snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class BisectingKMeans(BaseTransformer):
71
64
  r"""Bisecting K-Means clustering
72
65
  For more details on this class, see [sklearn.cluster.BisectingKMeans]
@@ -282,12 +275,7 @@ class BisectingKMeans(BaseTransformer):
282
275
  )
283
276
  return selected_cols
284
277
 
285
- @telemetry.send_api_usage_telemetry(
286
- project=_PROJECT,
287
- subproject=_SUBPROJECT,
288
- custom_tags=dict([("autogen", True)]),
289
- )
290
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BisectingKMeans":
278
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BisectingKMeans":
291
279
  """Compute bisecting k-means clustering
292
280
  For more details on this function, see [sklearn.cluster.BisectingKMeans.fit]
293
281
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.BisectingKMeans.html#sklearn.cluster.BisectingKMeans.fit)
@@ -314,12 +302,14 @@ class BisectingKMeans(BaseTransformer):
314
302
 
315
303
  self._snowpark_cols = dataset.select(self.input_cols).columns
316
304
 
317
- # If we are already in a stored procedure, no need to kick off another one.
305
+ # If we are already in a stored procedure, no need to kick off another one.
318
306
  if SNOWML_SPROC_ENV in os.environ:
319
307
  statement_params = telemetry.get_function_usage_statement_params(
320
308
  project=_PROJECT,
321
309
  subproject=_SUBPROJECT,
322
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BisectingKMeans.__class__.__name__),
310
+ function_name=telemetry.get_statement_params_full_func_name(
311
+ inspect.currentframe(), BisectingKMeans.__class__.__name__
312
+ ),
323
313
  api_calls=[Session.call],
324
314
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
325
315
  )
@@ -340,27 +330,24 @@ class BisectingKMeans(BaseTransformer):
340
330
  )
341
331
  self._sklearn_object = model_trainer.train()
342
332
  self._is_fitted = True
343
- self._get_model_signatures(dataset)
333
+ self._generate_model_signatures(dataset)
344
334
  return self
345
335
 
346
336
  def _batch_inference_validate_snowpark(
347
337
  self,
348
338
  dataset: DataFrame,
349
339
  inference_method: str,
350
- ) -> List[str]:
351
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
352
- return the available package that exists in the snowflake anaconda channel
340
+ ) -> None:
341
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
353
342
 
354
343
  Args:
355
344
  dataset: snowpark dataframe
356
345
  inference_method: the inference method such as predict, score...
357
-
346
+
358
347
  Raises:
359
348
  SnowflakeMLException: If the estimator is not fitted, raise error
360
349
  SnowflakeMLException: If the session is None, raise error
361
350
 
362
- Returns:
363
- A list of available package that exists in the snowflake anaconda channel
364
351
  """
365
352
  if not self._is_fitted:
366
353
  raise exceptions.SnowflakeMLException(
@@ -378,9 +365,7 @@ class BisectingKMeans(BaseTransformer):
378
365
  "Session must not specified for snowpark dataset."
379
366
  ),
380
367
  )
381
- # Validate that key package version in user workspace are supported in snowflake conda channel
382
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
383
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
368
+
384
369
 
385
370
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
386
371
  @telemetry.send_api_usage_telemetry(
@@ -416,7 +401,9 @@ class BisectingKMeans(BaseTransformer):
416
401
  # when it is classifier, infer the datatype from label columns
417
402
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
418
403
  # Batch inference takes a single expected output column type. Use the first columns type for now.
419
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
404
+ label_cols_signatures = [
405
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
406
+ ]
420
407
  if len(label_cols_signatures) == 0:
421
408
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
422
409
  raise exceptions.SnowflakeMLException(
@@ -424,25 +411,23 @@ class BisectingKMeans(BaseTransformer):
424
411
  original_exception=ValueError(error_str),
425
412
  )
426
413
 
427
- expected_type_inferred = convert_sp_to_sf_type(
428
- label_cols_signatures[0].as_snowpark_type()
429
- )
414
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
430
415
 
431
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
416
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
417
+ self._deps = self._get_dependencies()
418
+ assert isinstance(
419
+ dataset._session, Session
420
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
433
421
 
434
422
  transform_kwargs = dict(
435
- session = dataset._session,
436
- dependencies = self._deps,
437
- drop_input_cols = self._drop_input_cols,
438
- expected_output_cols_type = expected_type_inferred,
423
+ session=dataset._session,
424
+ dependencies=self._deps,
425
+ drop_input_cols=self._drop_input_cols,
426
+ expected_output_cols_type=expected_type_inferred,
439
427
  )
440
428
 
441
429
  elif isinstance(dataset, pd.DataFrame):
442
- transform_kwargs = dict(
443
- snowpark_input_cols = self._snowpark_cols,
444
- drop_input_cols = self._drop_input_cols
445
- )
430
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
446
431
 
447
432
  transform_handlers = ModelTransformerBuilder.build(
448
433
  dataset=dataset,
@@ -484,7 +469,7 @@ class BisectingKMeans(BaseTransformer):
484
469
  Transformed dataset.
485
470
  """
486
471
  super()._check_dataset_type(dataset)
487
- inference_method="transform"
472
+ inference_method = "transform"
488
473
 
489
474
  # This dictionary contains optional kwargs for batch inference. These kwargs
490
475
  # are specific to the type of dataset used.
@@ -514,24 +499,19 @@ class BisectingKMeans(BaseTransformer):
514
499
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
515
500
  expected_dtype = convert_sp_to_sf_type(output_types[0])
516
501
 
517
- self._deps = self._batch_inference_validate_snowpark(
518
- dataset=dataset,
519
- inference_method=inference_method,
520
- )
502
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
503
+ self._deps = self._get_dependencies()
521
504
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
522
505
 
523
506
  transform_kwargs = dict(
524
- session = dataset._session,
525
- dependencies = self._deps,
526
- drop_input_cols = self._drop_input_cols,
527
- expected_output_cols_type = expected_dtype,
507
+ session=dataset._session,
508
+ dependencies=self._deps,
509
+ drop_input_cols=self._drop_input_cols,
510
+ expected_output_cols_type=expected_dtype,
528
511
  )
529
512
 
530
513
  elif isinstance(dataset, pd.DataFrame):
531
- transform_kwargs = dict(
532
- snowpark_input_cols = self._snowpark_cols,
533
- drop_input_cols = self._drop_input_cols
534
- )
514
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
535
515
 
536
516
  transform_handlers = ModelTransformerBuilder.build(
537
517
  dataset=dataset,
@@ -550,7 +530,11 @@ class BisectingKMeans(BaseTransformer):
550
530
  return output_df
551
531
 
552
532
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
553
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
533
+ def fit_predict(
534
+ self,
535
+ dataset: Union[DataFrame, pd.DataFrame],
536
+ output_cols_prefix: str = "fit_predict_",
537
+ ) -> Union[DataFrame, pd.DataFrame]:
554
538
  """ Compute cluster centers and predict cluster index for each sample
555
539
  For more details on this function, see [sklearn.cluster.BisectingKMeans.fit_predict]
556
540
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.BisectingKMeans.html#sklearn.cluster.BisectingKMeans.fit_predict)
@@ -577,22 +561,106 @@ class BisectingKMeans(BaseTransformer):
577
561
  )
578
562
  output_result, fitted_estimator = model_trainer.train_fit_predict(
579
563
  drop_input_cols=self._drop_input_cols,
580
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
564
+ expected_output_cols_list=(
565
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
566
+ ),
581
567
  )
582
568
  self._sklearn_object = fitted_estimator
583
569
  self._is_fitted = True
584
570
  return output_result
585
571
 
572
+
573
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
574
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
575
+ """ Compute clustering and transform X to cluster-distance space
576
+ For more details on this function, see [sklearn.cluster.BisectingKMeans.fit_transform]
577
+ (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.BisectingKMeans.html#sklearn.cluster.BisectingKMeans.fit_transform)
578
+
579
+
580
+ Raises:
581
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
586
582
 
587
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
588
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
589
- """
583
+ Args:
584
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
585
+ Snowpark or Pandas DataFrame.
586
+ output_cols_prefix: Prefix for the response columns
590
587
  Returns:
591
588
  Transformed dataset.
592
589
  """
593
- self.fit(dataset)
594
- assert self._sklearn_object is not None
595
- return self._sklearn_object.embedding_
590
+ self._infer_input_output_cols(dataset)
591
+ super()._check_dataset_type(dataset)
592
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
593
+ estimator=self._sklearn_object,
594
+ dataset=dataset,
595
+ input_cols=self.input_cols,
596
+ label_cols=self.label_cols,
597
+ sample_weight_col=self.sample_weight_col,
598
+ autogenerated=self._autogenerated,
599
+ subproject=_SUBPROJECT,
600
+ )
601
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
602
+ drop_input_cols=self._drop_input_cols,
603
+ expected_output_cols_list=self.output_cols,
604
+ )
605
+ self._sklearn_object = fitted_estimator
606
+ self._is_fitted = True
607
+ return output_result
608
+
609
+
610
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
611
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
612
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
613
+ """
614
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
615
+ # The following condition is introduced for kneighbors methods, and not used in other methods
616
+ if output_cols:
617
+ output_cols = [
618
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
619
+ for c in output_cols
620
+ ]
621
+ elif getattr(self._sklearn_object, "classes_", None) is None:
622
+ output_cols = [output_cols_prefix]
623
+ elif self._sklearn_object is not None:
624
+ classes = self._sklearn_object.classes_
625
+ if isinstance(classes, numpy.ndarray):
626
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
627
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
628
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
629
+ output_cols = []
630
+ for i, cl in enumerate(classes):
631
+ # For binary classification, there is only one output column for each class
632
+ # ndarray as the two classes are complementary.
633
+ if len(cl) == 2:
634
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
635
+ else:
636
+ output_cols.extend([
637
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
638
+ ])
639
+ else:
640
+ output_cols = []
641
+
642
+ # Make sure column names are valid snowflake identifiers.
643
+ assert output_cols is not None # Make MyPy happy
644
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
645
+
646
+ return rv
647
+
648
+ def _align_expected_output_names(
649
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
650
+ ) -> List[str]:
651
+ # in case the inferred output column names dimension is different
652
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
653
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
654
+ output_df_columns = list(output_df_pd.columns)
655
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
656
+ if self.sample_weight_col:
657
+ output_df_columns_set -= set(self.sample_weight_col)
658
+ # if the dimension of inferred output column names is correct; use it
659
+ if len(expected_output_cols_list) == len(output_df_columns_set):
660
+ return expected_output_cols_list
661
+ # otherwise, use the sklearn estimator's output
662
+ else:
663
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
596
664
 
597
665
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
598
666
  @telemetry.send_api_usage_telemetry(
@@ -624,24 +692,26 @@ class BisectingKMeans(BaseTransformer):
624
692
  # are specific to the type of dataset used.
625
693
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
626
694
 
695
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
696
+
627
697
  if isinstance(dataset, DataFrame):
628
- self._deps = self._batch_inference_validate_snowpark(
629
- dataset=dataset,
630
- inference_method=inference_method,
631
- )
632
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
699
+ self._deps = self._get_dependencies()
700
+ assert isinstance(
701
+ dataset._session, Session
702
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
633
703
  transform_kwargs = dict(
634
704
  session=dataset._session,
635
705
  dependencies=self._deps,
636
- drop_input_cols = self._drop_input_cols,
706
+ drop_input_cols=self._drop_input_cols,
637
707
  expected_output_cols_type="float",
638
708
  )
709
+ expected_output_cols = self._align_expected_output_names(
710
+ inference_method, dataset, expected_output_cols, output_cols_prefix
711
+ )
639
712
 
640
713
  elif isinstance(dataset, pd.DataFrame):
641
- transform_kwargs = dict(
642
- snowpark_input_cols = self._snowpark_cols,
643
- drop_input_cols = self._drop_input_cols
644
- )
714
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
645
715
 
646
716
  transform_handlers = ModelTransformerBuilder.build(
647
717
  dataset=dataset,
@@ -653,7 +723,7 @@ class BisectingKMeans(BaseTransformer):
653
723
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
654
724
  inference_method=inference_method,
655
725
  input_cols=self.input_cols,
656
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
726
+ expected_output_cols=expected_output_cols,
657
727
  **transform_kwargs
658
728
  )
659
729
  return output_df
@@ -683,29 +753,30 @@ class BisectingKMeans(BaseTransformer):
683
753
  Output dataset with log probability of the sample for each class in the model.
684
754
  """
685
755
  super()._check_dataset_type(dataset)
686
- inference_method="predict_log_proba"
756
+ inference_method = "predict_log_proba"
757
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
687
758
 
688
759
  # This dictionary contains optional kwargs for batch inference. These kwargs
689
760
  # are specific to the type of dataset used.
690
761
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
691
762
 
692
763
  if isinstance(dataset, DataFrame):
693
- self._deps = self._batch_inference_validate_snowpark(
694
- dataset=dataset,
695
- inference_method=inference_method,
696
- )
697
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
764
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
765
+ self._deps = self._get_dependencies()
766
+ assert isinstance(
767
+ dataset._session, Session
768
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
769
  transform_kwargs = dict(
699
770
  session=dataset._session,
700
771
  dependencies=self._deps,
701
- drop_input_cols = self._drop_input_cols,
772
+ drop_input_cols=self._drop_input_cols,
702
773
  expected_output_cols_type="float",
703
774
  )
775
+ expected_output_cols = self._align_expected_output_names(
776
+ inference_method, dataset, expected_output_cols, output_cols_prefix
777
+ )
704
778
  elif isinstance(dataset, pd.DataFrame):
705
- transform_kwargs = dict(
706
- snowpark_input_cols = self._snowpark_cols,
707
- drop_input_cols = self._drop_input_cols
708
- )
779
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
709
780
 
710
781
  transform_handlers = ModelTransformerBuilder.build(
711
782
  dataset=dataset,
@@ -718,7 +789,7 @@ class BisectingKMeans(BaseTransformer):
718
789
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
719
790
  inference_method=inference_method,
720
791
  input_cols=self.input_cols,
721
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
792
+ expected_output_cols=expected_output_cols,
722
793
  **transform_kwargs
723
794
  )
724
795
  return output_df
@@ -744,30 +815,32 @@ class BisectingKMeans(BaseTransformer):
744
815
  Output dataset with results of the decision function for the samples in input dataset.
745
816
  """
746
817
  super()._check_dataset_type(dataset)
747
- inference_method="decision_function"
818
+ inference_method = "decision_function"
748
819
 
749
820
  # This dictionary contains optional kwargs for batch inference. These kwargs
750
821
  # are specific to the type of dataset used.
751
822
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
752
823
 
824
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
825
+
753
826
  if isinstance(dataset, DataFrame):
754
- self._deps = self._batch_inference_validate_snowpark(
755
- dataset=dataset,
756
- inference_method=inference_method,
757
- )
758
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
827
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
828
+ self._deps = self._get_dependencies()
829
+ assert isinstance(
830
+ dataset._session, Session
831
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
759
832
  transform_kwargs = dict(
760
833
  session=dataset._session,
761
834
  dependencies=self._deps,
762
- drop_input_cols = self._drop_input_cols,
835
+ drop_input_cols=self._drop_input_cols,
763
836
  expected_output_cols_type="float",
764
837
  )
838
+ expected_output_cols = self._align_expected_output_names(
839
+ inference_method, dataset, expected_output_cols, output_cols_prefix
840
+ )
765
841
 
766
842
  elif isinstance(dataset, pd.DataFrame):
767
- transform_kwargs = dict(
768
- snowpark_input_cols = self._snowpark_cols,
769
- drop_input_cols = self._drop_input_cols
770
- )
843
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
771
844
 
772
845
  transform_handlers = ModelTransformerBuilder.build(
773
846
  dataset=dataset,
@@ -780,7 +853,7 @@ class BisectingKMeans(BaseTransformer):
780
853
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
781
854
  inference_method=inference_method,
782
855
  input_cols=self.input_cols,
783
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
856
+ expected_output_cols=expected_output_cols,
784
857
  **transform_kwargs
785
858
  )
786
859
  return output_df
@@ -809,17 +882,17 @@ class BisectingKMeans(BaseTransformer):
809
882
  Output dataset with probability of the sample for each class in the model.
810
883
  """
811
884
  super()._check_dataset_type(dataset)
812
- inference_method="score_samples"
885
+ inference_method = "score_samples"
813
886
 
814
887
  # This dictionary contains optional kwargs for batch inference. These kwargs
815
888
  # are specific to the type of dataset used.
816
889
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
817
890
 
891
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
892
+
818
893
  if isinstance(dataset, DataFrame):
819
- self._deps = self._batch_inference_validate_snowpark(
820
- dataset=dataset,
821
- inference_method=inference_method,
822
- )
894
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
895
+ self._deps = self._get_dependencies()
823
896
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
824
897
  transform_kwargs = dict(
825
898
  session=dataset._session,
@@ -827,6 +900,9 @@ class BisectingKMeans(BaseTransformer):
827
900
  drop_input_cols = self._drop_input_cols,
828
901
  expected_output_cols_type="float",
829
902
  )
903
+ expected_output_cols = self._align_expected_output_names(
904
+ inference_method, dataset, expected_output_cols, output_cols_prefix
905
+ )
830
906
 
831
907
  elif isinstance(dataset, pd.DataFrame):
832
908
  transform_kwargs = dict(
@@ -845,7 +921,7 @@ class BisectingKMeans(BaseTransformer):
845
921
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
846
922
  inference_method=inference_method,
847
923
  input_cols=self.input_cols,
848
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
924
+ expected_output_cols=expected_output_cols,
849
925
  **transform_kwargs
850
926
  )
851
927
  return output_df
@@ -880,17 +956,15 @@ class BisectingKMeans(BaseTransformer):
880
956
  transform_kwargs: ScoreKwargsTypedDict = dict()
881
957
 
882
958
  if isinstance(dataset, DataFrame):
883
- self._deps = self._batch_inference_validate_snowpark(
884
- dataset=dataset,
885
- inference_method="score",
886
- )
959
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
960
+ self._deps = self._get_dependencies()
887
961
  selected_cols = self._get_active_columns()
888
962
  if len(selected_cols) > 0:
889
963
  dataset = dataset.select(selected_cols)
890
964
  assert isinstance(dataset._session, Session) # keep mypy happy
891
965
  transform_kwargs = dict(
892
966
  session=dataset._session,
893
- dependencies=["snowflake-snowpark-python"] + self._deps,
967
+ dependencies=self._deps,
894
968
  score_sproc_imports=['sklearn'],
895
969
  )
896
970
  elif isinstance(dataset, pd.DataFrame):
@@ -955,11 +1029,8 @@ class BisectingKMeans(BaseTransformer):
955
1029
 
956
1030
  if isinstance(dataset, DataFrame):
957
1031
 
958
- self._deps = self._batch_inference_validate_snowpark(
959
- dataset=dataset,
960
- inference_method=inference_method,
961
-
962
- )
1032
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1033
+ self._deps = self._get_dependencies()
963
1034
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
964
1035
  transform_kwargs = dict(
965
1036
  session = dataset._session,
@@ -992,50 +1063,84 @@ class BisectingKMeans(BaseTransformer):
992
1063
  )
993
1064
  return output_df
994
1065
 
1066
+
1067
+
1068
+ def to_sklearn(self) -> Any:
1069
+ """Get sklearn.cluster.BisectingKMeans object.
1070
+ """
1071
+ if self._sklearn_object is None:
1072
+ self._sklearn_object = self._create_sklearn_object()
1073
+ return self._sklearn_object
1074
+
1075
+ def to_xgboost(self) -> Any:
1076
+ raise exceptions.SnowflakeMLException(
1077
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1078
+ original_exception=AttributeError(
1079
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1080
+ "to_xgboost()",
1081
+ "to_sklearn()"
1082
+ )
1083
+ ),
1084
+ )
995
1085
 
996
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1086
+ def to_lightgbm(self) -> Any:
1087
+ raise exceptions.SnowflakeMLException(
1088
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1089
+ original_exception=AttributeError(
1090
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1091
+ "to_lightgbm()",
1092
+ "to_sklearn()"
1093
+ )
1094
+ ),
1095
+ )
1096
+
1097
+ def _get_dependencies(self) -> List[str]:
1098
+ return self._deps
1099
+
1100
+
1101
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
997
1102
  self._model_signature_dict = dict()
998
1103
 
999
1104
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1000
1105
 
1001
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1106
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1002
1107
  outputs: List[BaseFeatureSpec] = []
1003
1108
  if hasattr(self, "predict"):
1004
1109
  # keep mypy happy
1005
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1110
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1006
1111
  # For classifier, the type of predict is the same as the type of label
1007
- if self._sklearn_object._estimator_type == 'classifier':
1008
- # label columns is the desired type for output
1112
+ if self._sklearn_object._estimator_type == "classifier":
1113
+ # label columns is the desired type for output
1009
1114
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1010
1115
  # rename the output columns
1011
1116
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1012
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1013
- ([] if self._drop_input_cols else inputs)
1014
- + outputs)
1117
+ self._model_signature_dict["predict"] = ModelSignature(
1118
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1119
+ )
1015
1120
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1016
1121
  # For outlier models, returns -1 for outliers and 1 for inliers.
1017
- # Clusterer returns int64 cluster labels.
1122
+ # Clusterer returns int64 cluster labels.
1018
1123
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1019
1124
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1020
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1021
- ([] if self._drop_input_cols else inputs)
1022
- + outputs)
1023
-
1125
+ self._model_signature_dict["predict"] = ModelSignature(
1126
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1127
+ )
1128
+
1024
1129
  # For regressor, the type of predict is float64
1025
- elif self._sklearn_object._estimator_type == 'regressor':
1130
+ elif self._sklearn_object._estimator_type == "regressor":
1026
1131
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1027
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1028
- ([] if self._drop_input_cols else inputs)
1029
- + outputs)
1030
-
1132
+ self._model_signature_dict["predict"] = ModelSignature(
1133
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1134
+ )
1135
+
1031
1136
  for prob_func in PROB_FUNCTIONS:
1032
1137
  if hasattr(self, prob_func):
1033
1138
  output_cols_prefix: str = f"{prob_func}_"
1034
1139
  output_column_names = self._get_output_column_names(output_cols_prefix)
1035
1140
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1036
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1037
- ([] if self._drop_input_cols else inputs)
1038
- + outputs)
1141
+ self._model_signature_dict[prob_func] = ModelSignature(
1142
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1143
+ )
1039
1144
 
1040
1145
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1041
1146
  items = list(self._model_signature_dict.items())
@@ -1048,10 +1153,10 @@ class BisectingKMeans(BaseTransformer):
1048
1153
  """Returns model signature of current class.
1049
1154
 
1050
1155
  Raises:
1051
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1156
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1052
1157
 
1053
1158
  Returns:
1054
- Dict[str, ModelSignature]: each method and its input output signature
1159
+ Dict with each method and its input output signature
1055
1160
  """
1056
1161
  if self._model_signature_dict is None:
1057
1162
  raise exceptions.SnowflakeMLException(
@@ -1059,35 +1164,3 @@ class BisectingKMeans(BaseTransformer):
1059
1164
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1060
1165
  )
1061
1166
  return self._model_signature_dict
1062
-
1063
- def to_sklearn(self) -> Any:
1064
- """Get sklearn.cluster.BisectingKMeans object.
1065
- """
1066
- if self._sklearn_object is None:
1067
- self._sklearn_object = self._create_sklearn_object()
1068
- return self._sklearn_object
1069
-
1070
- def to_xgboost(self) -> Any:
1071
- raise exceptions.SnowflakeMLException(
1072
- error_code=error_codes.METHOD_NOT_ALLOWED,
1073
- original_exception=AttributeError(
1074
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
- "to_xgboost()",
1076
- "to_sklearn()"
1077
- )
1078
- ),
1079
- )
1080
-
1081
- def to_lightgbm(self) -> Any:
1082
- raise exceptions.SnowflakeMLException(
1083
- error_code=error_codes.METHOD_NOT_ALLOWED,
1084
- original_exception=AttributeError(
1085
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
- "to_lightgbm()",
1087
- "to_sklearn()"
1088
- )
1089
- ),
1090
- )
1091
-
1092
- def _get_dependencies(self) -> List[str]:
1093
- return self._deps