snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SGDOneClassSVM(BaseTransformer):
71
64
  r"""Solves linear One-Class SVM using Stochastic Gradient Descent
72
65
  For more details on this class, see [sklearn.linear_model.SGDOneClassSVM]
@@ -286,12 +279,7 @@ class SGDOneClassSVM(BaseTransformer):
286
279
  )
287
280
  return selected_cols
288
281
 
289
- @telemetry.send_api_usage_telemetry(
290
- project=_PROJECT,
291
- subproject=_SUBPROJECT,
292
- custom_tags=dict([("autogen", True)]),
293
- )
294
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDOneClassSVM":
282
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDOneClassSVM":
295
283
  """Fit linear One-Class SVM with Stochastic Gradient Descent
296
284
  For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.fit]
297
285
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM.fit)
@@ -318,12 +306,14 @@ class SGDOneClassSVM(BaseTransformer):
318
306
 
319
307
  self._snowpark_cols = dataset.select(self.input_cols).columns
320
308
 
321
- # If we are already in a stored procedure, no need to kick off another one.
309
+ # If we are already in a stored procedure, no need to kick off another one.
322
310
  if SNOWML_SPROC_ENV in os.environ:
323
311
  statement_params = telemetry.get_function_usage_statement_params(
324
312
  project=_PROJECT,
325
313
  subproject=_SUBPROJECT,
326
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDOneClassSVM.__class__.__name__),
314
+ function_name=telemetry.get_statement_params_full_func_name(
315
+ inspect.currentframe(), SGDOneClassSVM.__class__.__name__
316
+ ),
327
317
  api_calls=[Session.call],
328
318
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
329
319
  )
@@ -344,27 +334,24 @@ class SGDOneClassSVM(BaseTransformer):
344
334
  )
345
335
  self._sklearn_object = model_trainer.train()
346
336
  self._is_fitted = True
347
- self._get_model_signatures(dataset)
337
+ self._generate_model_signatures(dataset)
348
338
  return self
349
339
 
350
340
  def _batch_inference_validate_snowpark(
351
341
  self,
352
342
  dataset: DataFrame,
353
343
  inference_method: str,
354
- ) -> List[str]:
355
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
356
- return the available package that exists in the snowflake anaconda channel
344
+ ) -> None:
345
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
357
346
 
358
347
  Args:
359
348
  dataset: snowpark dataframe
360
349
  inference_method: the inference method such as predict, score...
361
-
350
+
362
351
  Raises:
363
352
  SnowflakeMLException: If the estimator is not fitted, raise error
364
353
  SnowflakeMLException: If the session is None, raise error
365
354
 
366
- Returns:
367
- A list of available package that exists in the snowflake anaconda channel
368
355
  """
369
356
  if not self._is_fitted:
370
357
  raise exceptions.SnowflakeMLException(
@@ -382,9 +369,7 @@ class SGDOneClassSVM(BaseTransformer):
382
369
  "Session must not specified for snowpark dataset."
383
370
  ),
384
371
  )
385
- # Validate that key package version in user workspace are supported in snowflake conda channel
386
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
387
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
372
+
388
373
 
389
374
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
390
375
  @telemetry.send_api_usage_telemetry(
@@ -420,7 +405,9 @@ class SGDOneClassSVM(BaseTransformer):
420
405
  # when it is classifier, infer the datatype from label columns
421
406
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
422
407
  # Batch inference takes a single expected output column type. Use the first columns type for now.
423
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
408
+ label_cols_signatures = [
409
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
410
+ ]
424
411
  if len(label_cols_signatures) == 0:
425
412
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
426
413
  raise exceptions.SnowflakeMLException(
@@ -428,25 +415,23 @@ class SGDOneClassSVM(BaseTransformer):
428
415
  original_exception=ValueError(error_str),
429
416
  )
430
417
 
431
- expected_type_inferred = convert_sp_to_sf_type(
432
- label_cols_signatures[0].as_snowpark_type()
433
- )
418
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
434
419
 
435
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
436
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
420
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
421
+ self._deps = self._get_dependencies()
422
+ assert isinstance(
423
+ dataset._session, Session
424
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
437
425
 
438
426
  transform_kwargs = dict(
439
- session = dataset._session,
440
- dependencies = self._deps,
441
- drop_input_cols = self._drop_input_cols,
442
- expected_output_cols_type = expected_type_inferred,
427
+ session=dataset._session,
428
+ dependencies=self._deps,
429
+ drop_input_cols=self._drop_input_cols,
430
+ expected_output_cols_type=expected_type_inferred,
443
431
  )
444
432
 
445
433
  elif isinstance(dataset, pd.DataFrame):
446
- transform_kwargs = dict(
447
- snowpark_input_cols = self._snowpark_cols,
448
- drop_input_cols = self._drop_input_cols
449
- )
434
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
450
435
 
451
436
  transform_handlers = ModelTransformerBuilder.build(
452
437
  dataset=dataset,
@@ -486,7 +471,7 @@ class SGDOneClassSVM(BaseTransformer):
486
471
  Transformed dataset.
487
472
  """
488
473
  super()._check_dataset_type(dataset)
489
- inference_method="transform"
474
+ inference_method = "transform"
490
475
 
491
476
  # This dictionary contains optional kwargs for batch inference. These kwargs
492
477
  # are specific to the type of dataset used.
@@ -516,24 +501,19 @@ class SGDOneClassSVM(BaseTransformer):
516
501
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
517
502
  expected_dtype = convert_sp_to_sf_type(output_types[0])
518
503
 
519
- self._deps = self._batch_inference_validate_snowpark(
520
- dataset=dataset,
521
- inference_method=inference_method,
522
- )
504
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
505
+ self._deps = self._get_dependencies()
523
506
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
524
507
 
525
508
  transform_kwargs = dict(
526
- session = dataset._session,
527
- dependencies = self._deps,
528
- drop_input_cols = self._drop_input_cols,
529
- expected_output_cols_type = expected_dtype,
509
+ session=dataset._session,
510
+ dependencies=self._deps,
511
+ drop_input_cols=self._drop_input_cols,
512
+ expected_output_cols_type=expected_dtype,
530
513
  )
531
514
 
532
515
  elif isinstance(dataset, pd.DataFrame):
533
- transform_kwargs = dict(
534
- snowpark_input_cols = self._snowpark_cols,
535
- drop_input_cols = self._drop_input_cols
536
- )
516
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
537
517
 
538
518
  transform_handlers = ModelTransformerBuilder.build(
539
519
  dataset=dataset,
@@ -552,7 +532,11 @@ class SGDOneClassSVM(BaseTransformer):
552
532
  return output_df
553
533
 
554
534
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
555
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
535
+ def fit_predict(
536
+ self,
537
+ dataset: Union[DataFrame, pd.DataFrame],
538
+ output_cols_prefix: str = "fit_predict_",
539
+ ) -> Union[DataFrame, pd.DataFrame]:
556
540
  """ Perform fit on X and returns labels for X
557
541
  For more details on this function, see [sklearn.linear_model.SGDOneClassSVM.fit_predict]
558
542
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM.fit_predict)
@@ -579,22 +563,104 @@ class SGDOneClassSVM(BaseTransformer):
579
563
  )
580
564
  output_result, fitted_estimator = model_trainer.train_fit_predict(
581
565
  drop_input_cols=self._drop_input_cols,
582
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
566
+ expected_output_cols_list=(
567
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
568
+ ),
583
569
  )
584
570
  self._sklearn_object = fitted_estimator
585
571
  self._is_fitted = True
586
572
  return output_result
587
573
 
574
+
575
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
576
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
577
+ """ Method not supported for this class.
578
+
579
+
580
+ Raises:
581
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
588
582
 
589
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
590
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
591
- """
583
+ Args:
584
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
585
+ Snowpark or Pandas DataFrame.
586
+ output_cols_prefix: Prefix for the response columns
592
587
  Returns:
593
588
  Transformed dataset.
594
589
  """
595
- self.fit(dataset)
596
- assert self._sklearn_object is not None
597
- return self._sklearn_object.embedding_
590
+ self._infer_input_output_cols(dataset)
591
+ super()._check_dataset_type(dataset)
592
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
593
+ estimator=self._sklearn_object,
594
+ dataset=dataset,
595
+ input_cols=self.input_cols,
596
+ label_cols=self.label_cols,
597
+ sample_weight_col=self.sample_weight_col,
598
+ autogenerated=self._autogenerated,
599
+ subproject=_SUBPROJECT,
600
+ )
601
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
602
+ drop_input_cols=self._drop_input_cols,
603
+ expected_output_cols_list=self.output_cols,
604
+ )
605
+ self._sklearn_object = fitted_estimator
606
+ self._is_fitted = True
607
+ return output_result
608
+
609
+
610
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
611
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
612
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
613
+ """
614
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
615
+ # The following condition is introduced for kneighbors methods, and not used in other methods
616
+ if output_cols:
617
+ output_cols = [
618
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
619
+ for c in output_cols
620
+ ]
621
+ elif getattr(self._sklearn_object, "classes_", None) is None:
622
+ output_cols = [output_cols_prefix]
623
+ elif self._sklearn_object is not None:
624
+ classes = self._sklearn_object.classes_
625
+ if isinstance(classes, numpy.ndarray):
626
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
627
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
628
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
629
+ output_cols = []
630
+ for i, cl in enumerate(classes):
631
+ # For binary classification, there is only one output column for each class
632
+ # ndarray as the two classes are complementary.
633
+ if len(cl) == 2:
634
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
635
+ else:
636
+ output_cols.extend([
637
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
638
+ ])
639
+ else:
640
+ output_cols = []
641
+
642
+ # Make sure column names are valid snowflake identifiers.
643
+ assert output_cols is not None # Make MyPy happy
644
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
645
+
646
+ return rv
647
+
648
+ def _align_expected_output_names(
649
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
650
+ ) -> List[str]:
651
+ # in case the inferred output column names dimension is different
652
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
653
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
654
+ output_df_columns = list(output_df_pd.columns)
655
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
656
+ if self.sample_weight_col:
657
+ output_df_columns_set -= set(self.sample_weight_col)
658
+ # if the dimension of inferred output column names is correct; use it
659
+ if len(expected_output_cols_list) == len(output_df_columns_set):
660
+ return expected_output_cols_list
661
+ # otherwise, use the sklearn estimator's output
662
+ else:
663
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
598
664
 
599
665
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
600
666
  @telemetry.send_api_usage_telemetry(
@@ -626,24 +692,26 @@ class SGDOneClassSVM(BaseTransformer):
626
692
  # are specific to the type of dataset used.
627
693
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
628
694
 
695
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
696
+
629
697
  if isinstance(dataset, DataFrame):
630
- self._deps = self._batch_inference_validate_snowpark(
631
- dataset=dataset,
632
- inference_method=inference_method,
633
- )
634
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
699
+ self._deps = self._get_dependencies()
700
+ assert isinstance(
701
+ dataset._session, Session
702
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
703
  transform_kwargs = dict(
636
704
  session=dataset._session,
637
705
  dependencies=self._deps,
638
- drop_input_cols = self._drop_input_cols,
706
+ drop_input_cols=self._drop_input_cols,
639
707
  expected_output_cols_type="float",
640
708
  )
709
+ expected_output_cols = self._align_expected_output_names(
710
+ inference_method, dataset, expected_output_cols, output_cols_prefix
711
+ )
641
712
 
642
713
  elif isinstance(dataset, pd.DataFrame):
643
- transform_kwargs = dict(
644
- snowpark_input_cols = self._snowpark_cols,
645
- drop_input_cols = self._drop_input_cols
646
- )
714
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
647
715
 
648
716
  transform_handlers = ModelTransformerBuilder.build(
649
717
  dataset=dataset,
@@ -655,7 +723,7 @@ class SGDOneClassSVM(BaseTransformer):
655
723
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
656
724
  inference_method=inference_method,
657
725
  input_cols=self.input_cols,
658
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
726
+ expected_output_cols=expected_output_cols,
659
727
  **transform_kwargs
660
728
  )
661
729
  return output_df
@@ -685,29 +753,30 @@ class SGDOneClassSVM(BaseTransformer):
685
753
  Output dataset with log probability of the sample for each class in the model.
686
754
  """
687
755
  super()._check_dataset_type(dataset)
688
- inference_method="predict_log_proba"
756
+ inference_method = "predict_log_proba"
757
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
689
758
 
690
759
  # This dictionary contains optional kwargs for batch inference. These kwargs
691
760
  # are specific to the type of dataset used.
692
761
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
693
762
 
694
763
  if isinstance(dataset, DataFrame):
695
- self._deps = self._batch_inference_validate_snowpark(
696
- dataset=dataset,
697
- inference_method=inference_method,
698
- )
699
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
764
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
765
+ self._deps = self._get_dependencies()
766
+ assert isinstance(
767
+ dataset._session, Session
768
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
700
769
  transform_kwargs = dict(
701
770
  session=dataset._session,
702
771
  dependencies=self._deps,
703
- drop_input_cols = self._drop_input_cols,
772
+ drop_input_cols=self._drop_input_cols,
704
773
  expected_output_cols_type="float",
705
774
  )
775
+ expected_output_cols = self._align_expected_output_names(
776
+ inference_method, dataset, expected_output_cols, output_cols_prefix
777
+ )
706
778
  elif isinstance(dataset, pd.DataFrame):
707
- transform_kwargs = dict(
708
- snowpark_input_cols = self._snowpark_cols,
709
- drop_input_cols = self._drop_input_cols
710
- )
779
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
711
780
 
712
781
  transform_handlers = ModelTransformerBuilder.build(
713
782
  dataset=dataset,
@@ -720,7 +789,7 @@ class SGDOneClassSVM(BaseTransformer):
720
789
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
721
790
  inference_method=inference_method,
722
791
  input_cols=self.input_cols,
723
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
792
+ expected_output_cols=expected_output_cols,
724
793
  **transform_kwargs
725
794
  )
726
795
  return output_df
@@ -748,30 +817,32 @@ class SGDOneClassSVM(BaseTransformer):
748
817
  Output dataset with results of the decision function for the samples in input dataset.
749
818
  """
750
819
  super()._check_dataset_type(dataset)
751
- inference_method="decision_function"
820
+ inference_method = "decision_function"
752
821
 
753
822
  # This dictionary contains optional kwargs for batch inference. These kwargs
754
823
  # are specific to the type of dataset used.
755
824
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
756
825
 
826
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
827
+
757
828
  if isinstance(dataset, DataFrame):
758
- self._deps = self._batch_inference_validate_snowpark(
759
- dataset=dataset,
760
- inference_method=inference_method,
761
- )
762
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
829
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
830
+ self._deps = self._get_dependencies()
831
+ assert isinstance(
832
+ dataset._session, Session
833
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
763
834
  transform_kwargs = dict(
764
835
  session=dataset._session,
765
836
  dependencies=self._deps,
766
- drop_input_cols = self._drop_input_cols,
837
+ drop_input_cols=self._drop_input_cols,
767
838
  expected_output_cols_type="float",
768
839
  )
840
+ expected_output_cols = self._align_expected_output_names(
841
+ inference_method, dataset, expected_output_cols, output_cols_prefix
842
+ )
769
843
 
770
844
  elif isinstance(dataset, pd.DataFrame):
771
- transform_kwargs = dict(
772
- snowpark_input_cols = self._snowpark_cols,
773
- drop_input_cols = self._drop_input_cols
774
- )
845
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
775
846
 
776
847
  transform_handlers = ModelTransformerBuilder.build(
777
848
  dataset=dataset,
@@ -784,7 +855,7 @@ class SGDOneClassSVM(BaseTransformer):
784
855
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
785
856
  inference_method=inference_method,
786
857
  input_cols=self.input_cols,
787
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
858
+ expected_output_cols=expected_output_cols,
788
859
  **transform_kwargs
789
860
  )
790
861
  return output_df
@@ -815,17 +886,17 @@ class SGDOneClassSVM(BaseTransformer):
815
886
  Output dataset with probability of the sample for each class in the model.
816
887
  """
817
888
  super()._check_dataset_type(dataset)
818
- inference_method="score_samples"
889
+ inference_method = "score_samples"
819
890
 
820
891
  # This dictionary contains optional kwargs for batch inference. These kwargs
821
892
  # are specific to the type of dataset used.
822
893
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
823
894
 
895
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
896
+
824
897
  if isinstance(dataset, DataFrame):
825
- self._deps = self._batch_inference_validate_snowpark(
826
- dataset=dataset,
827
- inference_method=inference_method,
828
- )
898
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
899
+ self._deps = self._get_dependencies()
829
900
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
830
901
  transform_kwargs = dict(
831
902
  session=dataset._session,
@@ -833,6 +904,9 @@ class SGDOneClassSVM(BaseTransformer):
833
904
  drop_input_cols = self._drop_input_cols,
834
905
  expected_output_cols_type="float",
835
906
  )
907
+ expected_output_cols = self._align_expected_output_names(
908
+ inference_method, dataset, expected_output_cols, output_cols_prefix
909
+ )
836
910
 
837
911
  elif isinstance(dataset, pd.DataFrame):
838
912
  transform_kwargs = dict(
@@ -851,7 +925,7 @@ class SGDOneClassSVM(BaseTransformer):
851
925
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
852
926
  inference_method=inference_method,
853
927
  input_cols=self.input_cols,
854
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
928
+ expected_output_cols=expected_output_cols,
855
929
  **transform_kwargs
856
930
  )
857
931
  return output_df
@@ -884,17 +958,15 @@ class SGDOneClassSVM(BaseTransformer):
884
958
  transform_kwargs: ScoreKwargsTypedDict = dict()
885
959
 
886
960
  if isinstance(dataset, DataFrame):
887
- self._deps = self._batch_inference_validate_snowpark(
888
- dataset=dataset,
889
- inference_method="score",
890
- )
961
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
962
+ self._deps = self._get_dependencies()
891
963
  selected_cols = self._get_active_columns()
892
964
  if len(selected_cols) > 0:
893
965
  dataset = dataset.select(selected_cols)
894
966
  assert isinstance(dataset._session, Session) # keep mypy happy
895
967
  transform_kwargs = dict(
896
968
  session=dataset._session,
897
- dependencies=["snowflake-snowpark-python"] + self._deps,
969
+ dependencies=self._deps,
898
970
  score_sproc_imports=['sklearn'],
899
971
  )
900
972
  elif isinstance(dataset, pd.DataFrame):
@@ -959,11 +1031,8 @@ class SGDOneClassSVM(BaseTransformer):
959
1031
 
960
1032
  if isinstance(dataset, DataFrame):
961
1033
 
962
- self._deps = self._batch_inference_validate_snowpark(
963
- dataset=dataset,
964
- inference_method=inference_method,
965
-
966
- )
1034
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1035
+ self._deps = self._get_dependencies()
967
1036
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
968
1037
  transform_kwargs = dict(
969
1038
  session = dataset._session,
@@ -996,50 +1065,84 @@ class SGDOneClassSVM(BaseTransformer):
996
1065
  )
997
1066
  return output_df
998
1067
 
1068
+
1069
+
1070
+ def to_sklearn(self) -> Any:
1071
+ """Get sklearn.linear_model.SGDOneClassSVM object.
1072
+ """
1073
+ if self._sklearn_object is None:
1074
+ self._sklearn_object = self._create_sklearn_object()
1075
+ return self._sklearn_object
1076
+
1077
+ def to_xgboost(self) -> Any:
1078
+ raise exceptions.SnowflakeMLException(
1079
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1080
+ original_exception=AttributeError(
1081
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
+ "to_xgboost()",
1083
+ "to_sklearn()"
1084
+ )
1085
+ ),
1086
+ )
999
1087
 
1000
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1088
+ def to_lightgbm(self) -> Any:
1089
+ raise exceptions.SnowflakeMLException(
1090
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1091
+ original_exception=AttributeError(
1092
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1093
+ "to_lightgbm()",
1094
+ "to_sklearn()"
1095
+ )
1096
+ ),
1097
+ )
1098
+
1099
+ def _get_dependencies(self) -> List[str]:
1100
+ return self._deps
1101
+
1102
+
1103
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1001
1104
  self._model_signature_dict = dict()
1002
1105
 
1003
1106
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1004
1107
 
1005
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1108
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1006
1109
  outputs: List[BaseFeatureSpec] = []
1007
1110
  if hasattr(self, "predict"):
1008
1111
  # keep mypy happy
1009
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1112
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1010
1113
  # For classifier, the type of predict is the same as the type of label
1011
- if self._sklearn_object._estimator_type == 'classifier':
1012
- # label columns is the desired type for output
1114
+ if self._sklearn_object._estimator_type == "classifier":
1115
+ # label columns is the desired type for output
1013
1116
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1014
1117
  # rename the output columns
1015
1118
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1119
+ self._model_signature_dict["predict"] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1019
1122
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1020
1123
  # For outlier models, returns -1 for outliers and 1 for inliers.
1021
- # Clusterer returns int64 cluster labels.
1124
+ # Clusterer returns int64 cluster labels.
1022
1125
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1023
1126
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1024
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1025
- ([] if self._drop_input_cols else inputs)
1026
- + outputs)
1027
-
1127
+ self._model_signature_dict["predict"] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1130
+
1028
1131
  # For regressor, the type of predict is float64
1029
- elif self._sklearn_object._estimator_type == 'regressor':
1132
+ elif self._sklearn_object._estimator_type == "regressor":
1030
1133
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1031
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1034
-
1134
+ self._model_signature_dict["predict"] = ModelSignature(
1135
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1136
+ )
1137
+
1035
1138
  for prob_func in PROB_FUNCTIONS:
1036
1139
  if hasattr(self, prob_func):
1037
1140
  output_cols_prefix: str = f"{prob_func}_"
1038
1141
  output_column_names = self._get_output_column_names(output_cols_prefix)
1039
1142
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1040
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1041
- ([] if self._drop_input_cols else inputs)
1042
- + outputs)
1143
+ self._model_signature_dict[prob_func] = ModelSignature(
1144
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1145
+ )
1043
1146
 
1044
1147
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1045
1148
  items = list(self._model_signature_dict.items())
@@ -1052,10 +1155,10 @@ class SGDOneClassSVM(BaseTransformer):
1052
1155
  """Returns model signature of current class.
1053
1156
 
1054
1157
  Raises:
1055
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1158
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1056
1159
 
1057
1160
  Returns:
1058
- Dict[str, ModelSignature]: each method and its input output signature
1161
+ Dict with each method and its input output signature
1059
1162
  """
1060
1163
  if self._model_signature_dict is None:
1061
1164
  raise exceptions.SnowflakeMLException(
@@ -1063,35 +1166,3 @@ class SGDOneClassSVM(BaseTransformer):
1063
1166
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1064
1167
  )
1065
1168
  return self._model_signature_dict
1066
-
1067
- def to_sklearn(self) -> Any:
1068
- """Get sklearn.linear_model.SGDOneClassSVM object.
1069
- """
1070
- if self._sklearn_object is None:
1071
- self._sklearn_object = self._create_sklearn_object()
1072
- return self._sklearn_object
1073
-
1074
- def to_xgboost(self) -> Any:
1075
- raise exceptions.SnowflakeMLException(
1076
- error_code=error_codes.METHOD_NOT_ALLOWED,
1077
- original_exception=AttributeError(
1078
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
- "to_xgboost()",
1080
- "to_sklearn()"
1081
- )
1082
- ),
1083
- )
1084
-
1085
- def to_lightgbm(self) -> Any:
1086
- raise exceptions.SnowflakeMLException(
1087
- error_code=error_codes.METHOD_NOT_ALLOWED,
1088
- original_exception=AttributeError(
1089
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1090
- "to_lightgbm()",
1091
- "to_sklearn()"
1092
- )
1093
- ),
1094
- )
1095
-
1096
- def _get_dependencies(self) -> List[str]:
1097
- return self._deps