snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class SpectralBiclustering(BaseTransformer):
|
71
64
|
r"""Spectral biclustering (Kluger, 2003)
|
72
65
|
For more details on this class, see [sklearn.cluster.SpectralBiclustering]
|
@@ -261,12 +254,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
261
254
|
)
|
262
255
|
return selected_cols
|
263
256
|
|
264
|
-
|
265
|
-
project=_PROJECT,
|
266
|
-
subproject=_SUBPROJECT,
|
267
|
-
custom_tags=dict([("autogen", True)]),
|
268
|
-
)
|
269
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralBiclustering":
|
257
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralBiclustering":
|
270
258
|
"""Create a biclustering for X
|
271
259
|
For more details on this function, see [sklearn.cluster.SpectralBiclustering.fit]
|
272
260
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralBiclustering.html#sklearn.cluster.SpectralBiclustering.fit)
|
@@ -293,12 +281,14 @@ class SpectralBiclustering(BaseTransformer):
|
|
293
281
|
|
294
282
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
283
|
|
296
|
-
|
284
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
297
285
|
if SNOWML_SPROC_ENV in os.environ:
|
298
286
|
statement_params = telemetry.get_function_usage_statement_params(
|
299
287
|
project=_PROJECT,
|
300
288
|
subproject=_SUBPROJECT,
|
301
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
289
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
290
|
+
inspect.currentframe(), SpectralBiclustering.__class__.__name__
|
291
|
+
),
|
302
292
|
api_calls=[Session.call],
|
303
293
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
304
294
|
)
|
@@ -319,27 +309,24 @@ class SpectralBiclustering(BaseTransformer):
|
|
319
309
|
)
|
320
310
|
self._sklearn_object = model_trainer.train()
|
321
311
|
self._is_fitted = True
|
322
|
-
self.
|
312
|
+
self._generate_model_signatures(dataset)
|
323
313
|
return self
|
324
314
|
|
325
315
|
def _batch_inference_validate_snowpark(
|
326
316
|
self,
|
327
317
|
dataset: DataFrame,
|
328
318
|
inference_method: str,
|
329
|
-
) ->
|
330
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
331
|
-
return the available package that exists in the snowflake anaconda channel
|
319
|
+
) -> None:
|
320
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
332
321
|
|
333
322
|
Args:
|
334
323
|
dataset: snowpark dataframe
|
335
324
|
inference_method: the inference method such as predict, score...
|
336
|
-
|
325
|
+
|
337
326
|
Raises:
|
338
327
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
339
328
|
SnowflakeMLException: If the session is None, raise error
|
340
329
|
|
341
|
-
Returns:
|
342
|
-
A list of available package that exists in the snowflake anaconda channel
|
343
330
|
"""
|
344
331
|
if not self._is_fitted:
|
345
332
|
raise exceptions.SnowflakeMLException(
|
@@ -357,9 +344,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
357
344
|
"Session must not specified for snowpark dataset."
|
358
345
|
),
|
359
346
|
)
|
360
|
-
|
361
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
362
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
347
|
+
|
363
348
|
|
364
349
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
365
350
|
@telemetry.send_api_usage_telemetry(
|
@@ -393,7 +378,9 @@ class SpectralBiclustering(BaseTransformer):
|
|
393
378
|
# when it is classifier, infer the datatype from label columns
|
394
379
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
395
380
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
396
|
-
label_cols_signatures = [
|
381
|
+
label_cols_signatures = [
|
382
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
383
|
+
]
|
397
384
|
if len(label_cols_signatures) == 0:
|
398
385
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
399
386
|
raise exceptions.SnowflakeMLException(
|
@@ -401,25 +388,23 @@ class SpectralBiclustering(BaseTransformer):
|
|
401
388
|
original_exception=ValueError(error_str),
|
402
389
|
)
|
403
390
|
|
404
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
405
|
-
label_cols_signatures[0].as_snowpark_type()
|
406
|
-
)
|
391
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
407
392
|
|
408
|
-
self.
|
409
|
-
|
393
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
394
|
+
self._deps = self._get_dependencies()
|
395
|
+
assert isinstance(
|
396
|
+
dataset._session, Session
|
397
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
410
398
|
|
411
399
|
transform_kwargs = dict(
|
412
|
-
session
|
413
|
-
dependencies
|
414
|
-
drop_input_cols
|
415
|
-
expected_output_cols_type
|
400
|
+
session=dataset._session,
|
401
|
+
dependencies=self._deps,
|
402
|
+
drop_input_cols=self._drop_input_cols,
|
403
|
+
expected_output_cols_type=expected_type_inferred,
|
416
404
|
)
|
417
405
|
|
418
406
|
elif isinstance(dataset, pd.DataFrame):
|
419
|
-
transform_kwargs = dict(
|
420
|
-
snowpark_input_cols = self._snowpark_cols,
|
421
|
-
drop_input_cols = self._drop_input_cols
|
422
|
-
)
|
407
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
423
408
|
|
424
409
|
transform_handlers = ModelTransformerBuilder.build(
|
425
410
|
dataset=dataset,
|
@@ -459,7 +444,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
459
444
|
Transformed dataset.
|
460
445
|
"""
|
461
446
|
super()._check_dataset_type(dataset)
|
462
|
-
inference_method="transform"
|
447
|
+
inference_method = "transform"
|
463
448
|
|
464
449
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
465
450
|
# are specific to the type of dataset used.
|
@@ -489,24 +474,19 @@ class SpectralBiclustering(BaseTransformer):
|
|
489
474
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
490
475
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
491
476
|
|
492
|
-
self.
|
493
|
-
|
494
|
-
inference_method=inference_method,
|
495
|
-
)
|
477
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
478
|
+
self._deps = self._get_dependencies()
|
496
479
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
497
480
|
|
498
481
|
transform_kwargs = dict(
|
499
|
-
session
|
500
|
-
dependencies
|
501
|
-
drop_input_cols
|
502
|
-
expected_output_cols_type
|
482
|
+
session=dataset._session,
|
483
|
+
dependencies=self._deps,
|
484
|
+
drop_input_cols=self._drop_input_cols,
|
485
|
+
expected_output_cols_type=expected_dtype,
|
503
486
|
)
|
504
487
|
|
505
488
|
elif isinstance(dataset, pd.DataFrame):
|
506
|
-
transform_kwargs = dict(
|
507
|
-
snowpark_input_cols = self._snowpark_cols,
|
508
|
-
drop_input_cols = self._drop_input_cols
|
509
|
-
)
|
489
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
510
490
|
|
511
491
|
transform_handlers = ModelTransformerBuilder.build(
|
512
492
|
dataset=dataset,
|
@@ -525,7 +505,11 @@ class SpectralBiclustering(BaseTransformer):
|
|
525
505
|
return output_df
|
526
506
|
|
527
507
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
528
|
-
def fit_predict(
|
508
|
+
def fit_predict(
|
509
|
+
self,
|
510
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
511
|
+
output_cols_prefix: str = "fit_predict_",
|
512
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
529
513
|
""" Method not supported for this class.
|
530
514
|
|
531
515
|
|
@@ -550,22 +534,104 @@ class SpectralBiclustering(BaseTransformer):
|
|
550
534
|
)
|
551
535
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
552
536
|
drop_input_cols=self._drop_input_cols,
|
553
|
-
expected_output_cols_list=
|
537
|
+
expected_output_cols_list=(
|
538
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
539
|
+
),
|
554
540
|
)
|
555
541
|
self._sklearn_object = fitted_estimator
|
556
542
|
self._is_fitted = True
|
557
543
|
return output_result
|
558
544
|
|
545
|
+
|
546
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
547
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
548
|
+
""" Method not supported for this class.
|
549
|
+
|
559
550
|
|
560
|
-
|
561
|
-
|
562
|
-
|
551
|
+
Raises:
|
552
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
553
|
+
|
554
|
+
Args:
|
555
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
556
|
+
Snowpark or Pandas DataFrame.
|
557
|
+
output_cols_prefix: Prefix for the response columns
|
563
558
|
Returns:
|
564
559
|
Transformed dataset.
|
565
560
|
"""
|
566
|
-
self.
|
567
|
-
|
568
|
-
|
561
|
+
self._infer_input_output_cols(dataset)
|
562
|
+
super()._check_dataset_type(dataset)
|
563
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
564
|
+
estimator=self._sklearn_object,
|
565
|
+
dataset=dataset,
|
566
|
+
input_cols=self.input_cols,
|
567
|
+
label_cols=self.label_cols,
|
568
|
+
sample_weight_col=self.sample_weight_col,
|
569
|
+
autogenerated=self._autogenerated,
|
570
|
+
subproject=_SUBPROJECT,
|
571
|
+
)
|
572
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
573
|
+
drop_input_cols=self._drop_input_cols,
|
574
|
+
expected_output_cols_list=self.output_cols,
|
575
|
+
)
|
576
|
+
self._sklearn_object = fitted_estimator
|
577
|
+
self._is_fitted = True
|
578
|
+
return output_result
|
579
|
+
|
580
|
+
|
581
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
582
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
583
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
584
|
+
"""
|
585
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
586
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
587
|
+
if output_cols:
|
588
|
+
output_cols = [
|
589
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
590
|
+
for c in output_cols
|
591
|
+
]
|
592
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
593
|
+
output_cols = [output_cols_prefix]
|
594
|
+
elif self._sklearn_object is not None:
|
595
|
+
classes = self._sklearn_object.classes_
|
596
|
+
if isinstance(classes, numpy.ndarray):
|
597
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
598
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
599
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
600
|
+
output_cols = []
|
601
|
+
for i, cl in enumerate(classes):
|
602
|
+
# For binary classification, there is only one output column for each class
|
603
|
+
# ndarray as the two classes are complementary.
|
604
|
+
if len(cl) == 2:
|
605
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
606
|
+
else:
|
607
|
+
output_cols.extend([
|
608
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
609
|
+
])
|
610
|
+
else:
|
611
|
+
output_cols = []
|
612
|
+
|
613
|
+
# Make sure column names are valid snowflake identifiers.
|
614
|
+
assert output_cols is not None # Make MyPy happy
|
615
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
616
|
+
|
617
|
+
return rv
|
618
|
+
|
619
|
+
def _align_expected_output_names(
|
620
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
621
|
+
) -> List[str]:
|
622
|
+
# in case the inferred output column names dimension is different
|
623
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
624
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
625
|
+
output_df_columns = list(output_df_pd.columns)
|
626
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
627
|
+
if self.sample_weight_col:
|
628
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
629
|
+
# if the dimension of inferred output column names is correct; use it
|
630
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
631
|
+
return expected_output_cols_list
|
632
|
+
# otherwise, use the sklearn estimator's output
|
633
|
+
else:
|
634
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
569
635
|
|
570
636
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
571
637
|
@telemetry.send_api_usage_telemetry(
|
@@ -597,24 +663,26 @@ class SpectralBiclustering(BaseTransformer):
|
|
597
663
|
# are specific to the type of dataset used.
|
598
664
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
599
665
|
|
666
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
667
|
+
|
600
668
|
if isinstance(dataset, DataFrame):
|
601
|
-
self.
|
602
|
-
|
603
|
-
|
604
|
-
|
605
|
-
|
669
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
670
|
+
self._deps = self._get_dependencies()
|
671
|
+
assert isinstance(
|
672
|
+
dataset._session, Session
|
673
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
606
674
|
transform_kwargs = dict(
|
607
675
|
session=dataset._session,
|
608
676
|
dependencies=self._deps,
|
609
|
-
drop_input_cols
|
677
|
+
drop_input_cols=self._drop_input_cols,
|
610
678
|
expected_output_cols_type="float",
|
611
679
|
)
|
680
|
+
expected_output_cols = self._align_expected_output_names(
|
681
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
682
|
+
)
|
612
683
|
|
613
684
|
elif isinstance(dataset, pd.DataFrame):
|
614
|
-
transform_kwargs = dict(
|
615
|
-
snowpark_input_cols = self._snowpark_cols,
|
616
|
-
drop_input_cols = self._drop_input_cols
|
617
|
-
)
|
685
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
618
686
|
|
619
687
|
transform_handlers = ModelTransformerBuilder.build(
|
620
688
|
dataset=dataset,
|
@@ -626,7 +694,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
626
694
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
627
695
|
inference_method=inference_method,
|
628
696
|
input_cols=self.input_cols,
|
629
|
-
expected_output_cols=
|
697
|
+
expected_output_cols=expected_output_cols,
|
630
698
|
**transform_kwargs
|
631
699
|
)
|
632
700
|
return output_df
|
@@ -656,29 +724,30 @@ class SpectralBiclustering(BaseTransformer):
|
|
656
724
|
Output dataset with log probability of the sample for each class in the model.
|
657
725
|
"""
|
658
726
|
super()._check_dataset_type(dataset)
|
659
|
-
inference_method="predict_log_proba"
|
727
|
+
inference_method = "predict_log_proba"
|
728
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
660
729
|
|
661
730
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
662
731
|
# are specific to the type of dataset used.
|
663
732
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
664
733
|
|
665
734
|
if isinstance(dataset, DataFrame):
|
666
|
-
self.
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
735
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
736
|
+
self._deps = self._get_dependencies()
|
737
|
+
assert isinstance(
|
738
|
+
dataset._session, Session
|
739
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
671
740
|
transform_kwargs = dict(
|
672
741
|
session=dataset._session,
|
673
742
|
dependencies=self._deps,
|
674
|
-
drop_input_cols
|
743
|
+
drop_input_cols=self._drop_input_cols,
|
675
744
|
expected_output_cols_type="float",
|
676
745
|
)
|
746
|
+
expected_output_cols = self._align_expected_output_names(
|
747
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
748
|
+
)
|
677
749
|
elif isinstance(dataset, pd.DataFrame):
|
678
|
-
transform_kwargs = dict(
|
679
|
-
snowpark_input_cols = self._snowpark_cols,
|
680
|
-
drop_input_cols = self._drop_input_cols
|
681
|
-
)
|
750
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
682
751
|
|
683
752
|
transform_handlers = ModelTransformerBuilder.build(
|
684
753
|
dataset=dataset,
|
@@ -691,7 +760,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
691
760
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
692
761
|
inference_method=inference_method,
|
693
762
|
input_cols=self.input_cols,
|
694
|
-
expected_output_cols=
|
763
|
+
expected_output_cols=expected_output_cols,
|
695
764
|
**transform_kwargs
|
696
765
|
)
|
697
766
|
return output_df
|
@@ -717,30 +786,32 @@ class SpectralBiclustering(BaseTransformer):
|
|
717
786
|
Output dataset with results of the decision function for the samples in input dataset.
|
718
787
|
"""
|
719
788
|
super()._check_dataset_type(dataset)
|
720
|
-
inference_method="decision_function"
|
789
|
+
inference_method = "decision_function"
|
721
790
|
|
722
791
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
723
792
|
# are specific to the type of dataset used.
|
724
793
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
725
794
|
|
795
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
796
|
+
|
726
797
|
if isinstance(dataset, DataFrame):
|
727
|
-
self.
|
728
|
-
|
729
|
-
|
730
|
-
|
731
|
-
|
798
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
799
|
+
self._deps = self._get_dependencies()
|
800
|
+
assert isinstance(
|
801
|
+
dataset._session, Session
|
802
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
732
803
|
transform_kwargs = dict(
|
733
804
|
session=dataset._session,
|
734
805
|
dependencies=self._deps,
|
735
|
-
drop_input_cols
|
806
|
+
drop_input_cols=self._drop_input_cols,
|
736
807
|
expected_output_cols_type="float",
|
737
808
|
)
|
809
|
+
expected_output_cols = self._align_expected_output_names(
|
810
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
811
|
+
)
|
738
812
|
|
739
813
|
elif isinstance(dataset, pd.DataFrame):
|
740
|
-
transform_kwargs = dict(
|
741
|
-
snowpark_input_cols = self._snowpark_cols,
|
742
|
-
drop_input_cols = self._drop_input_cols
|
743
|
-
)
|
814
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
744
815
|
|
745
816
|
transform_handlers = ModelTransformerBuilder.build(
|
746
817
|
dataset=dataset,
|
@@ -753,7 +824,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
753
824
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
754
825
|
inference_method=inference_method,
|
755
826
|
input_cols=self.input_cols,
|
756
|
-
expected_output_cols=
|
827
|
+
expected_output_cols=expected_output_cols,
|
757
828
|
**transform_kwargs
|
758
829
|
)
|
759
830
|
return output_df
|
@@ -782,17 +853,17 @@ class SpectralBiclustering(BaseTransformer):
|
|
782
853
|
Output dataset with probability of the sample for each class in the model.
|
783
854
|
"""
|
784
855
|
super()._check_dataset_type(dataset)
|
785
|
-
inference_method="score_samples"
|
856
|
+
inference_method = "score_samples"
|
786
857
|
|
787
858
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
788
859
|
# are specific to the type of dataset used.
|
789
860
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
790
861
|
|
862
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
863
|
+
|
791
864
|
if isinstance(dataset, DataFrame):
|
792
|
-
self.
|
793
|
-
|
794
|
-
inference_method=inference_method,
|
795
|
-
)
|
865
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
866
|
+
self._deps = self._get_dependencies()
|
796
867
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
797
868
|
transform_kwargs = dict(
|
798
869
|
session=dataset._session,
|
@@ -800,6 +871,9 @@ class SpectralBiclustering(BaseTransformer):
|
|
800
871
|
drop_input_cols = self._drop_input_cols,
|
801
872
|
expected_output_cols_type="float",
|
802
873
|
)
|
874
|
+
expected_output_cols = self._align_expected_output_names(
|
875
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
876
|
+
)
|
803
877
|
|
804
878
|
elif isinstance(dataset, pd.DataFrame):
|
805
879
|
transform_kwargs = dict(
|
@@ -818,7 +892,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
818
892
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
819
893
|
inference_method=inference_method,
|
820
894
|
input_cols=self.input_cols,
|
821
|
-
expected_output_cols=
|
895
|
+
expected_output_cols=expected_output_cols,
|
822
896
|
**transform_kwargs
|
823
897
|
)
|
824
898
|
return output_df
|
@@ -851,17 +925,15 @@ class SpectralBiclustering(BaseTransformer):
|
|
851
925
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
852
926
|
|
853
927
|
if isinstance(dataset, DataFrame):
|
854
|
-
self.
|
855
|
-
|
856
|
-
inference_method="score",
|
857
|
-
)
|
928
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
929
|
+
self._deps = self._get_dependencies()
|
858
930
|
selected_cols = self._get_active_columns()
|
859
931
|
if len(selected_cols) > 0:
|
860
932
|
dataset = dataset.select(selected_cols)
|
861
933
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
862
934
|
transform_kwargs = dict(
|
863
935
|
session=dataset._session,
|
864
|
-
dependencies=
|
936
|
+
dependencies=self._deps,
|
865
937
|
score_sproc_imports=['sklearn'],
|
866
938
|
)
|
867
939
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -926,11 +998,8 @@ class SpectralBiclustering(BaseTransformer):
|
|
926
998
|
|
927
999
|
if isinstance(dataset, DataFrame):
|
928
1000
|
|
929
|
-
self.
|
930
|
-
|
931
|
-
inference_method=inference_method,
|
932
|
-
|
933
|
-
)
|
1001
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1002
|
+
self._deps = self._get_dependencies()
|
934
1003
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
935
1004
|
transform_kwargs = dict(
|
936
1005
|
session = dataset._session,
|
@@ -963,50 +1032,84 @@ class SpectralBiclustering(BaseTransformer):
|
|
963
1032
|
)
|
964
1033
|
return output_df
|
965
1034
|
|
1035
|
+
|
1036
|
+
|
1037
|
+
def to_sklearn(self) -> Any:
|
1038
|
+
"""Get sklearn.cluster.SpectralBiclustering object.
|
1039
|
+
"""
|
1040
|
+
if self._sklearn_object is None:
|
1041
|
+
self._sklearn_object = self._create_sklearn_object()
|
1042
|
+
return self._sklearn_object
|
1043
|
+
|
1044
|
+
def to_xgboost(self) -> Any:
|
1045
|
+
raise exceptions.SnowflakeMLException(
|
1046
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1047
|
+
original_exception=AttributeError(
|
1048
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1049
|
+
"to_xgboost()",
|
1050
|
+
"to_sklearn()"
|
1051
|
+
)
|
1052
|
+
),
|
1053
|
+
)
|
1054
|
+
|
1055
|
+
def to_lightgbm(self) -> Any:
|
1056
|
+
raise exceptions.SnowflakeMLException(
|
1057
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1058
|
+
original_exception=AttributeError(
|
1059
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1060
|
+
"to_lightgbm()",
|
1061
|
+
"to_sklearn()"
|
1062
|
+
)
|
1063
|
+
),
|
1064
|
+
)
|
1065
|
+
|
1066
|
+
def _get_dependencies(self) -> List[str]:
|
1067
|
+
return self._deps
|
1068
|
+
|
966
1069
|
|
967
|
-
def
|
1070
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
968
1071
|
self._model_signature_dict = dict()
|
969
1072
|
|
970
1073
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
971
1074
|
|
972
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1075
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
973
1076
|
outputs: List[BaseFeatureSpec] = []
|
974
1077
|
if hasattr(self, "predict"):
|
975
1078
|
# keep mypy happy
|
976
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1079
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
977
1080
|
# For classifier, the type of predict is the same as the type of label
|
978
|
-
if self._sklearn_object._estimator_type ==
|
979
|
-
|
1081
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1082
|
+
# label columns is the desired type for output
|
980
1083
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
981
1084
|
# rename the output columns
|
982
1085
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
983
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
984
|
-
|
985
|
-
|
1086
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
986
1089
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
987
1090
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
988
|
-
# Clusterer returns int64 cluster labels.
|
1091
|
+
# Clusterer returns int64 cluster labels.
|
989
1092
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
990
1093
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
991
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
992
|
-
|
993
|
-
|
994
|
-
|
1094
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1095
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1096
|
+
)
|
1097
|
+
|
995
1098
|
# For regressor, the type of predict is float64
|
996
|
-
elif self._sklearn_object._estimator_type ==
|
1099
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
997
1100
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
998
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
999
|
-
|
1000
|
-
|
1001
|
-
|
1101
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1102
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1103
|
+
)
|
1104
|
+
|
1002
1105
|
for prob_func in PROB_FUNCTIONS:
|
1003
1106
|
if hasattr(self, prob_func):
|
1004
1107
|
output_cols_prefix: str = f"{prob_func}_"
|
1005
1108
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1006
1109
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1007
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1008
|
-
|
1009
|
-
|
1110
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1111
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1112
|
+
)
|
1010
1113
|
|
1011
1114
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1012
1115
|
items = list(self._model_signature_dict.items())
|
@@ -1019,10 +1122,10 @@ class SpectralBiclustering(BaseTransformer):
|
|
1019
1122
|
"""Returns model signature of current class.
|
1020
1123
|
|
1021
1124
|
Raises:
|
1022
|
-
|
1125
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1023
1126
|
|
1024
1127
|
Returns:
|
1025
|
-
Dict
|
1128
|
+
Dict with each method and its input output signature
|
1026
1129
|
"""
|
1027
1130
|
if self._model_signature_dict is None:
|
1028
1131
|
raise exceptions.SnowflakeMLException(
|
@@ -1030,35 +1133,3 @@ class SpectralBiclustering(BaseTransformer):
|
|
1030
1133
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1031
1134
|
)
|
1032
1135
|
return self._model_signature_dict
|
1033
|
-
|
1034
|
-
def to_sklearn(self) -> Any:
|
1035
|
-
"""Get sklearn.cluster.SpectralBiclustering object.
|
1036
|
-
"""
|
1037
|
-
if self._sklearn_object is None:
|
1038
|
-
self._sklearn_object = self._create_sklearn_object()
|
1039
|
-
return self._sklearn_object
|
1040
|
-
|
1041
|
-
def to_xgboost(self) -> Any:
|
1042
|
-
raise exceptions.SnowflakeMLException(
|
1043
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1044
|
-
original_exception=AttributeError(
|
1045
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1046
|
-
"to_xgboost()",
|
1047
|
-
"to_sklearn()"
|
1048
|
-
)
|
1049
|
-
),
|
1050
|
-
)
|
1051
|
-
|
1052
|
-
def to_lightgbm(self) -> Any:
|
1053
|
-
raise exceptions.SnowflakeMLException(
|
1054
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1055
|
-
original_exception=AttributeError(
|
1056
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1057
|
-
"to_lightgbm()",
|
1058
|
-
"to_sklearn()"
|
1059
|
-
)
|
1060
|
-
),
|
1061
|
-
)
|
1062
|
-
|
1063
|
-
def _get_dependencies(self) -> List[str]:
|
1064
|
-
return self._deps
|