snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class PCA(BaseTransformer):
71
64
  r"""Principal component analysis (PCA)
72
65
  For more details on this class, see [sklearn.decomposition.PCA]
@@ -286,12 +279,7 @@ class PCA(BaseTransformer):
286
279
  )
287
280
  return selected_cols
288
281
 
289
- @telemetry.send_api_usage_telemetry(
290
- project=_PROJECT,
291
- subproject=_SUBPROJECT,
292
- custom_tags=dict([("autogen", True)]),
293
- )
294
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PCA":
282
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PCA":
295
283
  """Fit the model with X
296
284
  For more details on this function, see [sklearn.decomposition.PCA.fit]
297
285
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit)
@@ -318,12 +306,14 @@ class PCA(BaseTransformer):
318
306
 
319
307
  self._snowpark_cols = dataset.select(self.input_cols).columns
320
308
 
321
- # If we are already in a stored procedure, no need to kick off another one.
309
+ # If we are already in a stored procedure, no need to kick off another one.
322
310
  if SNOWML_SPROC_ENV in os.environ:
323
311
  statement_params = telemetry.get_function_usage_statement_params(
324
312
  project=_PROJECT,
325
313
  subproject=_SUBPROJECT,
326
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PCA.__class__.__name__),
314
+ function_name=telemetry.get_statement_params_full_func_name(
315
+ inspect.currentframe(), PCA.__class__.__name__
316
+ ),
327
317
  api_calls=[Session.call],
328
318
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
329
319
  )
@@ -344,27 +334,24 @@ class PCA(BaseTransformer):
344
334
  )
345
335
  self._sklearn_object = model_trainer.train()
346
336
  self._is_fitted = True
347
- self._get_model_signatures(dataset)
337
+ self._generate_model_signatures(dataset)
348
338
  return self
349
339
 
350
340
  def _batch_inference_validate_snowpark(
351
341
  self,
352
342
  dataset: DataFrame,
353
343
  inference_method: str,
354
- ) -> List[str]:
355
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
356
- return the available package that exists in the snowflake anaconda channel
344
+ ) -> None:
345
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
357
346
 
358
347
  Args:
359
348
  dataset: snowpark dataframe
360
349
  inference_method: the inference method such as predict, score...
361
-
350
+
362
351
  Raises:
363
352
  SnowflakeMLException: If the estimator is not fitted, raise error
364
353
  SnowflakeMLException: If the session is None, raise error
365
354
 
366
- Returns:
367
- A list of available package that exists in the snowflake anaconda channel
368
355
  """
369
356
  if not self._is_fitted:
370
357
  raise exceptions.SnowflakeMLException(
@@ -382,9 +369,7 @@ class PCA(BaseTransformer):
382
369
  "Session must not specified for snowpark dataset."
383
370
  ),
384
371
  )
385
- # Validate that key package version in user workspace are supported in snowflake conda channel
386
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
387
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
372
+
388
373
 
389
374
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
390
375
  @telemetry.send_api_usage_telemetry(
@@ -418,7 +403,9 @@ class PCA(BaseTransformer):
418
403
  # when it is classifier, infer the datatype from label columns
419
404
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
420
405
  # Batch inference takes a single expected output column type. Use the first columns type for now.
421
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
406
+ label_cols_signatures = [
407
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
408
+ ]
422
409
  if len(label_cols_signatures) == 0:
423
410
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
424
411
  raise exceptions.SnowflakeMLException(
@@ -426,25 +413,23 @@ class PCA(BaseTransformer):
426
413
  original_exception=ValueError(error_str),
427
414
  )
428
415
 
429
- expected_type_inferred = convert_sp_to_sf_type(
430
- label_cols_signatures[0].as_snowpark_type()
431
- )
416
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
432
417
 
433
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
434
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
418
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
419
+ self._deps = self._get_dependencies()
420
+ assert isinstance(
421
+ dataset._session, Session
422
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
435
423
 
436
424
  transform_kwargs = dict(
437
- session = dataset._session,
438
- dependencies = self._deps,
439
- drop_input_cols = self._drop_input_cols,
440
- expected_output_cols_type = expected_type_inferred,
425
+ session=dataset._session,
426
+ dependencies=self._deps,
427
+ drop_input_cols=self._drop_input_cols,
428
+ expected_output_cols_type=expected_type_inferred,
441
429
  )
442
430
 
443
431
  elif isinstance(dataset, pd.DataFrame):
444
- transform_kwargs = dict(
445
- snowpark_input_cols = self._snowpark_cols,
446
- drop_input_cols = self._drop_input_cols
447
- )
432
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
448
433
 
449
434
  transform_handlers = ModelTransformerBuilder.build(
450
435
  dataset=dataset,
@@ -486,7 +471,7 @@ class PCA(BaseTransformer):
486
471
  Transformed dataset.
487
472
  """
488
473
  super()._check_dataset_type(dataset)
489
- inference_method="transform"
474
+ inference_method = "transform"
490
475
 
491
476
  # This dictionary contains optional kwargs for batch inference. These kwargs
492
477
  # are specific to the type of dataset used.
@@ -516,24 +501,19 @@ class PCA(BaseTransformer):
516
501
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
517
502
  expected_dtype = convert_sp_to_sf_type(output_types[0])
518
503
 
519
- self._deps = self._batch_inference_validate_snowpark(
520
- dataset=dataset,
521
- inference_method=inference_method,
522
- )
504
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
505
+ self._deps = self._get_dependencies()
523
506
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
524
507
 
525
508
  transform_kwargs = dict(
526
- session = dataset._session,
527
- dependencies = self._deps,
528
- drop_input_cols = self._drop_input_cols,
529
- expected_output_cols_type = expected_dtype,
509
+ session=dataset._session,
510
+ dependencies=self._deps,
511
+ drop_input_cols=self._drop_input_cols,
512
+ expected_output_cols_type=expected_dtype,
530
513
  )
531
514
 
532
515
  elif isinstance(dataset, pd.DataFrame):
533
- transform_kwargs = dict(
534
- snowpark_input_cols = self._snowpark_cols,
535
- drop_input_cols = self._drop_input_cols
536
- )
516
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
537
517
 
538
518
  transform_handlers = ModelTransformerBuilder.build(
539
519
  dataset=dataset,
@@ -552,7 +532,11 @@ class PCA(BaseTransformer):
552
532
  return output_df
553
533
 
554
534
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
555
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
535
+ def fit_predict(
536
+ self,
537
+ dataset: Union[DataFrame, pd.DataFrame],
538
+ output_cols_prefix: str = "fit_predict_",
539
+ ) -> Union[DataFrame, pd.DataFrame]:
556
540
  """ Method not supported for this class.
557
541
 
558
542
 
@@ -577,22 +561,106 @@ class PCA(BaseTransformer):
577
561
  )
578
562
  output_result, fitted_estimator = model_trainer.train_fit_predict(
579
563
  drop_input_cols=self._drop_input_cols,
580
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
564
+ expected_output_cols_list=(
565
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
566
+ ),
581
567
  )
582
568
  self._sklearn_object = fitted_estimator
583
569
  self._is_fitted = True
584
570
  return output_result
585
571
 
572
+
573
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
574
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
575
+ """ Fit the model with X and apply the dimensionality reduction on X
576
+ For more details on this function, see [sklearn.decomposition.PCA.fit_transform]
577
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit_transform)
578
+
579
+
580
+ Raises:
581
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
586
582
 
587
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
588
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
589
- """
583
+ Args:
584
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
585
+ Snowpark or Pandas DataFrame.
586
+ output_cols_prefix: Prefix for the response columns
590
587
  Returns:
591
588
  Transformed dataset.
592
589
  """
593
- self.fit(dataset)
594
- assert self._sklearn_object is not None
595
- return self._sklearn_object.embedding_
590
+ self._infer_input_output_cols(dataset)
591
+ super()._check_dataset_type(dataset)
592
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
593
+ estimator=self._sklearn_object,
594
+ dataset=dataset,
595
+ input_cols=self.input_cols,
596
+ label_cols=self.label_cols,
597
+ sample_weight_col=self.sample_weight_col,
598
+ autogenerated=self._autogenerated,
599
+ subproject=_SUBPROJECT,
600
+ )
601
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
602
+ drop_input_cols=self._drop_input_cols,
603
+ expected_output_cols_list=self.output_cols,
604
+ )
605
+ self._sklearn_object = fitted_estimator
606
+ self._is_fitted = True
607
+ return output_result
608
+
609
+
610
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
611
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
612
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
613
+ """
614
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
615
+ # The following condition is introduced for kneighbors methods, and not used in other methods
616
+ if output_cols:
617
+ output_cols = [
618
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
619
+ for c in output_cols
620
+ ]
621
+ elif getattr(self._sklearn_object, "classes_", None) is None:
622
+ output_cols = [output_cols_prefix]
623
+ elif self._sklearn_object is not None:
624
+ classes = self._sklearn_object.classes_
625
+ if isinstance(classes, numpy.ndarray):
626
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
627
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
628
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
629
+ output_cols = []
630
+ for i, cl in enumerate(classes):
631
+ # For binary classification, there is only one output column for each class
632
+ # ndarray as the two classes are complementary.
633
+ if len(cl) == 2:
634
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
635
+ else:
636
+ output_cols.extend([
637
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
638
+ ])
639
+ else:
640
+ output_cols = []
641
+
642
+ # Make sure column names are valid snowflake identifiers.
643
+ assert output_cols is not None # Make MyPy happy
644
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
645
+
646
+ return rv
647
+
648
+ def _align_expected_output_names(
649
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
650
+ ) -> List[str]:
651
+ # in case the inferred output column names dimension is different
652
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
653
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
654
+ output_df_columns = list(output_df_pd.columns)
655
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
656
+ if self.sample_weight_col:
657
+ output_df_columns_set -= set(self.sample_weight_col)
658
+ # if the dimension of inferred output column names is correct; use it
659
+ if len(expected_output_cols_list) == len(output_df_columns_set):
660
+ return expected_output_cols_list
661
+ # otherwise, use the sklearn estimator's output
662
+ else:
663
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
596
664
 
597
665
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
598
666
  @telemetry.send_api_usage_telemetry(
@@ -624,24 +692,26 @@ class PCA(BaseTransformer):
624
692
  # are specific to the type of dataset used.
625
693
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
626
694
 
695
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
696
+
627
697
  if isinstance(dataset, DataFrame):
628
- self._deps = self._batch_inference_validate_snowpark(
629
- dataset=dataset,
630
- inference_method=inference_method,
631
- )
632
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
699
+ self._deps = self._get_dependencies()
700
+ assert isinstance(
701
+ dataset._session, Session
702
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
633
703
  transform_kwargs = dict(
634
704
  session=dataset._session,
635
705
  dependencies=self._deps,
636
- drop_input_cols = self._drop_input_cols,
706
+ drop_input_cols=self._drop_input_cols,
637
707
  expected_output_cols_type="float",
638
708
  )
709
+ expected_output_cols = self._align_expected_output_names(
710
+ inference_method, dataset, expected_output_cols, output_cols_prefix
711
+ )
639
712
 
640
713
  elif isinstance(dataset, pd.DataFrame):
641
- transform_kwargs = dict(
642
- snowpark_input_cols = self._snowpark_cols,
643
- drop_input_cols = self._drop_input_cols
644
- )
714
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
645
715
 
646
716
  transform_handlers = ModelTransformerBuilder.build(
647
717
  dataset=dataset,
@@ -653,7 +723,7 @@ class PCA(BaseTransformer):
653
723
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
654
724
  inference_method=inference_method,
655
725
  input_cols=self.input_cols,
656
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
726
+ expected_output_cols=expected_output_cols,
657
727
  **transform_kwargs
658
728
  )
659
729
  return output_df
@@ -683,29 +753,30 @@ class PCA(BaseTransformer):
683
753
  Output dataset with log probability of the sample for each class in the model.
684
754
  """
685
755
  super()._check_dataset_type(dataset)
686
- inference_method="predict_log_proba"
756
+ inference_method = "predict_log_proba"
757
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
687
758
 
688
759
  # This dictionary contains optional kwargs for batch inference. These kwargs
689
760
  # are specific to the type of dataset used.
690
761
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
691
762
 
692
763
  if isinstance(dataset, DataFrame):
693
- self._deps = self._batch_inference_validate_snowpark(
694
- dataset=dataset,
695
- inference_method=inference_method,
696
- )
697
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
764
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
765
+ self._deps = self._get_dependencies()
766
+ assert isinstance(
767
+ dataset._session, Session
768
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
769
  transform_kwargs = dict(
699
770
  session=dataset._session,
700
771
  dependencies=self._deps,
701
- drop_input_cols = self._drop_input_cols,
772
+ drop_input_cols=self._drop_input_cols,
702
773
  expected_output_cols_type="float",
703
774
  )
775
+ expected_output_cols = self._align_expected_output_names(
776
+ inference_method, dataset, expected_output_cols, output_cols_prefix
777
+ )
704
778
  elif isinstance(dataset, pd.DataFrame):
705
- transform_kwargs = dict(
706
- snowpark_input_cols = self._snowpark_cols,
707
- drop_input_cols = self._drop_input_cols
708
- )
779
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
709
780
 
710
781
  transform_handlers = ModelTransformerBuilder.build(
711
782
  dataset=dataset,
@@ -718,7 +789,7 @@ class PCA(BaseTransformer):
718
789
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
719
790
  inference_method=inference_method,
720
791
  input_cols=self.input_cols,
721
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
792
+ expected_output_cols=expected_output_cols,
722
793
  **transform_kwargs
723
794
  )
724
795
  return output_df
@@ -744,30 +815,32 @@ class PCA(BaseTransformer):
744
815
  Output dataset with results of the decision function for the samples in input dataset.
745
816
  """
746
817
  super()._check_dataset_type(dataset)
747
- inference_method="decision_function"
818
+ inference_method = "decision_function"
748
819
 
749
820
  # This dictionary contains optional kwargs for batch inference. These kwargs
750
821
  # are specific to the type of dataset used.
751
822
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
752
823
 
824
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
825
+
753
826
  if isinstance(dataset, DataFrame):
754
- self._deps = self._batch_inference_validate_snowpark(
755
- dataset=dataset,
756
- inference_method=inference_method,
757
- )
758
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
827
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
828
+ self._deps = self._get_dependencies()
829
+ assert isinstance(
830
+ dataset._session, Session
831
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
759
832
  transform_kwargs = dict(
760
833
  session=dataset._session,
761
834
  dependencies=self._deps,
762
- drop_input_cols = self._drop_input_cols,
835
+ drop_input_cols=self._drop_input_cols,
763
836
  expected_output_cols_type="float",
764
837
  )
838
+ expected_output_cols = self._align_expected_output_names(
839
+ inference_method, dataset, expected_output_cols, output_cols_prefix
840
+ )
765
841
 
766
842
  elif isinstance(dataset, pd.DataFrame):
767
- transform_kwargs = dict(
768
- snowpark_input_cols = self._snowpark_cols,
769
- drop_input_cols = self._drop_input_cols
770
- )
843
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
771
844
 
772
845
  transform_handlers = ModelTransformerBuilder.build(
773
846
  dataset=dataset,
@@ -780,7 +853,7 @@ class PCA(BaseTransformer):
780
853
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
781
854
  inference_method=inference_method,
782
855
  input_cols=self.input_cols,
783
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
856
+ expected_output_cols=expected_output_cols,
784
857
  **transform_kwargs
785
858
  )
786
859
  return output_df
@@ -811,17 +884,17 @@ class PCA(BaseTransformer):
811
884
  Output dataset with probability of the sample for each class in the model.
812
885
  """
813
886
  super()._check_dataset_type(dataset)
814
- inference_method="score_samples"
887
+ inference_method = "score_samples"
815
888
 
816
889
  # This dictionary contains optional kwargs for batch inference. These kwargs
817
890
  # are specific to the type of dataset used.
818
891
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
819
892
 
893
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
894
+
820
895
  if isinstance(dataset, DataFrame):
821
- self._deps = self._batch_inference_validate_snowpark(
822
- dataset=dataset,
823
- inference_method=inference_method,
824
- )
896
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
897
+ self._deps = self._get_dependencies()
825
898
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
826
899
  transform_kwargs = dict(
827
900
  session=dataset._session,
@@ -829,6 +902,9 @@ class PCA(BaseTransformer):
829
902
  drop_input_cols = self._drop_input_cols,
830
903
  expected_output_cols_type="float",
831
904
  )
905
+ expected_output_cols = self._align_expected_output_names(
906
+ inference_method, dataset, expected_output_cols, output_cols_prefix
907
+ )
832
908
 
833
909
  elif isinstance(dataset, pd.DataFrame):
834
910
  transform_kwargs = dict(
@@ -847,7 +923,7 @@ class PCA(BaseTransformer):
847
923
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
848
924
  inference_method=inference_method,
849
925
  input_cols=self.input_cols,
850
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
926
+ expected_output_cols=expected_output_cols,
851
927
  **transform_kwargs
852
928
  )
853
929
  return output_df
@@ -882,17 +958,15 @@ class PCA(BaseTransformer):
882
958
  transform_kwargs: ScoreKwargsTypedDict = dict()
883
959
 
884
960
  if isinstance(dataset, DataFrame):
885
- self._deps = self._batch_inference_validate_snowpark(
886
- dataset=dataset,
887
- inference_method="score",
888
- )
961
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
962
+ self._deps = self._get_dependencies()
889
963
  selected_cols = self._get_active_columns()
890
964
  if len(selected_cols) > 0:
891
965
  dataset = dataset.select(selected_cols)
892
966
  assert isinstance(dataset._session, Session) # keep mypy happy
893
967
  transform_kwargs = dict(
894
968
  session=dataset._session,
895
- dependencies=["snowflake-snowpark-python"] + self._deps,
969
+ dependencies=self._deps,
896
970
  score_sproc_imports=['sklearn'],
897
971
  )
898
972
  elif isinstance(dataset, pd.DataFrame):
@@ -957,11 +1031,8 @@ class PCA(BaseTransformer):
957
1031
 
958
1032
  if isinstance(dataset, DataFrame):
959
1033
 
960
- self._deps = self._batch_inference_validate_snowpark(
961
- dataset=dataset,
962
- inference_method=inference_method,
963
-
964
- )
1034
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1035
+ self._deps = self._get_dependencies()
965
1036
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
966
1037
  transform_kwargs = dict(
967
1038
  session = dataset._session,
@@ -994,50 +1065,84 @@ class PCA(BaseTransformer):
994
1065
  )
995
1066
  return output_df
996
1067
 
1068
+
1069
+
1070
+ def to_sklearn(self) -> Any:
1071
+ """Get sklearn.decomposition.PCA object.
1072
+ """
1073
+ if self._sklearn_object is None:
1074
+ self._sklearn_object = self._create_sklearn_object()
1075
+ return self._sklearn_object
1076
+
1077
+ def to_xgboost(self) -> Any:
1078
+ raise exceptions.SnowflakeMLException(
1079
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1080
+ original_exception=AttributeError(
1081
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
+ "to_xgboost()",
1083
+ "to_sklearn()"
1084
+ )
1085
+ ),
1086
+ )
997
1087
 
998
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1088
+ def to_lightgbm(self) -> Any:
1089
+ raise exceptions.SnowflakeMLException(
1090
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1091
+ original_exception=AttributeError(
1092
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1093
+ "to_lightgbm()",
1094
+ "to_sklearn()"
1095
+ )
1096
+ ),
1097
+ )
1098
+
1099
+ def _get_dependencies(self) -> List[str]:
1100
+ return self._deps
1101
+
1102
+
1103
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
999
1104
  self._model_signature_dict = dict()
1000
1105
 
1001
1106
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1002
1107
 
1003
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1108
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1004
1109
  outputs: List[BaseFeatureSpec] = []
1005
1110
  if hasattr(self, "predict"):
1006
1111
  # keep mypy happy
1007
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1112
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1008
1113
  # For classifier, the type of predict is the same as the type of label
1009
- if self._sklearn_object._estimator_type == 'classifier':
1010
- # label columns is the desired type for output
1114
+ if self._sklearn_object._estimator_type == "classifier":
1115
+ # label columns is the desired type for output
1011
1116
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1012
1117
  # rename the output columns
1013
1118
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1014
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1015
- ([] if self._drop_input_cols else inputs)
1016
- + outputs)
1119
+ self._model_signature_dict["predict"] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1017
1122
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1018
1123
  # For outlier models, returns -1 for outliers and 1 for inliers.
1019
- # Clusterer returns int64 cluster labels.
1124
+ # Clusterer returns int64 cluster labels.
1020
1125
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1021
1126
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1022
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1023
- ([] if self._drop_input_cols else inputs)
1024
- + outputs)
1025
-
1127
+ self._model_signature_dict["predict"] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1130
+
1026
1131
  # For regressor, the type of predict is float64
1027
- elif self._sklearn_object._estimator_type == 'regressor':
1132
+ elif self._sklearn_object._estimator_type == "regressor":
1028
1133
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1029
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1030
- ([] if self._drop_input_cols else inputs)
1031
- + outputs)
1032
-
1134
+ self._model_signature_dict["predict"] = ModelSignature(
1135
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1136
+ )
1137
+
1033
1138
  for prob_func in PROB_FUNCTIONS:
1034
1139
  if hasattr(self, prob_func):
1035
1140
  output_cols_prefix: str = f"{prob_func}_"
1036
1141
  output_column_names = self._get_output_column_names(output_cols_prefix)
1037
1142
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1038
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1143
+ self._model_signature_dict[prob_func] = ModelSignature(
1144
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1145
+ )
1041
1146
 
1042
1147
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1043
1148
  items = list(self._model_signature_dict.items())
@@ -1050,10 +1155,10 @@ class PCA(BaseTransformer):
1050
1155
  """Returns model signature of current class.
1051
1156
 
1052
1157
  Raises:
1053
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1158
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1054
1159
 
1055
1160
  Returns:
1056
- Dict[str, ModelSignature]: each method and its input output signature
1161
+ Dict with each method and its input output signature
1057
1162
  """
1058
1163
  if self._model_signature_dict is None:
1059
1164
  raise exceptions.SnowflakeMLException(
@@ -1061,35 +1166,3 @@ class PCA(BaseTransformer):
1061
1166
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1062
1167
  )
1063
1168
  return self._model_signature_dict
1064
-
1065
- def to_sklearn(self) -> Any:
1066
- """Get sklearn.decomposition.PCA object.
1067
- """
1068
- if self._sklearn_object is None:
1069
- self._sklearn_object = self._create_sklearn_object()
1070
- return self._sklearn_object
1071
-
1072
- def to_xgboost(self) -> Any:
1073
- raise exceptions.SnowflakeMLException(
1074
- error_code=error_codes.METHOD_NOT_ALLOWED,
1075
- original_exception=AttributeError(
1076
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1077
- "to_xgboost()",
1078
- "to_sklearn()"
1079
- )
1080
- ),
1081
- )
1082
-
1083
- def to_lightgbm(self) -> Any:
1084
- raise exceptions.SnowflakeMLException(
1085
- error_code=error_codes.METHOD_NOT_ALLOWED,
1086
- original_exception=AttributeError(
1087
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1088
- "to_lightgbm()",
1089
- "to_sklearn()"
1090
- )
1091
- ),
1092
- )
1093
-
1094
- def _get_dependencies(self) -> List[str]:
1095
- return self._deps