snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class OneVsOneClassifier(BaseTransformer):
71
64
  r"""One-vs-one multiclass strategy
72
65
  For more details on this class, see [sklearn.multiclass.OneVsOneClassifier]
@@ -210,12 +203,7 @@ class OneVsOneClassifier(BaseTransformer):
210
203
  )
211
204
  return selected_cols
212
205
 
213
- @telemetry.send_api_usage_telemetry(
214
- project=_PROJECT,
215
- subproject=_SUBPROJECT,
216
- custom_tags=dict([("autogen", True)]),
217
- )
218
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsOneClassifier":
206
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsOneClassifier":
219
207
  """Fit underlying estimators
220
208
  For more details on this function, see [sklearn.multiclass.OneVsOneClassifier.fit]
221
209
  (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html#sklearn.multiclass.OneVsOneClassifier.fit)
@@ -242,12 +230,14 @@ class OneVsOneClassifier(BaseTransformer):
242
230
 
243
231
  self._snowpark_cols = dataset.select(self.input_cols).columns
244
232
 
245
- # If we are already in a stored procedure, no need to kick off another one.
233
+ # If we are already in a stored procedure, no need to kick off another one.
246
234
  if SNOWML_SPROC_ENV in os.environ:
247
235
  statement_params = telemetry.get_function_usage_statement_params(
248
236
  project=_PROJECT,
249
237
  subproject=_SUBPROJECT,
250
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OneVsOneClassifier.__class__.__name__),
238
+ function_name=telemetry.get_statement_params_full_func_name(
239
+ inspect.currentframe(), OneVsOneClassifier.__class__.__name__
240
+ ),
251
241
  api_calls=[Session.call],
252
242
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
253
243
  )
@@ -268,27 +258,24 @@ class OneVsOneClassifier(BaseTransformer):
268
258
  )
269
259
  self._sklearn_object = model_trainer.train()
270
260
  self._is_fitted = True
271
- self._get_model_signatures(dataset)
261
+ self._generate_model_signatures(dataset)
272
262
  return self
273
263
 
274
264
  def _batch_inference_validate_snowpark(
275
265
  self,
276
266
  dataset: DataFrame,
277
267
  inference_method: str,
278
- ) -> List[str]:
279
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
280
- return the available package that exists in the snowflake anaconda channel
268
+ ) -> None:
269
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
281
270
 
282
271
  Args:
283
272
  dataset: snowpark dataframe
284
273
  inference_method: the inference method such as predict, score...
285
-
274
+
286
275
  Raises:
287
276
  SnowflakeMLException: If the estimator is not fitted, raise error
288
277
  SnowflakeMLException: If the session is None, raise error
289
278
 
290
- Returns:
291
- A list of available package that exists in the snowflake anaconda channel
292
279
  """
293
280
  if not self._is_fitted:
294
281
  raise exceptions.SnowflakeMLException(
@@ -306,9 +293,7 @@ class OneVsOneClassifier(BaseTransformer):
306
293
  "Session must not specified for snowpark dataset."
307
294
  ),
308
295
  )
309
- # Validate that key package version in user workspace are supported in snowflake conda channel
310
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
311
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
296
+
312
297
 
313
298
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
314
299
  @telemetry.send_api_usage_telemetry(
@@ -344,7 +329,9 @@ class OneVsOneClassifier(BaseTransformer):
344
329
  # when it is classifier, infer the datatype from label columns
345
330
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
346
331
  # Batch inference takes a single expected output column type. Use the first columns type for now.
347
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
332
+ label_cols_signatures = [
333
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
334
+ ]
348
335
  if len(label_cols_signatures) == 0:
349
336
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
350
337
  raise exceptions.SnowflakeMLException(
@@ -352,25 +339,23 @@ class OneVsOneClassifier(BaseTransformer):
352
339
  original_exception=ValueError(error_str),
353
340
  )
354
341
 
355
- expected_type_inferred = convert_sp_to_sf_type(
356
- label_cols_signatures[0].as_snowpark_type()
357
- )
342
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
358
343
 
359
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
360
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
344
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
345
+ self._deps = self._get_dependencies()
346
+ assert isinstance(
347
+ dataset._session, Session
348
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
361
349
 
362
350
  transform_kwargs = dict(
363
- session = dataset._session,
364
- dependencies = self._deps,
365
- drop_input_cols = self._drop_input_cols,
366
- expected_output_cols_type = expected_type_inferred,
351
+ session=dataset._session,
352
+ dependencies=self._deps,
353
+ drop_input_cols=self._drop_input_cols,
354
+ expected_output_cols_type=expected_type_inferred,
367
355
  )
368
356
 
369
357
  elif isinstance(dataset, pd.DataFrame):
370
- transform_kwargs = dict(
371
- snowpark_input_cols = self._snowpark_cols,
372
- drop_input_cols = self._drop_input_cols
373
- )
358
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
374
359
 
375
360
  transform_handlers = ModelTransformerBuilder.build(
376
361
  dataset=dataset,
@@ -410,7 +395,7 @@ class OneVsOneClassifier(BaseTransformer):
410
395
  Transformed dataset.
411
396
  """
412
397
  super()._check_dataset_type(dataset)
413
- inference_method="transform"
398
+ inference_method = "transform"
414
399
 
415
400
  # This dictionary contains optional kwargs for batch inference. These kwargs
416
401
  # are specific to the type of dataset used.
@@ -440,24 +425,19 @@ class OneVsOneClassifier(BaseTransformer):
440
425
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
441
426
  expected_dtype = convert_sp_to_sf_type(output_types[0])
442
427
 
443
- self._deps = self._batch_inference_validate_snowpark(
444
- dataset=dataset,
445
- inference_method=inference_method,
446
- )
428
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
429
+ self._deps = self._get_dependencies()
447
430
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
448
431
 
449
432
  transform_kwargs = dict(
450
- session = dataset._session,
451
- dependencies = self._deps,
452
- drop_input_cols = self._drop_input_cols,
453
- expected_output_cols_type = expected_dtype,
433
+ session=dataset._session,
434
+ dependencies=self._deps,
435
+ drop_input_cols=self._drop_input_cols,
436
+ expected_output_cols_type=expected_dtype,
454
437
  )
455
438
 
456
439
  elif isinstance(dataset, pd.DataFrame):
457
- transform_kwargs = dict(
458
- snowpark_input_cols = self._snowpark_cols,
459
- drop_input_cols = self._drop_input_cols
460
- )
440
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
461
441
 
462
442
  transform_handlers = ModelTransformerBuilder.build(
463
443
  dataset=dataset,
@@ -476,7 +456,11 @@ class OneVsOneClassifier(BaseTransformer):
476
456
  return output_df
477
457
 
478
458
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
479
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
459
+ def fit_predict(
460
+ self,
461
+ dataset: Union[DataFrame, pd.DataFrame],
462
+ output_cols_prefix: str = "fit_predict_",
463
+ ) -> Union[DataFrame, pd.DataFrame]:
480
464
  """ Method not supported for this class.
481
465
 
482
466
 
@@ -501,22 +485,104 @@ class OneVsOneClassifier(BaseTransformer):
501
485
  )
502
486
  output_result, fitted_estimator = model_trainer.train_fit_predict(
503
487
  drop_input_cols=self._drop_input_cols,
504
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
488
+ expected_output_cols_list=(
489
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
490
+ ),
505
491
  )
506
492
  self._sklearn_object = fitted_estimator
507
493
  self._is_fitted = True
508
494
  return output_result
509
495
 
496
+
497
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
498
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
499
+ """ Method not supported for this class.
500
+
510
501
 
511
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
512
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
513
- """
502
+ Raises:
503
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
504
+
505
+ Args:
506
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
507
+ Snowpark or Pandas DataFrame.
508
+ output_cols_prefix: Prefix for the response columns
514
509
  Returns:
515
510
  Transformed dataset.
516
511
  """
517
- self.fit(dataset)
518
- assert self._sklearn_object is not None
519
- return self._sklearn_object.embedding_
512
+ self._infer_input_output_cols(dataset)
513
+ super()._check_dataset_type(dataset)
514
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
515
+ estimator=self._sklearn_object,
516
+ dataset=dataset,
517
+ input_cols=self.input_cols,
518
+ label_cols=self.label_cols,
519
+ sample_weight_col=self.sample_weight_col,
520
+ autogenerated=self._autogenerated,
521
+ subproject=_SUBPROJECT,
522
+ )
523
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
524
+ drop_input_cols=self._drop_input_cols,
525
+ expected_output_cols_list=self.output_cols,
526
+ )
527
+ self._sklearn_object = fitted_estimator
528
+ self._is_fitted = True
529
+ return output_result
530
+
531
+
532
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
533
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
534
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
535
+ """
536
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
537
+ # The following condition is introduced for kneighbors methods, and not used in other methods
538
+ if output_cols:
539
+ output_cols = [
540
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
541
+ for c in output_cols
542
+ ]
543
+ elif getattr(self._sklearn_object, "classes_", None) is None:
544
+ output_cols = [output_cols_prefix]
545
+ elif self._sklearn_object is not None:
546
+ classes = self._sklearn_object.classes_
547
+ if isinstance(classes, numpy.ndarray):
548
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
549
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
550
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
551
+ output_cols = []
552
+ for i, cl in enumerate(classes):
553
+ # For binary classification, there is only one output column for each class
554
+ # ndarray as the two classes are complementary.
555
+ if len(cl) == 2:
556
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
557
+ else:
558
+ output_cols.extend([
559
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
560
+ ])
561
+ else:
562
+ output_cols = []
563
+
564
+ # Make sure column names are valid snowflake identifiers.
565
+ assert output_cols is not None # Make MyPy happy
566
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
567
+
568
+ return rv
569
+
570
+ def _align_expected_output_names(
571
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
572
+ ) -> List[str]:
573
+ # in case the inferred output column names dimension is different
574
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
575
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
576
+ output_df_columns = list(output_df_pd.columns)
577
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
578
+ if self.sample_weight_col:
579
+ output_df_columns_set -= set(self.sample_weight_col)
580
+ # if the dimension of inferred output column names is correct; use it
581
+ if len(expected_output_cols_list) == len(output_df_columns_set):
582
+ return expected_output_cols_list
583
+ # otherwise, use the sklearn estimator's output
584
+ else:
585
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
520
586
 
521
587
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
522
588
  @telemetry.send_api_usage_telemetry(
@@ -548,24 +614,26 @@ class OneVsOneClassifier(BaseTransformer):
548
614
  # are specific to the type of dataset used.
549
615
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
550
616
 
617
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
618
+
551
619
  if isinstance(dataset, DataFrame):
552
- self._deps = self._batch_inference_validate_snowpark(
553
- dataset=dataset,
554
- inference_method=inference_method,
555
- )
556
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
620
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
621
+ self._deps = self._get_dependencies()
622
+ assert isinstance(
623
+ dataset._session, Session
624
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
557
625
  transform_kwargs = dict(
558
626
  session=dataset._session,
559
627
  dependencies=self._deps,
560
- drop_input_cols = self._drop_input_cols,
628
+ drop_input_cols=self._drop_input_cols,
561
629
  expected_output_cols_type="float",
562
630
  )
631
+ expected_output_cols = self._align_expected_output_names(
632
+ inference_method, dataset, expected_output_cols, output_cols_prefix
633
+ )
563
634
 
564
635
  elif isinstance(dataset, pd.DataFrame):
565
- transform_kwargs = dict(
566
- snowpark_input_cols = self._snowpark_cols,
567
- drop_input_cols = self._drop_input_cols
568
- )
636
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
569
637
 
570
638
  transform_handlers = ModelTransformerBuilder.build(
571
639
  dataset=dataset,
@@ -577,7 +645,7 @@ class OneVsOneClassifier(BaseTransformer):
577
645
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
578
646
  inference_method=inference_method,
579
647
  input_cols=self.input_cols,
580
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
648
+ expected_output_cols=expected_output_cols,
581
649
  **transform_kwargs
582
650
  )
583
651
  return output_df
@@ -607,29 +675,30 @@ class OneVsOneClassifier(BaseTransformer):
607
675
  Output dataset with log probability of the sample for each class in the model.
608
676
  """
609
677
  super()._check_dataset_type(dataset)
610
- inference_method="predict_log_proba"
678
+ inference_method = "predict_log_proba"
679
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
611
680
 
612
681
  # This dictionary contains optional kwargs for batch inference. These kwargs
613
682
  # are specific to the type of dataset used.
614
683
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
615
684
 
616
685
  if isinstance(dataset, DataFrame):
617
- self._deps = self._batch_inference_validate_snowpark(
618
- dataset=dataset,
619
- inference_method=inference_method,
620
- )
621
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
687
+ self._deps = self._get_dependencies()
688
+ assert isinstance(
689
+ dataset._session, Session
690
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
622
691
  transform_kwargs = dict(
623
692
  session=dataset._session,
624
693
  dependencies=self._deps,
625
- drop_input_cols = self._drop_input_cols,
694
+ drop_input_cols=self._drop_input_cols,
626
695
  expected_output_cols_type="float",
627
696
  )
697
+ expected_output_cols = self._align_expected_output_names(
698
+ inference_method, dataset, expected_output_cols, output_cols_prefix
699
+ )
628
700
  elif isinstance(dataset, pd.DataFrame):
629
- transform_kwargs = dict(
630
- snowpark_input_cols = self._snowpark_cols,
631
- drop_input_cols = self._drop_input_cols
632
- )
701
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
633
702
 
634
703
  transform_handlers = ModelTransformerBuilder.build(
635
704
  dataset=dataset,
@@ -642,7 +711,7 @@ class OneVsOneClassifier(BaseTransformer):
642
711
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
643
712
  inference_method=inference_method,
644
713
  input_cols=self.input_cols,
645
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
714
+ expected_output_cols=expected_output_cols,
646
715
  **transform_kwargs
647
716
  )
648
717
  return output_df
@@ -670,30 +739,32 @@ class OneVsOneClassifier(BaseTransformer):
670
739
  Output dataset with results of the decision function for the samples in input dataset.
671
740
  """
672
741
  super()._check_dataset_type(dataset)
673
- inference_method="decision_function"
742
+ inference_method = "decision_function"
674
743
 
675
744
  # This dictionary contains optional kwargs for batch inference. These kwargs
676
745
  # are specific to the type of dataset used.
677
746
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
678
747
 
748
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
749
+
679
750
  if isinstance(dataset, DataFrame):
680
- self._deps = self._batch_inference_validate_snowpark(
681
- dataset=dataset,
682
- inference_method=inference_method,
683
- )
684
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
752
+ self._deps = self._get_dependencies()
753
+ assert isinstance(
754
+ dataset._session, Session
755
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
685
756
  transform_kwargs = dict(
686
757
  session=dataset._session,
687
758
  dependencies=self._deps,
688
- drop_input_cols = self._drop_input_cols,
759
+ drop_input_cols=self._drop_input_cols,
689
760
  expected_output_cols_type="float",
690
761
  )
762
+ expected_output_cols = self._align_expected_output_names(
763
+ inference_method, dataset, expected_output_cols, output_cols_prefix
764
+ )
691
765
 
692
766
  elif isinstance(dataset, pd.DataFrame):
693
- transform_kwargs = dict(
694
- snowpark_input_cols = self._snowpark_cols,
695
- drop_input_cols = self._drop_input_cols
696
- )
767
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
697
768
 
698
769
  transform_handlers = ModelTransformerBuilder.build(
699
770
  dataset=dataset,
@@ -706,7 +777,7 @@ class OneVsOneClassifier(BaseTransformer):
706
777
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
707
778
  inference_method=inference_method,
708
779
  input_cols=self.input_cols,
709
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
780
+ expected_output_cols=expected_output_cols,
710
781
  **transform_kwargs
711
782
  )
712
783
  return output_df
@@ -735,17 +806,17 @@ class OneVsOneClassifier(BaseTransformer):
735
806
  Output dataset with probability of the sample for each class in the model.
736
807
  """
737
808
  super()._check_dataset_type(dataset)
738
- inference_method="score_samples"
809
+ inference_method = "score_samples"
739
810
 
740
811
  # This dictionary contains optional kwargs for batch inference. These kwargs
741
812
  # are specific to the type of dataset used.
742
813
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
743
814
 
815
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
816
+
744
817
  if isinstance(dataset, DataFrame):
745
- self._deps = self._batch_inference_validate_snowpark(
746
- dataset=dataset,
747
- inference_method=inference_method,
748
- )
818
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
819
+ self._deps = self._get_dependencies()
749
820
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
750
821
  transform_kwargs = dict(
751
822
  session=dataset._session,
@@ -753,6 +824,9 @@ class OneVsOneClassifier(BaseTransformer):
753
824
  drop_input_cols = self._drop_input_cols,
754
825
  expected_output_cols_type="float",
755
826
  )
827
+ expected_output_cols = self._align_expected_output_names(
828
+ inference_method, dataset, expected_output_cols, output_cols_prefix
829
+ )
756
830
 
757
831
  elif isinstance(dataset, pd.DataFrame):
758
832
  transform_kwargs = dict(
@@ -771,7 +845,7 @@ class OneVsOneClassifier(BaseTransformer):
771
845
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
772
846
  inference_method=inference_method,
773
847
  input_cols=self.input_cols,
774
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
848
+ expected_output_cols=expected_output_cols,
775
849
  **transform_kwargs
776
850
  )
777
851
  return output_df
@@ -806,17 +880,15 @@ class OneVsOneClassifier(BaseTransformer):
806
880
  transform_kwargs: ScoreKwargsTypedDict = dict()
807
881
 
808
882
  if isinstance(dataset, DataFrame):
809
- self._deps = self._batch_inference_validate_snowpark(
810
- dataset=dataset,
811
- inference_method="score",
812
- )
883
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
884
+ self._deps = self._get_dependencies()
813
885
  selected_cols = self._get_active_columns()
814
886
  if len(selected_cols) > 0:
815
887
  dataset = dataset.select(selected_cols)
816
888
  assert isinstance(dataset._session, Session) # keep mypy happy
817
889
  transform_kwargs = dict(
818
890
  session=dataset._session,
819
- dependencies=["snowflake-snowpark-python"] + self._deps,
891
+ dependencies=self._deps,
820
892
  score_sproc_imports=['sklearn'],
821
893
  )
822
894
  elif isinstance(dataset, pd.DataFrame):
@@ -881,11 +953,8 @@ class OneVsOneClassifier(BaseTransformer):
881
953
 
882
954
  if isinstance(dataset, DataFrame):
883
955
 
884
- self._deps = self._batch_inference_validate_snowpark(
885
- dataset=dataset,
886
- inference_method=inference_method,
887
-
888
- )
956
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
957
+ self._deps = self._get_dependencies()
889
958
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
890
959
  transform_kwargs = dict(
891
960
  session = dataset._session,
@@ -918,50 +987,84 @@ class OneVsOneClassifier(BaseTransformer):
918
987
  )
919
988
  return output_df
920
989
 
990
+
991
+
992
+ def to_sklearn(self) -> Any:
993
+ """Get sklearn.multiclass.OneVsOneClassifier object.
994
+ """
995
+ if self._sklearn_object is None:
996
+ self._sklearn_object = self._create_sklearn_object()
997
+ return self._sklearn_object
998
+
999
+ def to_xgboost(self) -> Any:
1000
+ raise exceptions.SnowflakeMLException(
1001
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1002
+ original_exception=AttributeError(
1003
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1004
+ "to_xgboost()",
1005
+ "to_sklearn()"
1006
+ )
1007
+ ),
1008
+ )
1009
+
1010
+ def to_lightgbm(self) -> Any:
1011
+ raise exceptions.SnowflakeMLException(
1012
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1013
+ original_exception=AttributeError(
1014
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1015
+ "to_lightgbm()",
1016
+ "to_sklearn()"
1017
+ )
1018
+ ),
1019
+ )
1020
+
1021
+ def _get_dependencies(self) -> List[str]:
1022
+ return self._deps
1023
+
921
1024
 
922
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1025
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
923
1026
  self._model_signature_dict = dict()
924
1027
 
925
1028
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
926
1029
 
927
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1030
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
928
1031
  outputs: List[BaseFeatureSpec] = []
929
1032
  if hasattr(self, "predict"):
930
1033
  # keep mypy happy
931
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1034
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
932
1035
  # For classifier, the type of predict is the same as the type of label
933
- if self._sklearn_object._estimator_type == 'classifier':
934
- # label columns is the desired type for output
1036
+ if self._sklearn_object._estimator_type == "classifier":
1037
+ # label columns is the desired type for output
935
1038
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
936
1039
  # rename the output columns
937
1040
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
938
- self._model_signature_dict["predict"] = ModelSignature(inputs,
939
- ([] if self._drop_input_cols else inputs)
940
- + outputs)
1041
+ self._model_signature_dict["predict"] = ModelSignature(
1042
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1043
+ )
941
1044
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
942
1045
  # For outlier models, returns -1 for outliers and 1 for inliers.
943
- # Clusterer returns int64 cluster labels.
1046
+ # Clusterer returns int64 cluster labels.
944
1047
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
945
1048
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
946
- self._model_signature_dict["predict"] = ModelSignature(inputs,
947
- ([] if self._drop_input_cols else inputs)
948
- + outputs)
949
-
1049
+ self._model_signature_dict["predict"] = ModelSignature(
1050
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1051
+ )
1052
+
950
1053
  # For regressor, the type of predict is float64
951
- elif self._sklearn_object._estimator_type == 'regressor':
1054
+ elif self._sklearn_object._estimator_type == "regressor":
952
1055
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
953
- self._model_signature_dict["predict"] = ModelSignature(inputs,
954
- ([] if self._drop_input_cols else inputs)
955
- + outputs)
956
-
1056
+ self._model_signature_dict["predict"] = ModelSignature(
1057
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1058
+ )
1059
+
957
1060
  for prob_func in PROB_FUNCTIONS:
958
1061
  if hasattr(self, prob_func):
959
1062
  output_cols_prefix: str = f"{prob_func}_"
960
1063
  output_column_names = self._get_output_column_names(output_cols_prefix)
961
1064
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
962
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
963
- ([] if self._drop_input_cols else inputs)
964
- + outputs)
1065
+ self._model_signature_dict[prob_func] = ModelSignature(
1066
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1067
+ )
965
1068
 
966
1069
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
967
1070
  items = list(self._model_signature_dict.items())
@@ -974,10 +1077,10 @@ class OneVsOneClassifier(BaseTransformer):
974
1077
  """Returns model signature of current class.
975
1078
 
976
1079
  Raises:
977
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1080
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
978
1081
 
979
1082
  Returns:
980
- Dict[str, ModelSignature]: each method and its input output signature
1083
+ Dict with each method and its input output signature
981
1084
  """
982
1085
  if self._model_signature_dict is None:
983
1086
  raise exceptions.SnowflakeMLException(
@@ -985,35 +1088,3 @@ class OneVsOneClassifier(BaseTransformer):
985
1088
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
986
1089
  )
987
1090
  return self._model_signature_dict
988
-
989
- def to_sklearn(self) -> Any:
990
- """Get sklearn.multiclass.OneVsOneClassifier object.
991
- """
992
- if self._sklearn_object is None:
993
- self._sklearn_object = self._create_sklearn_object()
994
- return self._sklearn_object
995
-
996
- def to_xgboost(self) -> Any:
997
- raise exceptions.SnowflakeMLException(
998
- error_code=error_codes.METHOD_NOT_ALLOWED,
999
- original_exception=AttributeError(
1000
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1001
- "to_xgboost()",
1002
- "to_sklearn()"
1003
- )
1004
- ),
1005
- )
1006
-
1007
- def to_lightgbm(self) -> Any:
1008
- raise exceptions.SnowflakeMLException(
1009
- error_code=error_codes.METHOD_NOT_ALLOWED,
1010
- original_exception=AttributeError(
1011
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1012
- "to_lightgbm()",
1013
- "to_sklearn()"
1014
- )
1015
- ),
1016
- )
1017
-
1018
- def _get_dependencies(self) -> List[str]:
1019
- return self._deps