snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class PassiveAggressiveClassifier(BaseTransformer):
|
71
64
|
r"""Passive Aggressive Classifier
|
72
65
|
For more details on this class, see [sklearn.linear_model.PassiveAggressiveClassifier]
|
@@ -301,12 +294,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
301
294
|
)
|
302
295
|
return selected_cols
|
303
296
|
|
304
|
-
|
305
|
-
project=_PROJECT,
|
306
|
-
subproject=_SUBPROJECT,
|
307
|
-
custom_tags=dict([("autogen", True)]),
|
308
|
-
)
|
309
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PassiveAggressiveClassifier":
|
297
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PassiveAggressiveClassifier":
|
310
298
|
"""Fit linear model with Passive Aggressive algorithm
|
311
299
|
For more details on this function, see [sklearn.linear_model.PassiveAggressiveClassifier.fit]
|
312
300
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.html#sklearn.linear_model.PassiveAggressiveClassifier.fit)
|
@@ -333,12 +321,14 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
333
321
|
|
334
322
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
335
323
|
|
336
|
-
|
324
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
337
325
|
if SNOWML_SPROC_ENV in os.environ:
|
338
326
|
statement_params = telemetry.get_function_usage_statement_params(
|
339
327
|
project=_PROJECT,
|
340
328
|
subproject=_SUBPROJECT,
|
341
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
329
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
330
|
+
inspect.currentframe(), PassiveAggressiveClassifier.__class__.__name__
|
331
|
+
),
|
342
332
|
api_calls=[Session.call],
|
343
333
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
344
334
|
)
|
@@ -359,27 +349,24 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
359
349
|
)
|
360
350
|
self._sklearn_object = model_trainer.train()
|
361
351
|
self._is_fitted = True
|
362
|
-
self.
|
352
|
+
self._generate_model_signatures(dataset)
|
363
353
|
return self
|
364
354
|
|
365
355
|
def _batch_inference_validate_snowpark(
|
366
356
|
self,
|
367
357
|
dataset: DataFrame,
|
368
358
|
inference_method: str,
|
369
|
-
) ->
|
370
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
371
|
-
return the available package that exists in the snowflake anaconda channel
|
359
|
+
) -> None:
|
360
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
372
361
|
|
373
362
|
Args:
|
374
363
|
dataset: snowpark dataframe
|
375
364
|
inference_method: the inference method such as predict, score...
|
376
|
-
|
365
|
+
|
377
366
|
Raises:
|
378
367
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
379
368
|
SnowflakeMLException: If the session is None, raise error
|
380
369
|
|
381
|
-
Returns:
|
382
|
-
A list of available package that exists in the snowflake anaconda channel
|
383
370
|
"""
|
384
371
|
if not self._is_fitted:
|
385
372
|
raise exceptions.SnowflakeMLException(
|
@@ -397,9 +384,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
397
384
|
"Session must not specified for snowpark dataset."
|
398
385
|
),
|
399
386
|
)
|
400
|
-
|
401
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
402
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
387
|
+
|
403
388
|
|
404
389
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
405
390
|
@telemetry.send_api_usage_telemetry(
|
@@ -435,7 +420,9 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
435
420
|
# when it is classifier, infer the datatype from label columns
|
436
421
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
437
422
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
438
|
-
label_cols_signatures = [
|
423
|
+
label_cols_signatures = [
|
424
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
425
|
+
]
|
439
426
|
if len(label_cols_signatures) == 0:
|
440
427
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
441
428
|
raise exceptions.SnowflakeMLException(
|
@@ -443,25 +430,23 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
443
430
|
original_exception=ValueError(error_str),
|
444
431
|
)
|
445
432
|
|
446
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
447
|
-
label_cols_signatures[0].as_snowpark_type()
|
448
|
-
)
|
433
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
449
434
|
|
450
|
-
self.
|
451
|
-
|
435
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
436
|
+
self._deps = self._get_dependencies()
|
437
|
+
assert isinstance(
|
438
|
+
dataset._session, Session
|
439
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
452
440
|
|
453
441
|
transform_kwargs = dict(
|
454
|
-
session
|
455
|
-
dependencies
|
456
|
-
drop_input_cols
|
457
|
-
expected_output_cols_type
|
442
|
+
session=dataset._session,
|
443
|
+
dependencies=self._deps,
|
444
|
+
drop_input_cols=self._drop_input_cols,
|
445
|
+
expected_output_cols_type=expected_type_inferred,
|
458
446
|
)
|
459
447
|
|
460
448
|
elif isinstance(dataset, pd.DataFrame):
|
461
|
-
transform_kwargs = dict(
|
462
|
-
snowpark_input_cols = self._snowpark_cols,
|
463
|
-
drop_input_cols = self._drop_input_cols
|
464
|
-
)
|
449
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
465
450
|
|
466
451
|
transform_handlers = ModelTransformerBuilder.build(
|
467
452
|
dataset=dataset,
|
@@ -501,7 +486,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
501
486
|
Transformed dataset.
|
502
487
|
"""
|
503
488
|
super()._check_dataset_type(dataset)
|
504
|
-
inference_method="transform"
|
489
|
+
inference_method = "transform"
|
505
490
|
|
506
491
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
507
492
|
# are specific to the type of dataset used.
|
@@ -531,24 +516,19 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
531
516
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
532
517
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
533
518
|
|
534
|
-
self.
|
535
|
-
|
536
|
-
inference_method=inference_method,
|
537
|
-
)
|
519
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
520
|
+
self._deps = self._get_dependencies()
|
538
521
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
539
522
|
|
540
523
|
transform_kwargs = dict(
|
541
|
-
session
|
542
|
-
dependencies
|
543
|
-
drop_input_cols
|
544
|
-
expected_output_cols_type
|
524
|
+
session=dataset._session,
|
525
|
+
dependencies=self._deps,
|
526
|
+
drop_input_cols=self._drop_input_cols,
|
527
|
+
expected_output_cols_type=expected_dtype,
|
545
528
|
)
|
546
529
|
|
547
530
|
elif isinstance(dataset, pd.DataFrame):
|
548
|
-
transform_kwargs = dict(
|
549
|
-
snowpark_input_cols = self._snowpark_cols,
|
550
|
-
drop_input_cols = self._drop_input_cols
|
551
|
-
)
|
531
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
552
532
|
|
553
533
|
transform_handlers = ModelTransformerBuilder.build(
|
554
534
|
dataset=dataset,
|
@@ -567,7 +547,11 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
567
547
|
return output_df
|
568
548
|
|
569
549
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
570
|
-
def fit_predict(
|
550
|
+
def fit_predict(
|
551
|
+
self,
|
552
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
553
|
+
output_cols_prefix: str = "fit_predict_",
|
554
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
571
555
|
""" Method not supported for this class.
|
572
556
|
|
573
557
|
|
@@ -592,22 +576,104 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
592
576
|
)
|
593
577
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
594
578
|
drop_input_cols=self._drop_input_cols,
|
595
|
-
expected_output_cols_list=
|
579
|
+
expected_output_cols_list=(
|
580
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
581
|
+
),
|
596
582
|
)
|
597
583
|
self._sklearn_object = fitted_estimator
|
598
584
|
self._is_fitted = True
|
599
585
|
return output_result
|
600
586
|
|
587
|
+
|
588
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
589
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
590
|
+
""" Method not supported for this class.
|
591
|
+
|
601
592
|
|
602
|
-
|
603
|
-
|
604
|
-
|
593
|
+
Raises:
|
594
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
595
|
+
|
596
|
+
Args:
|
597
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
598
|
+
Snowpark or Pandas DataFrame.
|
599
|
+
output_cols_prefix: Prefix for the response columns
|
605
600
|
Returns:
|
606
601
|
Transformed dataset.
|
607
602
|
"""
|
608
|
-
self.
|
609
|
-
|
610
|
-
|
603
|
+
self._infer_input_output_cols(dataset)
|
604
|
+
super()._check_dataset_type(dataset)
|
605
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
606
|
+
estimator=self._sklearn_object,
|
607
|
+
dataset=dataset,
|
608
|
+
input_cols=self.input_cols,
|
609
|
+
label_cols=self.label_cols,
|
610
|
+
sample_weight_col=self.sample_weight_col,
|
611
|
+
autogenerated=self._autogenerated,
|
612
|
+
subproject=_SUBPROJECT,
|
613
|
+
)
|
614
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
615
|
+
drop_input_cols=self._drop_input_cols,
|
616
|
+
expected_output_cols_list=self.output_cols,
|
617
|
+
)
|
618
|
+
self._sklearn_object = fitted_estimator
|
619
|
+
self._is_fitted = True
|
620
|
+
return output_result
|
621
|
+
|
622
|
+
|
623
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
624
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
625
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
626
|
+
"""
|
627
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
628
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
629
|
+
if output_cols:
|
630
|
+
output_cols = [
|
631
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
632
|
+
for c in output_cols
|
633
|
+
]
|
634
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
635
|
+
output_cols = [output_cols_prefix]
|
636
|
+
elif self._sklearn_object is not None:
|
637
|
+
classes = self._sklearn_object.classes_
|
638
|
+
if isinstance(classes, numpy.ndarray):
|
639
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
640
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
641
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
642
|
+
output_cols = []
|
643
|
+
for i, cl in enumerate(classes):
|
644
|
+
# For binary classification, there is only one output column for each class
|
645
|
+
# ndarray as the two classes are complementary.
|
646
|
+
if len(cl) == 2:
|
647
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
648
|
+
else:
|
649
|
+
output_cols.extend([
|
650
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
651
|
+
])
|
652
|
+
else:
|
653
|
+
output_cols = []
|
654
|
+
|
655
|
+
# Make sure column names are valid snowflake identifiers.
|
656
|
+
assert output_cols is not None # Make MyPy happy
|
657
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
658
|
+
|
659
|
+
return rv
|
660
|
+
|
661
|
+
def _align_expected_output_names(
|
662
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
663
|
+
) -> List[str]:
|
664
|
+
# in case the inferred output column names dimension is different
|
665
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
666
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
667
|
+
output_df_columns = list(output_df_pd.columns)
|
668
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
669
|
+
if self.sample_weight_col:
|
670
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
671
|
+
# if the dimension of inferred output column names is correct; use it
|
672
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
673
|
+
return expected_output_cols_list
|
674
|
+
# otherwise, use the sklearn estimator's output
|
675
|
+
else:
|
676
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
611
677
|
|
612
678
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
613
679
|
@telemetry.send_api_usage_telemetry(
|
@@ -639,24 +705,26 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
639
705
|
# are specific to the type of dataset used.
|
640
706
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
641
707
|
|
708
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
709
|
+
|
642
710
|
if isinstance(dataset, DataFrame):
|
643
|
-
self.
|
644
|
-
|
645
|
-
|
646
|
-
|
647
|
-
|
711
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
712
|
+
self._deps = self._get_dependencies()
|
713
|
+
assert isinstance(
|
714
|
+
dataset._session, Session
|
715
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
648
716
|
transform_kwargs = dict(
|
649
717
|
session=dataset._session,
|
650
718
|
dependencies=self._deps,
|
651
|
-
drop_input_cols
|
719
|
+
drop_input_cols=self._drop_input_cols,
|
652
720
|
expected_output_cols_type="float",
|
653
721
|
)
|
722
|
+
expected_output_cols = self._align_expected_output_names(
|
723
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
724
|
+
)
|
654
725
|
|
655
726
|
elif isinstance(dataset, pd.DataFrame):
|
656
|
-
transform_kwargs = dict(
|
657
|
-
snowpark_input_cols = self._snowpark_cols,
|
658
|
-
drop_input_cols = self._drop_input_cols
|
659
|
-
)
|
727
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
660
728
|
|
661
729
|
transform_handlers = ModelTransformerBuilder.build(
|
662
730
|
dataset=dataset,
|
@@ -668,7 +736,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
668
736
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
669
737
|
inference_method=inference_method,
|
670
738
|
input_cols=self.input_cols,
|
671
|
-
expected_output_cols=
|
739
|
+
expected_output_cols=expected_output_cols,
|
672
740
|
**transform_kwargs
|
673
741
|
)
|
674
742
|
return output_df
|
@@ -698,29 +766,30 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
698
766
|
Output dataset with log probability of the sample for each class in the model.
|
699
767
|
"""
|
700
768
|
super()._check_dataset_type(dataset)
|
701
|
-
inference_method="predict_log_proba"
|
769
|
+
inference_method = "predict_log_proba"
|
770
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
702
771
|
|
703
772
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
704
773
|
# are specific to the type of dataset used.
|
705
774
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
706
775
|
|
707
776
|
if isinstance(dataset, DataFrame):
|
708
|
-
self.
|
709
|
-
|
710
|
-
|
711
|
-
|
712
|
-
|
777
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
778
|
+
self._deps = self._get_dependencies()
|
779
|
+
assert isinstance(
|
780
|
+
dataset._session, Session
|
781
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
713
782
|
transform_kwargs = dict(
|
714
783
|
session=dataset._session,
|
715
784
|
dependencies=self._deps,
|
716
|
-
drop_input_cols
|
785
|
+
drop_input_cols=self._drop_input_cols,
|
717
786
|
expected_output_cols_type="float",
|
718
787
|
)
|
788
|
+
expected_output_cols = self._align_expected_output_names(
|
789
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
790
|
+
)
|
719
791
|
elif isinstance(dataset, pd.DataFrame):
|
720
|
-
transform_kwargs = dict(
|
721
|
-
snowpark_input_cols = self._snowpark_cols,
|
722
|
-
drop_input_cols = self._drop_input_cols
|
723
|
-
)
|
792
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
724
793
|
|
725
794
|
transform_handlers = ModelTransformerBuilder.build(
|
726
795
|
dataset=dataset,
|
@@ -733,7 +802,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
733
802
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
734
803
|
inference_method=inference_method,
|
735
804
|
input_cols=self.input_cols,
|
736
|
-
expected_output_cols=
|
805
|
+
expected_output_cols=expected_output_cols,
|
737
806
|
**transform_kwargs
|
738
807
|
)
|
739
808
|
return output_df
|
@@ -761,30 +830,32 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
761
830
|
Output dataset with results of the decision function for the samples in input dataset.
|
762
831
|
"""
|
763
832
|
super()._check_dataset_type(dataset)
|
764
|
-
inference_method="decision_function"
|
833
|
+
inference_method = "decision_function"
|
765
834
|
|
766
835
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
767
836
|
# are specific to the type of dataset used.
|
768
837
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
769
838
|
|
839
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
840
|
+
|
770
841
|
if isinstance(dataset, DataFrame):
|
771
|
-
self.
|
772
|
-
|
773
|
-
|
774
|
-
|
775
|
-
|
842
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
843
|
+
self._deps = self._get_dependencies()
|
844
|
+
assert isinstance(
|
845
|
+
dataset._session, Session
|
846
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
776
847
|
transform_kwargs = dict(
|
777
848
|
session=dataset._session,
|
778
849
|
dependencies=self._deps,
|
779
|
-
drop_input_cols
|
850
|
+
drop_input_cols=self._drop_input_cols,
|
780
851
|
expected_output_cols_type="float",
|
781
852
|
)
|
853
|
+
expected_output_cols = self._align_expected_output_names(
|
854
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
855
|
+
)
|
782
856
|
|
783
857
|
elif isinstance(dataset, pd.DataFrame):
|
784
|
-
transform_kwargs = dict(
|
785
|
-
snowpark_input_cols = self._snowpark_cols,
|
786
|
-
drop_input_cols = self._drop_input_cols
|
787
|
-
)
|
858
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
788
859
|
|
789
860
|
transform_handlers = ModelTransformerBuilder.build(
|
790
861
|
dataset=dataset,
|
@@ -797,7 +868,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
797
868
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
798
869
|
inference_method=inference_method,
|
799
870
|
input_cols=self.input_cols,
|
800
|
-
expected_output_cols=
|
871
|
+
expected_output_cols=expected_output_cols,
|
801
872
|
**transform_kwargs
|
802
873
|
)
|
803
874
|
return output_df
|
@@ -826,17 +897,17 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
826
897
|
Output dataset with probability of the sample for each class in the model.
|
827
898
|
"""
|
828
899
|
super()._check_dataset_type(dataset)
|
829
|
-
inference_method="score_samples"
|
900
|
+
inference_method = "score_samples"
|
830
901
|
|
831
902
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
832
903
|
# are specific to the type of dataset used.
|
833
904
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
834
905
|
|
906
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
907
|
+
|
835
908
|
if isinstance(dataset, DataFrame):
|
836
|
-
self.
|
837
|
-
|
838
|
-
inference_method=inference_method,
|
839
|
-
)
|
909
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
910
|
+
self._deps = self._get_dependencies()
|
840
911
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
841
912
|
transform_kwargs = dict(
|
842
913
|
session=dataset._session,
|
@@ -844,6 +915,9 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
844
915
|
drop_input_cols = self._drop_input_cols,
|
845
916
|
expected_output_cols_type="float",
|
846
917
|
)
|
918
|
+
expected_output_cols = self._align_expected_output_names(
|
919
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
920
|
+
)
|
847
921
|
|
848
922
|
elif isinstance(dataset, pd.DataFrame):
|
849
923
|
transform_kwargs = dict(
|
@@ -862,7 +936,7 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
862
936
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
863
937
|
inference_method=inference_method,
|
864
938
|
input_cols=self.input_cols,
|
865
|
-
expected_output_cols=
|
939
|
+
expected_output_cols=expected_output_cols,
|
866
940
|
**transform_kwargs
|
867
941
|
)
|
868
942
|
return output_df
|
@@ -897,17 +971,15 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
897
971
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
898
972
|
|
899
973
|
if isinstance(dataset, DataFrame):
|
900
|
-
self.
|
901
|
-
|
902
|
-
inference_method="score",
|
903
|
-
)
|
974
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
975
|
+
self._deps = self._get_dependencies()
|
904
976
|
selected_cols = self._get_active_columns()
|
905
977
|
if len(selected_cols) > 0:
|
906
978
|
dataset = dataset.select(selected_cols)
|
907
979
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
908
980
|
transform_kwargs = dict(
|
909
981
|
session=dataset._session,
|
910
|
-
dependencies=
|
982
|
+
dependencies=self._deps,
|
911
983
|
score_sproc_imports=['sklearn'],
|
912
984
|
)
|
913
985
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -972,11 +1044,8 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
972
1044
|
|
973
1045
|
if isinstance(dataset, DataFrame):
|
974
1046
|
|
975
|
-
self.
|
976
|
-
|
977
|
-
inference_method=inference_method,
|
978
|
-
|
979
|
-
)
|
1047
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1048
|
+
self._deps = self._get_dependencies()
|
980
1049
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
981
1050
|
transform_kwargs = dict(
|
982
1051
|
session = dataset._session,
|
@@ -1009,50 +1078,84 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
1009
1078
|
)
|
1010
1079
|
return output_df
|
1011
1080
|
|
1081
|
+
|
1082
|
+
|
1083
|
+
def to_sklearn(self) -> Any:
|
1084
|
+
"""Get sklearn.linear_model.PassiveAggressiveClassifier object.
|
1085
|
+
"""
|
1086
|
+
if self._sklearn_object is None:
|
1087
|
+
self._sklearn_object = self._create_sklearn_object()
|
1088
|
+
return self._sklearn_object
|
1089
|
+
|
1090
|
+
def to_xgboost(self) -> Any:
|
1091
|
+
raise exceptions.SnowflakeMLException(
|
1092
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1093
|
+
original_exception=AttributeError(
|
1094
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1095
|
+
"to_xgboost()",
|
1096
|
+
"to_sklearn()"
|
1097
|
+
)
|
1098
|
+
),
|
1099
|
+
)
|
1100
|
+
|
1101
|
+
def to_lightgbm(self) -> Any:
|
1102
|
+
raise exceptions.SnowflakeMLException(
|
1103
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1104
|
+
original_exception=AttributeError(
|
1105
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1106
|
+
"to_lightgbm()",
|
1107
|
+
"to_sklearn()"
|
1108
|
+
)
|
1109
|
+
),
|
1110
|
+
)
|
1111
|
+
|
1112
|
+
def _get_dependencies(self) -> List[str]:
|
1113
|
+
return self._deps
|
1114
|
+
|
1012
1115
|
|
1013
|
-
def
|
1116
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1014
1117
|
self._model_signature_dict = dict()
|
1015
1118
|
|
1016
1119
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1017
1120
|
|
1018
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1121
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1019
1122
|
outputs: List[BaseFeatureSpec] = []
|
1020
1123
|
if hasattr(self, "predict"):
|
1021
1124
|
# keep mypy happy
|
1022
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1125
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1023
1126
|
# For classifier, the type of predict is the same as the type of label
|
1024
|
-
if self._sklearn_object._estimator_type ==
|
1025
|
-
|
1127
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1128
|
+
# label columns is the desired type for output
|
1026
1129
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1027
1130
|
# rename the output columns
|
1028
1131
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1029
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1030
|
-
|
1031
|
-
|
1132
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1133
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1134
|
+
)
|
1032
1135
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1033
1136
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1034
|
-
# Clusterer returns int64 cluster labels.
|
1137
|
+
# Clusterer returns int64 cluster labels.
|
1035
1138
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1036
1139
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1037
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1038
|
-
|
1039
|
-
|
1040
|
-
|
1140
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1141
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1142
|
+
)
|
1143
|
+
|
1041
1144
|
# For regressor, the type of predict is float64
|
1042
|
-
elif self._sklearn_object._estimator_type ==
|
1145
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1043
1146
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1044
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1045
|
-
|
1046
|
-
|
1047
|
-
|
1147
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1148
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1149
|
+
)
|
1150
|
+
|
1048
1151
|
for prob_func in PROB_FUNCTIONS:
|
1049
1152
|
if hasattr(self, prob_func):
|
1050
1153
|
output_cols_prefix: str = f"{prob_func}_"
|
1051
1154
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1052
1155
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1053
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1054
|
-
|
1055
|
-
|
1156
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1157
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1158
|
+
)
|
1056
1159
|
|
1057
1160
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1058
1161
|
items = list(self._model_signature_dict.items())
|
@@ -1065,10 +1168,10 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
1065
1168
|
"""Returns model signature of current class.
|
1066
1169
|
|
1067
1170
|
Raises:
|
1068
|
-
|
1171
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1069
1172
|
|
1070
1173
|
Returns:
|
1071
|
-
Dict
|
1174
|
+
Dict with each method and its input output signature
|
1072
1175
|
"""
|
1073
1176
|
if self._model_signature_dict is None:
|
1074
1177
|
raise exceptions.SnowflakeMLException(
|
@@ -1076,35 +1179,3 @@ class PassiveAggressiveClassifier(BaseTransformer):
|
|
1076
1179
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1077
1180
|
)
|
1078
1181
|
return self._model_signature_dict
|
1079
|
-
|
1080
|
-
def to_sklearn(self) -> Any:
|
1081
|
-
"""Get sklearn.linear_model.PassiveAggressiveClassifier object.
|
1082
|
-
"""
|
1083
|
-
if self._sklearn_object is None:
|
1084
|
-
self._sklearn_object = self._create_sklearn_object()
|
1085
|
-
return self._sklearn_object
|
1086
|
-
|
1087
|
-
def to_xgboost(self) -> Any:
|
1088
|
-
raise exceptions.SnowflakeMLException(
|
1089
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1090
|
-
original_exception=AttributeError(
|
1091
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1092
|
-
"to_xgboost()",
|
1093
|
-
"to_sklearn()"
|
1094
|
-
)
|
1095
|
-
),
|
1096
|
-
)
|
1097
|
-
|
1098
|
-
def to_lightgbm(self) -> Any:
|
1099
|
-
raise exceptions.SnowflakeMLException(
|
1100
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1101
|
-
original_exception=AttributeError(
|
1102
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1103
|
-
"to_lightgbm()",
|
1104
|
-
"to_sklearn()"
|
1105
|
-
)
|
1106
|
-
),
|
1107
|
-
)
|
1108
|
-
|
1109
|
-
def _get_dependencies(self) -> List[str]:
|
1110
|
-
return self._deps
|