snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class EmpiricalCovariance(BaseTransformer):
|
71
64
|
r"""Maximum likelihood covariance estimator
|
72
65
|
For more details on this class, see [sklearn.covariance.EmpiricalCovariance]
|
@@ -202,12 +195,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
202
195
|
)
|
203
196
|
return selected_cols
|
204
197
|
|
205
|
-
|
206
|
-
project=_PROJECT,
|
207
|
-
subproject=_SUBPROJECT,
|
208
|
-
custom_tags=dict([("autogen", True)]),
|
209
|
-
)
|
210
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EmpiricalCovariance":
|
198
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EmpiricalCovariance":
|
211
199
|
"""Fit the maximum likelihood covariance estimator to X
|
212
200
|
For more details on this function, see [sklearn.covariance.EmpiricalCovariance.fit]
|
213
201
|
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EmpiricalCovariance.html#sklearn.covariance.EmpiricalCovariance.fit)
|
@@ -234,12 +222,14 @@ class EmpiricalCovariance(BaseTransformer):
|
|
234
222
|
|
235
223
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
236
224
|
|
237
|
-
|
225
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
238
226
|
if SNOWML_SPROC_ENV in os.environ:
|
239
227
|
statement_params = telemetry.get_function_usage_statement_params(
|
240
228
|
project=_PROJECT,
|
241
229
|
subproject=_SUBPROJECT,
|
242
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
230
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
231
|
+
inspect.currentframe(), EmpiricalCovariance.__class__.__name__
|
232
|
+
),
|
243
233
|
api_calls=[Session.call],
|
244
234
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
245
235
|
)
|
@@ -260,27 +250,24 @@ class EmpiricalCovariance(BaseTransformer):
|
|
260
250
|
)
|
261
251
|
self._sklearn_object = model_trainer.train()
|
262
252
|
self._is_fitted = True
|
263
|
-
self.
|
253
|
+
self._generate_model_signatures(dataset)
|
264
254
|
return self
|
265
255
|
|
266
256
|
def _batch_inference_validate_snowpark(
|
267
257
|
self,
|
268
258
|
dataset: DataFrame,
|
269
259
|
inference_method: str,
|
270
|
-
) ->
|
271
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
272
|
-
return the available package that exists in the snowflake anaconda channel
|
260
|
+
) -> None:
|
261
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
273
262
|
|
274
263
|
Args:
|
275
264
|
dataset: snowpark dataframe
|
276
265
|
inference_method: the inference method such as predict, score...
|
277
|
-
|
266
|
+
|
278
267
|
Raises:
|
279
268
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
280
269
|
SnowflakeMLException: If the session is None, raise error
|
281
270
|
|
282
|
-
Returns:
|
283
|
-
A list of available package that exists in the snowflake anaconda channel
|
284
271
|
"""
|
285
272
|
if not self._is_fitted:
|
286
273
|
raise exceptions.SnowflakeMLException(
|
@@ -298,9 +285,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
298
285
|
"Session must not specified for snowpark dataset."
|
299
286
|
),
|
300
287
|
)
|
301
|
-
|
302
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
303
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
288
|
+
|
304
289
|
|
305
290
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
306
291
|
@telemetry.send_api_usage_telemetry(
|
@@ -334,7 +319,9 @@ class EmpiricalCovariance(BaseTransformer):
|
|
334
319
|
# when it is classifier, infer the datatype from label columns
|
335
320
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
336
321
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
337
|
-
label_cols_signatures = [
|
322
|
+
label_cols_signatures = [
|
323
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
324
|
+
]
|
338
325
|
if len(label_cols_signatures) == 0:
|
339
326
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
340
327
|
raise exceptions.SnowflakeMLException(
|
@@ -342,25 +329,23 @@ class EmpiricalCovariance(BaseTransformer):
|
|
342
329
|
original_exception=ValueError(error_str),
|
343
330
|
)
|
344
331
|
|
345
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
346
|
-
label_cols_signatures[0].as_snowpark_type()
|
347
|
-
)
|
332
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
348
333
|
|
349
|
-
self.
|
350
|
-
|
334
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
335
|
+
self._deps = self._get_dependencies()
|
336
|
+
assert isinstance(
|
337
|
+
dataset._session, Session
|
338
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
351
339
|
|
352
340
|
transform_kwargs = dict(
|
353
|
-
session
|
354
|
-
dependencies
|
355
|
-
drop_input_cols
|
356
|
-
expected_output_cols_type
|
341
|
+
session=dataset._session,
|
342
|
+
dependencies=self._deps,
|
343
|
+
drop_input_cols=self._drop_input_cols,
|
344
|
+
expected_output_cols_type=expected_type_inferred,
|
357
345
|
)
|
358
346
|
|
359
347
|
elif isinstance(dataset, pd.DataFrame):
|
360
|
-
transform_kwargs = dict(
|
361
|
-
snowpark_input_cols = self._snowpark_cols,
|
362
|
-
drop_input_cols = self._drop_input_cols
|
363
|
-
)
|
348
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
364
349
|
|
365
350
|
transform_handlers = ModelTransformerBuilder.build(
|
366
351
|
dataset=dataset,
|
@@ -400,7 +385,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
400
385
|
Transformed dataset.
|
401
386
|
"""
|
402
387
|
super()._check_dataset_type(dataset)
|
403
|
-
inference_method="transform"
|
388
|
+
inference_method = "transform"
|
404
389
|
|
405
390
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
406
391
|
# are specific to the type of dataset used.
|
@@ -430,24 +415,19 @@ class EmpiricalCovariance(BaseTransformer):
|
|
430
415
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
431
416
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
432
417
|
|
433
|
-
self.
|
434
|
-
|
435
|
-
inference_method=inference_method,
|
436
|
-
)
|
418
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
419
|
+
self._deps = self._get_dependencies()
|
437
420
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
438
421
|
|
439
422
|
transform_kwargs = dict(
|
440
|
-
session
|
441
|
-
dependencies
|
442
|
-
drop_input_cols
|
443
|
-
expected_output_cols_type
|
423
|
+
session=dataset._session,
|
424
|
+
dependencies=self._deps,
|
425
|
+
drop_input_cols=self._drop_input_cols,
|
426
|
+
expected_output_cols_type=expected_dtype,
|
444
427
|
)
|
445
428
|
|
446
429
|
elif isinstance(dataset, pd.DataFrame):
|
447
|
-
transform_kwargs = dict(
|
448
|
-
snowpark_input_cols = self._snowpark_cols,
|
449
|
-
drop_input_cols = self._drop_input_cols
|
450
|
-
)
|
430
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
451
431
|
|
452
432
|
transform_handlers = ModelTransformerBuilder.build(
|
453
433
|
dataset=dataset,
|
@@ -466,7 +446,11 @@ class EmpiricalCovariance(BaseTransformer):
|
|
466
446
|
return output_df
|
467
447
|
|
468
448
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
469
|
-
def fit_predict(
|
449
|
+
def fit_predict(
|
450
|
+
self,
|
451
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
452
|
+
output_cols_prefix: str = "fit_predict_",
|
453
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
470
454
|
""" Method not supported for this class.
|
471
455
|
|
472
456
|
|
@@ -491,22 +475,104 @@ class EmpiricalCovariance(BaseTransformer):
|
|
491
475
|
)
|
492
476
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
493
477
|
drop_input_cols=self._drop_input_cols,
|
494
|
-
expected_output_cols_list=
|
478
|
+
expected_output_cols_list=(
|
479
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
480
|
+
),
|
495
481
|
)
|
496
482
|
self._sklearn_object = fitted_estimator
|
497
483
|
self._is_fitted = True
|
498
484
|
return output_result
|
499
485
|
|
486
|
+
|
487
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
488
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
489
|
+
""" Method not supported for this class.
|
490
|
+
|
500
491
|
|
501
|
-
|
502
|
-
|
503
|
-
|
492
|
+
Raises:
|
493
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
494
|
+
|
495
|
+
Args:
|
496
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
497
|
+
Snowpark or Pandas DataFrame.
|
498
|
+
output_cols_prefix: Prefix for the response columns
|
504
499
|
Returns:
|
505
500
|
Transformed dataset.
|
506
501
|
"""
|
507
|
-
self.
|
508
|
-
|
509
|
-
|
502
|
+
self._infer_input_output_cols(dataset)
|
503
|
+
super()._check_dataset_type(dataset)
|
504
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
505
|
+
estimator=self._sklearn_object,
|
506
|
+
dataset=dataset,
|
507
|
+
input_cols=self.input_cols,
|
508
|
+
label_cols=self.label_cols,
|
509
|
+
sample_weight_col=self.sample_weight_col,
|
510
|
+
autogenerated=self._autogenerated,
|
511
|
+
subproject=_SUBPROJECT,
|
512
|
+
)
|
513
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
514
|
+
drop_input_cols=self._drop_input_cols,
|
515
|
+
expected_output_cols_list=self.output_cols,
|
516
|
+
)
|
517
|
+
self._sklearn_object = fitted_estimator
|
518
|
+
self._is_fitted = True
|
519
|
+
return output_result
|
520
|
+
|
521
|
+
|
522
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
523
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
524
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
525
|
+
"""
|
526
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
527
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
528
|
+
if output_cols:
|
529
|
+
output_cols = [
|
530
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
531
|
+
for c in output_cols
|
532
|
+
]
|
533
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
534
|
+
output_cols = [output_cols_prefix]
|
535
|
+
elif self._sklearn_object is not None:
|
536
|
+
classes = self._sklearn_object.classes_
|
537
|
+
if isinstance(classes, numpy.ndarray):
|
538
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
539
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
540
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
541
|
+
output_cols = []
|
542
|
+
for i, cl in enumerate(classes):
|
543
|
+
# For binary classification, there is only one output column for each class
|
544
|
+
# ndarray as the two classes are complementary.
|
545
|
+
if len(cl) == 2:
|
546
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
547
|
+
else:
|
548
|
+
output_cols.extend([
|
549
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
550
|
+
])
|
551
|
+
else:
|
552
|
+
output_cols = []
|
553
|
+
|
554
|
+
# Make sure column names are valid snowflake identifiers.
|
555
|
+
assert output_cols is not None # Make MyPy happy
|
556
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
557
|
+
|
558
|
+
return rv
|
559
|
+
|
560
|
+
def _align_expected_output_names(
|
561
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
562
|
+
) -> List[str]:
|
563
|
+
# in case the inferred output column names dimension is different
|
564
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
565
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
566
|
+
output_df_columns = list(output_df_pd.columns)
|
567
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
568
|
+
if self.sample_weight_col:
|
569
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
570
|
+
# if the dimension of inferred output column names is correct; use it
|
571
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
572
|
+
return expected_output_cols_list
|
573
|
+
# otherwise, use the sklearn estimator's output
|
574
|
+
else:
|
575
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
510
576
|
|
511
577
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
512
578
|
@telemetry.send_api_usage_telemetry(
|
@@ -538,24 +604,26 @@ class EmpiricalCovariance(BaseTransformer):
|
|
538
604
|
# are specific to the type of dataset used.
|
539
605
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
540
606
|
|
607
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
608
|
+
|
541
609
|
if isinstance(dataset, DataFrame):
|
542
|
-
self.
|
543
|
-
|
544
|
-
|
545
|
-
|
546
|
-
|
610
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
611
|
+
self._deps = self._get_dependencies()
|
612
|
+
assert isinstance(
|
613
|
+
dataset._session, Session
|
614
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
547
615
|
transform_kwargs = dict(
|
548
616
|
session=dataset._session,
|
549
617
|
dependencies=self._deps,
|
550
|
-
drop_input_cols
|
618
|
+
drop_input_cols=self._drop_input_cols,
|
551
619
|
expected_output_cols_type="float",
|
552
620
|
)
|
621
|
+
expected_output_cols = self._align_expected_output_names(
|
622
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
623
|
+
)
|
553
624
|
|
554
625
|
elif isinstance(dataset, pd.DataFrame):
|
555
|
-
transform_kwargs = dict(
|
556
|
-
snowpark_input_cols = self._snowpark_cols,
|
557
|
-
drop_input_cols = self._drop_input_cols
|
558
|
-
)
|
626
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
559
627
|
|
560
628
|
transform_handlers = ModelTransformerBuilder.build(
|
561
629
|
dataset=dataset,
|
@@ -567,7 +635,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
567
635
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
568
636
|
inference_method=inference_method,
|
569
637
|
input_cols=self.input_cols,
|
570
|
-
expected_output_cols=
|
638
|
+
expected_output_cols=expected_output_cols,
|
571
639
|
**transform_kwargs
|
572
640
|
)
|
573
641
|
return output_df
|
@@ -597,29 +665,30 @@ class EmpiricalCovariance(BaseTransformer):
|
|
597
665
|
Output dataset with log probability of the sample for each class in the model.
|
598
666
|
"""
|
599
667
|
super()._check_dataset_type(dataset)
|
600
|
-
inference_method="predict_log_proba"
|
668
|
+
inference_method = "predict_log_proba"
|
669
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
601
670
|
|
602
671
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
603
672
|
# are specific to the type of dataset used.
|
604
673
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
605
674
|
|
606
675
|
if isinstance(dataset, DataFrame):
|
607
|
-
self.
|
608
|
-
|
609
|
-
|
610
|
-
|
611
|
-
|
676
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
677
|
+
self._deps = self._get_dependencies()
|
678
|
+
assert isinstance(
|
679
|
+
dataset._session, Session
|
680
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
612
681
|
transform_kwargs = dict(
|
613
682
|
session=dataset._session,
|
614
683
|
dependencies=self._deps,
|
615
|
-
drop_input_cols
|
684
|
+
drop_input_cols=self._drop_input_cols,
|
616
685
|
expected_output_cols_type="float",
|
617
686
|
)
|
687
|
+
expected_output_cols = self._align_expected_output_names(
|
688
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
689
|
+
)
|
618
690
|
elif isinstance(dataset, pd.DataFrame):
|
619
|
-
transform_kwargs = dict(
|
620
|
-
snowpark_input_cols = self._snowpark_cols,
|
621
|
-
drop_input_cols = self._drop_input_cols
|
622
|
-
)
|
691
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
623
692
|
|
624
693
|
transform_handlers = ModelTransformerBuilder.build(
|
625
694
|
dataset=dataset,
|
@@ -632,7 +701,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
632
701
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
633
702
|
inference_method=inference_method,
|
634
703
|
input_cols=self.input_cols,
|
635
|
-
expected_output_cols=
|
704
|
+
expected_output_cols=expected_output_cols,
|
636
705
|
**transform_kwargs
|
637
706
|
)
|
638
707
|
return output_df
|
@@ -658,30 +727,32 @@ class EmpiricalCovariance(BaseTransformer):
|
|
658
727
|
Output dataset with results of the decision function for the samples in input dataset.
|
659
728
|
"""
|
660
729
|
super()._check_dataset_type(dataset)
|
661
|
-
inference_method="decision_function"
|
730
|
+
inference_method = "decision_function"
|
662
731
|
|
663
732
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
664
733
|
# are specific to the type of dataset used.
|
665
734
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
666
735
|
|
736
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
737
|
+
|
667
738
|
if isinstance(dataset, DataFrame):
|
668
|
-
self.
|
669
|
-
|
670
|
-
|
671
|
-
|
672
|
-
|
739
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
740
|
+
self._deps = self._get_dependencies()
|
741
|
+
assert isinstance(
|
742
|
+
dataset._session, Session
|
743
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
673
744
|
transform_kwargs = dict(
|
674
745
|
session=dataset._session,
|
675
746
|
dependencies=self._deps,
|
676
|
-
drop_input_cols
|
747
|
+
drop_input_cols=self._drop_input_cols,
|
677
748
|
expected_output_cols_type="float",
|
678
749
|
)
|
750
|
+
expected_output_cols = self._align_expected_output_names(
|
751
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
752
|
+
)
|
679
753
|
|
680
754
|
elif isinstance(dataset, pd.DataFrame):
|
681
|
-
transform_kwargs = dict(
|
682
|
-
snowpark_input_cols = self._snowpark_cols,
|
683
|
-
drop_input_cols = self._drop_input_cols
|
684
|
-
)
|
755
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
685
756
|
|
686
757
|
transform_handlers = ModelTransformerBuilder.build(
|
687
758
|
dataset=dataset,
|
@@ -694,7 +765,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
694
765
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
695
766
|
inference_method=inference_method,
|
696
767
|
input_cols=self.input_cols,
|
697
|
-
expected_output_cols=
|
768
|
+
expected_output_cols=expected_output_cols,
|
698
769
|
**transform_kwargs
|
699
770
|
)
|
700
771
|
return output_df
|
@@ -723,17 +794,17 @@ class EmpiricalCovariance(BaseTransformer):
|
|
723
794
|
Output dataset with probability of the sample for each class in the model.
|
724
795
|
"""
|
725
796
|
super()._check_dataset_type(dataset)
|
726
|
-
inference_method="score_samples"
|
797
|
+
inference_method = "score_samples"
|
727
798
|
|
728
799
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
729
800
|
# are specific to the type of dataset used.
|
730
801
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
731
802
|
|
803
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
804
|
+
|
732
805
|
if isinstance(dataset, DataFrame):
|
733
|
-
self.
|
734
|
-
|
735
|
-
inference_method=inference_method,
|
736
|
-
)
|
806
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
807
|
+
self._deps = self._get_dependencies()
|
737
808
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
738
809
|
transform_kwargs = dict(
|
739
810
|
session=dataset._session,
|
@@ -741,6 +812,9 @@ class EmpiricalCovariance(BaseTransformer):
|
|
741
812
|
drop_input_cols = self._drop_input_cols,
|
742
813
|
expected_output_cols_type="float",
|
743
814
|
)
|
815
|
+
expected_output_cols = self._align_expected_output_names(
|
816
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
817
|
+
)
|
744
818
|
|
745
819
|
elif isinstance(dataset, pd.DataFrame):
|
746
820
|
transform_kwargs = dict(
|
@@ -759,7 +833,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
759
833
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
760
834
|
inference_method=inference_method,
|
761
835
|
input_cols=self.input_cols,
|
762
|
-
expected_output_cols=
|
836
|
+
expected_output_cols=expected_output_cols,
|
763
837
|
**transform_kwargs
|
764
838
|
)
|
765
839
|
return output_df
|
@@ -794,17 +868,15 @@ class EmpiricalCovariance(BaseTransformer):
|
|
794
868
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
795
869
|
|
796
870
|
if isinstance(dataset, DataFrame):
|
797
|
-
self.
|
798
|
-
|
799
|
-
inference_method="score",
|
800
|
-
)
|
871
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
872
|
+
self._deps = self._get_dependencies()
|
801
873
|
selected_cols = self._get_active_columns()
|
802
874
|
if len(selected_cols) > 0:
|
803
875
|
dataset = dataset.select(selected_cols)
|
804
876
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
805
877
|
transform_kwargs = dict(
|
806
878
|
session=dataset._session,
|
807
|
-
dependencies=
|
879
|
+
dependencies=self._deps,
|
808
880
|
score_sproc_imports=['sklearn'],
|
809
881
|
)
|
810
882
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -869,11 +941,8 @@ class EmpiricalCovariance(BaseTransformer):
|
|
869
941
|
|
870
942
|
if isinstance(dataset, DataFrame):
|
871
943
|
|
872
|
-
self.
|
873
|
-
|
874
|
-
inference_method=inference_method,
|
875
|
-
|
876
|
-
)
|
944
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
945
|
+
self._deps = self._get_dependencies()
|
877
946
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
878
947
|
transform_kwargs = dict(
|
879
948
|
session = dataset._session,
|
@@ -906,50 +975,84 @@ class EmpiricalCovariance(BaseTransformer):
|
|
906
975
|
)
|
907
976
|
return output_df
|
908
977
|
|
978
|
+
|
979
|
+
|
980
|
+
def to_sklearn(self) -> Any:
|
981
|
+
"""Get sklearn.covariance.EmpiricalCovariance object.
|
982
|
+
"""
|
983
|
+
if self._sklearn_object is None:
|
984
|
+
self._sklearn_object = self._create_sklearn_object()
|
985
|
+
return self._sklearn_object
|
986
|
+
|
987
|
+
def to_xgboost(self) -> Any:
|
988
|
+
raise exceptions.SnowflakeMLException(
|
989
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
990
|
+
original_exception=AttributeError(
|
991
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
992
|
+
"to_xgboost()",
|
993
|
+
"to_sklearn()"
|
994
|
+
)
|
995
|
+
),
|
996
|
+
)
|
997
|
+
|
998
|
+
def to_lightgbm(self) -> Any:
|
999
|
+
raise exceptions.SnowflakeMLException(
|
1000
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1001
|
+
original_exception=AttributeError(
|
1002
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1003
|
+
"to_lightgbm()",
|
1004
|
+
"to_sklearn()"
|
1005
|
+
)
|
1006
|
+
),
|
1007
|
+
)
|
1008
|
+
|
1009
|
+
def _get_dependencies(self) -> List[str]:
|
1010
|
+
return self._deps
|
1011
|
+
|
909
1012
|
|
910
|
-
def
|
1013
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
911
1014
|
self._model_signature_dict = dict()
|
912
1015
|
|
913
1016
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
914
1017
|
|
915
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1018
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
916
1019
|
outputs: List[BaseFeatureSpec] = []
|
917
1020
|
if hasattr(self, "predict"):
|
918
1021
|
# keep mypy happy
|
919
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1022
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
920
1023
|
# For classifier, the type of predict is the same as the type of label
|
921
|
-
if self._sklearn_object._estimator_type ==
|
922
|
-
|
1024
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1025
|
+
# label columns is the desired type for output
|
923
1026
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
924
1027
|
# rename the output columns
|
925
1028
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
926
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
927
|
-
|
928
|
-
|
1029
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1030
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1031
|
+
)
|
929
1032
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
930
1033
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
931
|
-
# Clusterer returns int64 cluster labels.
|
1034
|
+
# Clusterer returns int64 cluster labels.
|
932
1035
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
933
1036
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
934
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
935
|
-
|
936
|
-
|
937
|
-
|
1037
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1038
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1039
|
+
)
|
1040
|
+
|
938
1041
|
# For regressor, the type of predict is float64
|
939
|
-
elif self._sklearn_object._estimator_type ==
|
1042
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
940
1043
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
941
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
942
|
-
|
943
|
-
|
944
|
-
|
1044
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1045
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1046
|
+
)
|
1047
|
+
|
945
1048
|
for prob_func in PROB_FUNCTIONS:
|
946
1049
|
if hasattr(self, prob_func):
|
947
1050
|
output_cols_prefix: str = f"{prob_func}_"
|
948
1051
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
949
1052
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
950
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
951
|
-
|
952
|
-
|
1053
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1054
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1055
|
+
)
|
953
1056
|
|
954
1057
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
955
1058
|
items = list(self._model_signature_dict.items())
|
@@ -962,10 +1065,10 @@ class EmpiricalCovariance(BaseTransformer):
|
|
962
1065
|
"""Returns model signature of current class.
|
963
1066
|
|
964
1067
|
Raises:
|
965
|
-
|
1068
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
966
1069
|
|
967
1070
|
Returns:
|
968
|
-
Dict
|
1071
|
+
Dict with each method and its input output signature
|
969
1072
|
"""
|
970
1073
|
if self._model_signature_dict is None:
|
971
1074
|
raise exceptions.SnowflakeMLException(
|
@@ -973,35 +1076,3 @@ class EmpiricalCovariance(BaseTransformer):
|
|
973
1076
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
974
1077
|
)
|
975
1078
|
return self._model_signature_dict
|
976
|
-
|
977
|
-
def to_sklearn(self) -> Any:
|
978
|
-
"""Get sklearn.covariance.EmpiricalCovariance object.
|
979
|
-
"""
|
980
|
-
if self._sklearn_object is None:
|
981
|
-
self._sklearn_object = self._create_sklearn_object()
|
982
|
-
return self._sklearn_object
|
983
|
-
|
984
|
-
def to_xgboost(self) -> Any:
|
985
|
-
raise exceptions.SnowflakeMLException(
|
986
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
987
|
-
original_exception=AttributeError(
|
988
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
989
|
-
"to_xgboost()",
|
990
|
-
"to_sklearn()"
|
991
|
-
)
|
992
|
-
),
|
993
|
-
)
|
994
|
-
|
995
|
-
def to_lightgbm(self) -> Any:
|
996
|
-
raise exceptions.SnowflakeMLException(
|
997
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
998
|
-
original_exception=AttributeError(
|
999
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1000
|
-
"to_lightgbm()",
|
1001
|
-
"to_sklearn()"
|
1002
|
-
)
|
1003
|
-
),
|
1004
|
-
)
|
1005
|
-
|
1006
|
-
def _get_dependencies(self) -> List[str]:
|
1007
|
-
return self._deps
|