label_cols_signatures = [
|
355
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
356
|
+
]
|
370
357
|
if len(label_cols_signatures) == 0:
|
371
358
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
372
359
|
raise exceptions.SnowflakeMLException(
|
@@ -374,25 +361,23 @@ class HuberRegressor(BaseTransformer):
|
|
374
361
|
original_exception=ValueError(error_str),
|
375
362
|
)
|
376
363
|
|
377
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
378
|
-
label_cols_signatures[0].as_snowpark_type()
|
379
|
-
)
|
364
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
380
365
|
|
381
|
-
self.
|
382
|
-
|
366
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
367
|
+
self._deps = self._get_dependencies()
|
368
|
+
assert isinstance(
|
369
|
+
dataset._session, Session
|
370
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
383
371
|
|
384
372
|
transform_kwargs = dict(
|
385
|
-
session
|
386
|
-
dependencies
|
387
|
-
drop_input_cols
|
388
|
-
expected_output_cols_type
|
373
|
+
session=dataset._session,
|
374
|
+
dependencies=self._deps,
|
375
|
+
drop_input_cols=self._drop_input_cols,
|
376
|
+
expected_output_cols_type=expected_type_inferred,
|
389
377
|
)
|
390
378
|
|
391
379
|
elif isinstance(dataset, pd.DataFrame):
|
392
|
-
transform_kwargs = dict(
|
393
|
-
snowpark_input_cols = self._snowpark_cols,
|
394
|
-
drop_input_cols = self._drop_input_cols
|
395
|
-
)
|
380
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
396
381
|
|
397
382
|
transform_handlers = ModelTransformerBuilder.build(
|
398
383
|
dataset=dataset,
|
@@ -432,7 +417,7 @@ class HuberRegressor(BaseTransformer):
|
|
432
417
|
Transformed dataset.
|
433
418
|
"""
|
434
419
|
super()._check_dataset_type(dataset)
|
435
|
-
inference_method="transform"
|
420
|
+
inference_method = "transform"
|
436
421
|
|
437
422
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
438
423
|
# are specific to the type of dataset used.
|
@@ -462,24 +447,19 @@ class HuberRegressor(BaseTransformer):
|
|
462
447
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
463
448
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
464
449
|
|
465
|
-
self.
|
466
|
-
|
467
|
-
inference_method=inference_method,
|
468
|
-
)
|
450
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
451
|
+
self._deps = self._get_dependencies()
|
469
452
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
470
453
|
|
471
454
|
transform_kwargs = dict(
|
472
|
-
session
|
473
|
-
dependencies
|
474
|
-
drop_input_cols
|
475
|
-
expected_output_cols_type
|
455
|
+
session=dataset._session,
|
456
|
+
dependencies=self._deps,
|
457
|
+
drop_input_cols=self._drop_input_cols,
|
458
|
+
expected_output_cols_type=expected_dtype,
|
476
459
|
)
|
477
460
|
|
478
461
|
elif isinstance(dataset, pd.DataFrame):
|
479
|
-
transform_kwargs = dict(
|
480
|
-
snowpark_input_cols = self._snowpark_cols,
|
481
|
-
drop_input_cols = self._drop_input_cols
|
482
|
-
)
|
462
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
483
463
|
|
484
464
|
transform_handlers = ModelTransformerBuilder.build(
|
485
465
|
dataset=dataset,
|
@@ -498,7 +478,11 @@ class HuberRegressor(BaseTransformer):
|
|
498
478
|
return output_df
|
499
479
|
|
500
480
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
501
|
-
def fit_predict(
|
481
|
+
def fit_predict(
|
482
|
+
self,
|
483
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
484
|
+
output_cols_prefix: str = "fit_predict_",
|
485
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
502
486
|
""" Method not supported for this class.
|
503
487
|
|
504
488
|
|
@@ -523,22 +507,104 @@ class HuberRegressor(BaseTransformer):
|
|
523
507
|
)
|
524
508
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
525
509
|
drop_input_cols=self._drop_input_cols,
|
526
|
-
expected_output_cols_list=
|
510
|
+
expected_output_cols_list=(
|
511
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
512
|
+
),
|
527
513
|
)
|
528
514
|
self._sklearn_object = fitted_estimator
|
529
515
|
self._is_fitted = True
|
530
516
|
return output_result
|
531
517
|
|
518
|
+
|
519
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
520
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
521
|
+
""" Method not supported for this class.
|
522
|
+
|
532
523
|
|
533
|
-
|
534
|
-
|
535
|
-
|
524
|
+
Raises:
|
525
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
526
|
+
|
527
|
+
Args:
|
528
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
529
|
+
Snowpark or Pandas DataFrame.
|
530
|
+
output_cols_prefix: Prefix for the response columns
|
536
531
|
Returns:
|
537
532
|
Transformed dataset.
|
538
533
|
"""
|
539
|
-
self.
|
540
|
-
|
541
|
-
|
534
|
+
self._infer_input_output_cols(dataset)
|
535
|
+
super()._check_dataset_type(dataset)
|
536
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
537
|
+
estimator=self._sklearn_object,
|
538
|
+
dataset=dataset,
|
539
|
+
input_cols=self.input_cols,
|
540
|
+
label_cols=self.label_cols,
|
541
|
+
sample_weight_col=self.sample_weight_col,
|
542
|
+
autogenerated=self._autogenerated,
|
543
|
+
subproject=_SUBPROJECT,
|
544
|
+
)
|
545
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
546
|
+
drop_input_cols=self._drop_input_cols,
|
547
|
+
expected_output_cols_list=self.output_cols,
|
548
|
+
)
|
549
|
+
self._sklearn_object = fitted_estimator
|
550
|
+
self._is_fitted = True
|
551
|
+
return output_result
|
552
|
+
|
553
|
+
|
554
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
555
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
556
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
557
|
+
"""
|
558
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
559
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
560
|
+
if output_cols:
|
561
|
+
output_cols = [
|
562
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
563
|
+
for c in output_cols
|
564
|
+
]
|
565
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
566
|
+
output_cols = [output_cols_prefix]
|
567
|
+
elif self._sklearn_object is not None:
|
568
|
+
classes = self._sklearn_object.classes_
|
569
|
+
if isinstance(classes, numpy.ndarray):
|
570
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
571
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
572
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
573
|
+
output_cols = []
|
574
|
+
for i, cl in enumerate(classes):
|
575
|
+
# For binary classification, there is only one output column for each class
|
576
|
+
# ndarray as the two classes are complementary.
|
577
|
+
if len(cl) == 2:
|
578
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
579
|
+
else:
|
580
|
+
output_cols.extend([
|
581
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
582
|
+
])
|
583
|
+
else:
|
584
|
+
output_cols = []
|
585
|
+
|
586
|
+
# Make sure column names are valid snowflake identifiers.
|
587
|
+
assert output_cols is not None # Make MyPy happy
|
588
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
589
|
+
|
590
|
+
return rv
|
591
|
+
|
592
|
+
def _align_expected_output_names(
|
593
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
594
|
+
) -> List[str]:
|
595
|
+
# in case the inferred output column names dimension is different
|
596
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
597
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
598
|
+
output_df_columns = list(output_df_pd.columns)
|
599
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
600
|
+
if self.sample_weight_col:
|
601
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
602
|
+
# if the dimension of inferred output column names is correct; use it
|
603
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
604
|
+
return expected_output_cols_list
|
605
|
+
# otherwise, use the sklearn estimator's output
|
606
|
+
else:
|
607
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
542
608
|
|
543
609
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
544
610
|
@telemetry.send_api_usage_telemetry(
|
@@ -570,24 +636,26 @@ class HuberRegressor(BaseTransformer):
|
|
570
636
|
# are specific to the type of dataset used.
|
571
637
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
572
638
|
|
639
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
640
|
+
|
573
641
|
if isinstance(dataset, DataFrame):
|
574
|
-
self.
|
575
|
-
|
576
|
-
|
577
|
-
|
578
|
-
|
642
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
643
|
+
self._deps = self._get_dependencies()
|
644
|
+
assert isinstance(
|
645
|
+
dataset._session, Session
|
646
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
579
647
|
transform_kwargs = dict(
|
580
648
|
session=dataset._session,
|
581
649
|
dependencies=self._deps,
|
582
|
-
drop_input_cols
|
650
|
+
drop_input_cols=self._drop_input_cols,
|
583
651
|
expected_output_cols_type="float",
|
584
652
|
)
|
653
|
+
expected_output_cols = self._align_expected_output_names(
|
654
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
655
|
+
)
|
585
656
|
|
586
657
|
elif isinstance(dataset, pd.DataFrame):
|
587
|
-
transform_kwargs = dict(
|
588
|
-
snowpark_input_cols = self._snowpark_cols,
|
589
|
-
drop_input_cols = self._drop_input_cols
|
590
|
-
)
|
658
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
591
659
|
|
592
660
|
transform_handlers = ModelTransformerBuilder.build(
|
593
661
|
dataset=dataset,
|
@@ -599,7 +667,7 @@ class HuberRegressor(BaseTransformer):
|
|
599
667
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
600
668
|
inference_method=inference_method,
|
601
669
|
input_cols=self.input_cols,
|
602
|
-
expected_output_cols=
|
670
|
+
expected_output_cols=expected_output_cols,
|
603
671
|
**transform_kwargs
|
604
672
|
)
|
605
673
|
return output_df
|
@@ -629,29 +697,30 @@ class HuberRegressor(BaseTransformer):
|
|
629
697
|
Output dataset with log probability of the sample for each class in the model.
|
630
698
|
"""
|
631
699
|
super()._check_dataset_type(dataset)
|
632
|
-
inference_method="predict_log_proba"
|
700
|
+
inference_method = "predict_log_proba"
|
701
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
633
702
|
|
634
703
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
635
704
|
# are specific to the type of dataset used.
|
636
705
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
637
706
|
|
638
707
|
if isinstance(dataset, DataFrame):
|
639
|
-
self.
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
708
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
709
|
+
self._deps = self._get_dependencies()
|
710
|
+
assert isinstance(
|
711
|
+
dataset._session, Session
|
712
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
644
713
|
transform_kwargs = dict(
|
645
714
|
session=dataset._session,
|
646
715
|
dependencies=self._deps,
|
647
|
-
drop_input_cols
|
716
|
+
drop_input_cols=self._drop_input_cols,
|
648
717
|
expected_output_cols_type="float",
|
649
718
|
)
|
719
|
+
expected_output_cols = self._align_expected_output_names(
|
720
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
721
|
+
)
|
650
722
|
elif isinstance(dataset, pd.DataFrame):
|
651
|
-
transform_kwargs = dict(
|
652
|
-
snowpark_input_cols = self._snowpark_cols,
|
653
|
-
drop_input_cols = self._drop_input_cols
|
654
|
-
)
|
723
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
655
724
|
|
656
725
|
transform_handlers = ModelTransformerBuilder.build(
|
657
726
|
dataset=dataset,
|
@@ -664,7 +733,7 @@ class HuberRegressor(BaseTransformer):
|
|
664
733
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
665
734
|
inference_method=inference_method,
|
666
735
|
input_cols=self.input_cols,
|
667
|
-
expected_output_cols=
|
736
|
+
expected_output_cols=expected_output_cols,
|
668
737
|
**transform_kwargs
|
669
738
|
)
|
670
739
|
return output_df
|
@@ -690,30 +759,32 @@ class HuberRegressor(BaseTransformer):
|
|
690
759
|
Output dataset with results of the decision function for the samples in input dataset.
|
691
760
|
"""
|
692
761
|
super()._check_dataset_type(dataset)
|
693
|
-
inference_method="decision_function"
|
762
|
+
inference_method = "decision_function"
|
694
763
|
|
695
764
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
696
765
|
# are specific to the type of dataset used.
|
697
766
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
698
767
|
|
768
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
769
|
+
|
699
770
|
if isinstance(dataset, DataFrame):
|
700
|
-
self.
|
701
|
-
|
702
|
-
|
703
|
-
|
704
|
-
|
771
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
772
|
+
self._deps = self._get_dependencies()
|
773
|
+
assert isinstance(
|
774
|
+
dataset._session, Session
|
775
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
705
776
|
transform_kwargs = dict(
|
706
777
|
session=dataset._session,
|
707
778
|
dependencies=self._deps,
|
708
|
-
drop_input_cols
|
779
|
+
drop_input_cols=self._drop_input_cols,
|
709
780
|
expected_output_cols_type="float",
|
710
781
|
)
|
782
|
+
expected_output_cols = self._align_expected_output_names(
|
783
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
784
|
+
)
|
711
785
|
|
712
786
|
elif isinstance(dataset, pd.DataFrame):
|
713
|
-
transform_kwargs = dict(
|
714
|
-
snowpark_input_cols = self._snowpark_cols,
|
715
|
-
drop_input_cols = self._drop_input_cols
|
716
|
-
)
|
787
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
717
788
|
|
718
789
|
transform_handlers = ModelTransformerBuilder.build(
|
719
790
|
dataset=dataset,
|
@@ -726,7 +797,7 @@ class HuberRegressor(BaseTransformer):
|
|
726
797
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
727
798
|
inference_method=inference_method,
|
728
799
|
input_cols=self.input_cols,
|
729
|
-
expected_output_cols=
|
800
|
+
expected_output_cols=expected_output_cols,
|
730
801
|
**transform_kwargs
|
731
802
|
)
|
732
803
|
return output_df
|
@@ -755,17 +826,17 @@ class HuberRegressor(BaseTransformer):
|
|
755
826
|
Output dataset with probability of the sample for each class in the model.
|
756
827
|
"""
|
757
828
|
super()._check_dataset_type(dataset)
|
758
|
-
inference_method="score_samples"
|
829
|
+
inference_method = "score_samples"
|
759
830
|
|
760
831
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
761
832
|
# are specific to the type of dataset used.
|
762
833
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
763
834
|
|
835
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
836
|
+
|
764
837
|
if isinstance(dataset, DataFrame):
|
765
|
-
self.
|
766
|
-
|
767
|
-
inference_method=inference_method,
|
768
|
-
)
|
838
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
839
|
+
self._deps = self._get_dependencies()
|
769
840
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
770
841
|
transform_kwargs = dict(
|
771
842
|
session=dataset._session,
|
@@ -773,6 +844,9 @@ class HuberRegressor(BaseTransformer):
|
|
773
844
|
drop_input_cols = self._drop_input_cols,
|
774
845
|
expected_output_cols_type="float",
|
775
846
|
)
|
847
|
+
expected_output_cols = self._align_expected_output_names(
|
848
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
849
|
+
)
|
776
850
|
|
777
851
|
elif isinstance(dataset, pd.DataFrame):
|
778
852
|
transform_kwargs = dict(
|
@@ -791,7 +865,7 @@ class HuberRegressor(BaseTransformer):
|
|
791
865
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
792
866
|
inference_method=inference_method,
|
793
867
|
input_cols=self.input_cols,
|
794
|
-
expected_output_cols=
|
868
|
+
expected_output_cols=expected_output_cols,
|
795
869
|
**transform_kwargs
|
796
870
|
)
|
797
871
|
return output_df
|
@@ -826,17 +900,15 @@ class HuberRegressor(BaseTransformer):
|
|
826
900
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
827
901
|
|
828
902
|
if isinstance(dataset, DataFrame):
|
829
|
-
self.
|
830
|
-
|
831
|
-
inference_method="score",
|
832
|
-
)
|
903
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
904
|
+
self._deps = self._get_dependencies()
|
833
905
|
selected_cols = self._get_active_columns()
|
834
906
|
if len(selected_cols) > 0:
|
835
907
|
dataset = dataset.select(selected_cols)
|
836
908
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
837
909
|
transform_kwargs = dict(
|
838
910
|
session=dataset._session,
|
839
|
-
dependencies=
|
911
|
+
dependencies=self._deps,
|
840
912
|
score_sproc_imports=['sklearn'],
|
841
913
|
)
|
842
914
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -901,11 +973,8 @@ class HuberRegressor(BaseTransformer):
|
|
901
973
|
|
902
974
|
if isinstance(dataset, DataFrame):
|
903
975
|
|
904
|
-
self.
|
905
|
-
|
906
|
-
inference_method=inference_method,
|
907
|
-
|
908
|
-
)
|
976
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
977
|
+
self._deps = self._get_dependencies()
|
909
978
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
910
979
|
transform_kwargs = dict(
|
911
980
|
session = dataset._session,
|
@@ -938,50 +1007,84 @@ class HuberRegressor(BaseTransformer):
|
|
938
1007
|
)
|
939
1008
|
return output_df
|
940
1009
|
|
1010
|
+
|
1011
|
+
|
1012
|
+
def to_sklearn(self) -> Any:
|
1013
|
+
"""Get sklearn.linear_model.HuberRegressor object.
|
1014
|
+
"""
|
1015
|
+
if self._sklearn_object is None:
|
1016
|
+
self._sklearn_object = self._create_sklearn_object()
|
1017
|
+
return self._sklearn_object
|
1018
|
+
|
1019
|
+
def to_xgboost(self) -> Any:
|
1020
|
+
raise exceptions.SnowflakeMLException(
|
1021
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1022
|
+
original_exception=AttributeError(
|
1023
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1024
|
+
"to_xgboost()",
|
1025
|
+
"to_sklearn()"
|
1026
|
+
)
|
1027
|
+
),
|
1028
|
+
)
|
1029
|
+
|
1030
|
+
def to_lightgbm(self) -> Any:
|
1031
|
+
raise exceptions.SnowflakeMLException(
|
1032
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1033
|
+
original_exception=AttributeError(
|
1034
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1035
|
+
"to_lightgbm()",
|
1036
|
+
"to_sklearn()"
|
1037
|
+
)
|
1038
|
+
),
|
1039
|
+
)
|
1040
|
+
|
1041
|
+
def _get_dependencies(self) -> List[str]:
|
1042
|
+
return self._deps
|
1043
|
+
|
941
1044
|
|
942
|
-
def
|
1045
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
943
1046
|
self._model_signature_dict = dict()
|
944
1047
|
|
945
1048
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
946
1049
|
|
947
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1050
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
948
1051
|
outputs: List[BaseFeatureSpec] = []
|
949
1052
|
if hasattr(self, "predict"):
|
950
1053
|
# keep mypy happy
|
951
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1054
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
952
1055
|
# For classifier, the type of predict is the same as the type of label
|
953
|
-
if self._sklearn_object._estimator_type ==
|
954
|
-
|
1056
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1057
|
+
# label columns is the desired type for output
|
955
1058
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
956
1059
|
# rename the output columns
|
957
1060
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
958
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
959
|
-
|
960
|
-
|
1061
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1062
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1063
|
+
)
|
961
1064
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
962
1065
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
963
|
-
# Clusterer returns int64 cluster labels.
|
1066
|
+
# Clusterer returns int64 cluster labels.
|
964
1067
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
965
1068
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
966
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
967
|
-
|
968
|
-
|
969
|
-
|
1069
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1070
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1071
|
+
)
|
1072
|
+
|
970
1073
|
# For regressor, the type of predict is float64
|
971
|
-
elif self._sklearn_object._estimator_type ==
|
1074
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
972
1075
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
973
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
974
|
-
|
975
|
-
|
976
|
-
|
1076
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1077
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1078
|
+
)
|
1079
|
+
|
977
1080
|
for prob_func in PROB_FUNCTIONS:
|
978
1081
|
if hasattr(self, prob_func):
|
979
1082
|
output_cols_prefix: str = f"{prob_func}_"
|
980
1083
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
981
1084
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
982
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
983
|
-
|
984
|
-
|
1085
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1086
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1087
|
+
)
|
985
1088
|
|
986
1089
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
987
1090
|
items = list(self._model_signature_dict.items())
|
@@ -994,10 +1097,10 @@ class HuberRegressor(BaseTransformer):
|
|
994
1097
|
"""Returns model signature of current class.
|
995
1098
|
|
996
1099
|
Raises:
|
997
|
-
|
1100
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
998
1101
|
|
999
1102
|
Returns:
|
1000
|
-
Dict
|
1103
|
+
Dict with each method and its input output signature
|
1001
1104
|
"""
|
1002
1105
|
if self._model_signature_dict is None:
|
1003
1106
|
raise exceptions.SnowflakeMLException(
|
@@ -1005,35 +1108,3 @@ class HuberRegressor(BaseTransformer):
|
|
1005
1108
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1006
1109
|
)
|
1007
1110
|
return self._model_signature_dict
|
1008
|
-
|
1009
|
-
def to_sklearn(self) -> Any:
|
1010
|
-
"""Get sklearn.linear_model.HuberRegressor object.
|
1011
|
-
"""
|
1012
|
-
if self._sklearn_object is None:
|
1013
|
-
self._sklearn_object = self._create_sklearn_object()
|
1014
|
-
return self._sklearn_object
|
1015
|
-
|
1016
|
-
def to_xgboost(self) -> Any:
|
1017
|
-
raise exceptions.SnowflakeMLException(
|
1018
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1019
|
-
original_exception=AttributeError(
|
1020
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1021
|
-
"to_xgboost()",
|
1022
|
-
"to_sklearn()"
|
1023
|
-
)
|
1024
|
-
),
|
1025
|
-
)
|
1026
|
-
|
1027
|
-
def to_lightgbm(self) -> Any:
|
1028
|
-
raise exceptions.SnowflakeMLException(
|
1029
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1030
|
-
original_exception=AttributeError(
|
1031
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1032
|
-
"to_lightgbm()",
|
1033
|
-
"to_sklearn()"
|
1034
|
-
)
|
1035
|
-
),
|
1036
|
-
)
|
1037
|
-
|
1038
|
-
def _get_dependencies(self) -> List[str]:
|
1039
|
-
return self._deps
|