snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SpectralBiclustering(BaseTransformer):
71
64
  r"""Spectral biclustering (Kluger, 2003)
72
65
  For more details on this class, see [sklearn.cluster.SpectralBiclustering]
@@ -261,12 +254,7 @@ class SpectralBiclustering(BaseTransformer):
261
254
  )
262
255
  return selected_cols
263
256
 
264
- @telemetry.send_api_usage_telemetry(
265
- project=_PROJECT,
266
- subproject=_SUBPROJECT,
267
- custom_tags=dict([("autogen", True)]),
268
- )
269
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralBiclustering":
257
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralBiclustering":
270
258
  """Create a biclustering for X
271
259
  For more details on this function, see [sklearn.cluster.SpectralBiclustering.fit]
272
260
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralBiclustering.html#sklearn.cluster.SpectralBiclustering.fit)
@@ -293,12 +281,14 @@ class SpectralBiclustering(BaseTransformer):
293
281
 
294
282
  self._snowpark_cols = dataset.select(self.input_cols).columns
295
283
 
296
- # If we are already in a stored procedure, no need to kick off another one.
284
+ # If we are already in a stored procedure, no need to kick off another one.
297
285
  if SNOWML_SPROC_ENV in os.environ:
298
286
  statement_params = telemetry.get_function_usage_statement_params(
299
287
  project=_PROJECT,
300
288
  subproject=_SUBPROJECT,
301
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralBiclustering.__class__.__name__),
289
+ function_name=telemetry.get_statement_params_full_func_name(
290
+ inspect.currentframe(), SpectralBiclustering.__class__.__name__
291
+ ),
302
292
  api_calls=[Session.call],
303
293
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
304
294
  )
@@ -319,27 +309,24 @@ class SpectralBiclustering(BaseTransformer):
319
309
  )
320
310
  self._sklearn_object = model_trainer.train()
321
311
  self._is_fitted = True
322
- self._get_model_signatures(dataset)
312
+ self._generate_model_signatures(dataset)
323
313
  return self
324
314
 
325
315
  def _batch_inference_validate_snowpark(
326
316
  self,
327
317
  dataset: DataFrame,
328
318
  inference_method: str,
329
- ) -> List[str]:
330
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
331
- return the available package that exists in the snowflake anaconda channel
319
+ ) -> None:
320
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
332
321
 
333
322
  Args:
334
323
  dataset: snowpark dataframe
335
324
  inference_method: the inference method such as predict, score...
336
-
325
+
337
326
  Raises:
338
327
  SnowflakeMLException: If the estimator is not fitted, raise error
339
328
  SnowflakeMLException: If the session is None, raise error
340
329
 
341
- Returns:
342
- A list of available package that exists in the snowflake anaconda channel
343
330
  """
344
331
  if not self._is_fitted:
345
332
  raise exceptions.SnowflakeMLException(
@@ -357,9 +344,7 @@ class SpectralBiclustering(BaseTransformer):
357
344
  "Session must not specified for snowpark dataset."
358
345
  ),
359
346
  )
360
- # Validate that key package version in user workspace are supported in snowflake conda channel
361
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
362
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
347
+
363
348
 
364
349
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
365
350
  @telemetry.send_api_usage_telemetry(
@@ -393,7 +378,9 @@ class SpectralBiclustering(BaseTransformer):
393
378
  # when it is classifier, infer the datatype from label columns
394
379
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
395
380
  # Batch inference takes a single expected output column type. Use the first columns type for now.
396
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
381
+ label_cols_signatures = [
382
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
383
+ ]
397
384
  if len(label_cols_signatures) == 0:
398
385
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
399
386
  raise exceptions.SnowflakeMLException(
@@ -401,25 +388,23 @@ class SpectralBiclustering(BaseTransformer):
401
388
  original_exception=ValueError(error_str),
402
389
  )
403
390
 
404
- expected_type_inferred = convert_sp_to_sf_type(
405
- label_cols_signatures[0].as_snowpark_type()
406
- )
391
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
407
392
 
408
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
409
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
393
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
394
+ self._deps = self._get_dependencies()
395
+ assert isinstance(
396
+ dataset._session, Session
397
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
410
398
 
411
399
  transform_kwargs = dict(
412
- session = dataset._session,
413
- dependencies = self._deps,
414
- drop_input_cols = self._drop_input_cols,
415
- expected_output_cols_type = expected_type_inferred,
400
+ session=dataset._session,
401
+ dependencies=self._deps,
402
+ drop_input_cols=self._drop_input_cols,
403
+ expected_output_cols_type=expected_type_inferred,
416
404
  )
417
405
 
418
406
  elif isinstance(dataset, pd.DataFrame):
419
- transform_kwargs = dict(
420
- snowpark_input_cols = self._snowpark_cols,
421
- drop_input_cols = self._drop_input_cols
422
- )
407
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
423
408
 
424
409
  transform_handlers = ModelTransformerBuilder.build(
425
410
  dataset=dataset,
@@ -459,7 +444,7 @@ class SpectralBiclustering(BaseTransformer):
459
444
  Transformed dataset.
460
445
  """
461
446
  super()._check_dataset_type(dataset)
462
- inference_method="transform"
447
+ inference_method = "transform"
463
448
 
464
449
  # This dictionary contains optional kwargs for batch inference. These kwargs
465
450
  # are specific to the type of dataset used.
@@ -489,24 +474,19 @@ class SpectralBiclustering(BaseTransformer):
489
474
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
490
475
  expected_dtype = convert_sp_to_sf_type(output_types[0])
491
476
 
492
- self._deps = self._batch_inference_validate_snowpark(
493
- dataset=dataset,
494
- inference_method=inference_method,
495
- )
477
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
478
+ self._deps = self._get_dependencies()
496
479
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
497
480
 
498
481
  transform_kwargs = dict(
499
- session = dataset._session,
500
- dependencies = self._deps,
501
- drop_input_cols = self._drop_input_cols,
502
- expected_output_cols_type = expected_dtype,
482
+ session=dataset._session,
483
+ dependencies=self._deps,
484
+ drop_input_cols=self._drop_input_cols,
485
+ expected_output_cols_type=expected_dtype,
503
486
  )
504
487
 
505
488
  elif isinstance(dataset, pd.DataFrame):
506
- transform_kwargs = dict(
507
- snowpark_input_cols = self._snowpark_cols,
508
- drop_input_cols = self._drop_input_cols
509
- )
489
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
510
490
 
511
491
  transform_handlers = ModelTransformerBuilder.build(
512
492
  dataset=dataset,
@@ -525,7 +505,11 @@ class SpectralBiclustering(BaseTransformer):
525
505
  return output_df
526
506
 
527
507
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
528
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
508
+ def fit_predict(
509
+ self,
510
+ dataset: Union[DataFrame, pd.DataFrame],
511
+ output_cols_prefix: str = "fit_predict_",
512
+ ) -> Union[DataFrame, pd.DataFrame]:
529
513
  """ Method not supported for this class.
530
514
 
531
515
 
@@ -550,22 +534,104 @@ class SpectralBiclustering(BaseTransformer):
550
534
  )
551
535
  output_result, fitted_estimator = model_trainer.train_fit_predict(
552
536
  drop_input_cols=self._drop_input_cols,
553
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
537
+ expected_output_cols_list=(
538
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
539
+ ),
554
540
  )
555
541
  self._sklearn_object = fitted_estimator
556
542
  self._is_fitted = True
557
543
  return output_result
558
544
 
545
+
546
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
547
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
548
+ """ Method not supported for this class.
549
+
559
550
 
560
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
561
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
562
- """
551
+ Raises:
552
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
553
+
554
+ Args:
555
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
556
+ Snowpark or Pandas DataFrame.
557
+ output_cols_prefix: Prefix for the response columns
563
558
  Returns:
564
559
  Transformed dataset.
565
560
  """
566
- self.fit(dataset)
567
- assert self._sklearn_object is not None
568
- return self._sklearn_object.embedding_
561
+ self._infer_input_output_cols(dataset)
562
+ super()._check_dataset_type(dataset)
563
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
564
+ estimator=self._sklearn_object,
565
+ dataset=dataset,
566
+ input_cols=self.input_cols,
567
+ label_cols=self.label_cols,
568
+ sample_weight_col=self.sample_weight_col,
569
+ autogenerated=self._autogenerated,
570
+ subproject=_SUBPROJECT,
571
+ )
572
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
573
+ drop_input_cols=self._drop_input_cols,
574
+ expected_output_cols_list=self.output_cols,
575
+ )
576
+ self._sklearn_object = fitted_estimator
577
+ self._is_fitted = True
578
+ return output_result
579
+
580
+
581
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
582
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
583
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
584
+ """
585
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
586
+ # The following condition is introduced for kneighbors methods, and not used in other methods
587
+ if output_cols:
588
+ output_cols = [
589
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
590
+ for c in output_cols
591
+ ]
592
+ elif getattr(self._sklearn_object, "classes_", None) is None:
593
+ output_cols = [output_cols_prefix]
594
+ elif self._sklearn_object is not None:
595
+ classes = self._sklearn_object.classes_
596
+ if isinstance(classes, numpy.ndarray):
597
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
598
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
599
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
600
+ output_cols = []
601
+ for i, cl in enumerate(classes):
602
+ # For binary classification, there is only one output column for each class
603
+ # ndarray as the two classes are complementary.
604
+ if len(cl) == 2:
605
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
606
+ else:
607
+ output_cols.extend([
608
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
609
+ ])
610
+ else:
611
+ output_cols = []
612
+
613
+ # Make sure column names are valid snowflake identifiers.
614
+ assert output_cols is not None # Make MyPy happy
615
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
616
+
617
+ return rv
618
+
619
+ def _align_expected_output_names(
620
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
621
+ ) -> List[str]:
622
+ # in case the inferred output column names dimension is different
623
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
624
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
625
+ output_df_columns = list(output_df_pd.columns)
626
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
627
+ if self.sample_weight_col:
628
+ output_df_columns_set -= set(self.sample_weight_col)
629
+ # if the dimension of inferred output column names is correct; use it
630
+ if len(expected_output_cols_list) == len(output_df_columns_set):
631
+ return expected_output_cols_list
632
+ # otherwise, use the sklearn estimator's output
633
+ else:
634
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
569
635
 
570
636
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
571
637
  @telemetry.send_api_usage_telemetry(
@@ -597,24 +663,26 @@ class SpectralBiclustering(BaseTransformer):
597
663
  # are specific to the type of dataset used.
598
664
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
599
665
 
666
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
667
+
600
668
  if isinstance(dataset, DataFrame):
601
- self._deps = self._batch_inference_validate_snowpark(
602
- dataset=dataset,
603
- inference_method=inference_method,
604
- )
605
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
669
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
670
+ self._deps = self._get_dependencies()
671
+ assert isinstance(
672
+ dataset._session, Session
673
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
606
674
  transform_kwargs = dict(
607
675
  session=dataset._session,
608
676
  dependencies=self._deps,
609
- drop_input_cols = self._drop_input_cols,
677
+ drop_input_cols=self._drop_input_cols,
610
678
  expected_output_cols_type="float",
611
679
  )
680
+ expected_output_cols = self._align_expected_output_names(
681
+ inference_method, dataset, expected_output_cols, output_cols_prefix
682
+ )
612
683
 
613
684
  elif isinstance(dataset, pd.DataFrame):
614
- transform_kwargs = dict(
615
- snowpark_input_cols = self._snowpark_cols,
616
- drop_input_cols = self._drop_input_cols
617
- )
685
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
618
686
 
619
687
  transform_handlers = ModelTransformerBuilder.build(
620
688
  dataset=dataset,
@@ -626,7 +694,7 @@ class SpectralBiclustering(BaseTransformer):
626
694
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
627
695
  inference_method=inference_method,
628
696
  input_cols=self.input_cols,
629
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
697
+ expected_output_cols=expected_output_cols,
630
698
  **transform_kwargs
631
699
  )
632
700
  return output_df
@@ -656,29 +724,30 @@ class SpectralBiclustering(BaseTransformer):
656
724
  Output dataset with log probability of the sample for each class in the model.
657
725
  """
658
726
  super()._check_dataset_type(dataset)
659
- inference_method="predict_log_proba"
727
+ inference_method = "predict_log_proba"
728
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
660
729
 
661
730
  # This dictionary contains optional kwargs for batch inference. These kwargs
662
731
  # are specific to the type of dataset used.
663
732
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
664
733
 
665
734
  if isinstance(dataset, DataFrame):
666
- self._deps = self._batch_inference_validate_snowpark(
667
- dataset=dataset,
668
- inference_method=inference_method,
669
- )
670
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
736
+ self._deps = self._get_dependencies()
737
+ assert isinstance(
738
+ dataset._session, Session
739
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
740
  transform_kwargs = dict(
672
741
  session=dataset._session,
673
742
  dependencies=self._deps,
674
- drop_input_cols = self._drop_input_cols,
743
+ drop_input_cols=self._drop_input_cols,
675
744
  expected_output_cols_type="float",
676
745
  )
746
+ expected_output_cols = self._align_expected_output_names(
747
+ inference_method, dataset, expected_output_cols, output_cols_prefix
748
+ )
677
749
  elif isinstance(dataset, pd.DataFrame):
678
- transform_kwargs = dict(
679
- snowpark_input_cols = self._snowpark_cols,
680
- drop_input_cols = self._drop_input_cols
681
- )
750
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
682
751
 
683
752
  transform_handlers = ModelTransformerBuilder.build(
684
753
  dataset=dataset,
@@ -691,7 +760,7 @@ class SpectralBiclustering(BaseTransformer):
691
760
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
692
761
  inference_method=inference_method,
693
762
  input_cols=self.input_cols,
694
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
763
+ expected_output_cols=expected_output_cols,
695
764
  **transform_kwargs
696
765
  )
697
766
  return output_df
@@ -717,30 +786,32 @@ class SpectralBiclustering(BaseTransformer):
717
786
  Output dataset with results of the decision function for the samples in input dataset.
718
787
  """
719
788
  super()._check_dataset_type(dataset)
720
- inference_method="decision_function"
789
+ inference_method = "decision_function"
721
790
 
722
791
  # This dictionary contains optional kwargs for batch inference. These kwargs
723
792
  # are specific to the type of dataset used.
724
793
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
725
794
 
795
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
796
+
726
797
  if isinstance(dataset, DataFrame):
727
- self._deps = self._batch_inference_validate_snowpark(
728
- dataset=dataset,
729
- inference_method=inference_method,
730
- )
731
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
798
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
799
+ self._deps = self._get_dependencies()
800
+ assert isinstance(
801
+ dataset._session, Session
802
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
732
803
  transform_kwargs = dict(
733
804
  session=dataset._session,
734
805
  dependencies=self._deps,
735
- drop_input_cols = self._drop_input_cols,
806
+ drop_input_cols=self._drop_input_cols,
736
807
  expected_output_cols_type="float",
737
808
  )
809
+ expected_output_cols = self._align_expected_output_names(
810
+ inference_method, dataset, expected_output_cols, output_cols_prefix
811
+ )
738
812
 
739
813
  elif isinstance(dataset, pd.DataFrame):
740
- transform_kwargs = dict(
741
- snowpark_input_cols = self._snowpark_cols,
742
- drop_input_cols = self._drop_input_cols
743
- )
814
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
744
815
 
745
816
  transform_handlers = ModelTransformerBuilder.build(
746
817
  dataset=dataset,
@@ -753,7 +824,7 @@ class SpectralBiclustering(BaseTransformer):
753
824
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
754
825
  inference_method=inference_method,
755
826
  input_cols=self.input_cols,
756
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
827
+ expected_output_cols=expected_output_cols,
757
828
  **transform_kwargs
758
829
  )
759
830
  return output_df
@@ -782,17 +853,17 @@ class SpectralBiclustering(BaseTransformer):
782
853
  Output dataset with probability of the sample for each class in the model.
783
854
  """
784
855
  super()._check_dataset_type(dataset)
785
- inference_method="score_samples"
856
+ inference_method = "score_samples"
786
857
 
787
858
  # This dictionary contains optional kwargs for batch inference. These kwargs
788
859
  # are specific to the type of dataset used.
789
860
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
790
861
 
862
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
863
+
791
864
  if isinstance(dataset, DataFrame):
792
- self._deps = self._batch_inference_validate_snowpark(
793
- dataset=dataset,
794
- inference_method=inference_method,
795
- )
865
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
866
+ self._deps = self._get_dependencies()
796
867
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
797
868
  transform_kwargs = dict(
798
869
  session=dataset._session,
@@ -800,6 +871,9 @@ class SpectralBiclustering(BaseTransformer):
800
871
  drop_input_cols = self._drop_input_cols,
801
872
  expected_output_cols_type="float",
802
873
  )
874
+ expected_output_cols = self._align_expected_output_names(
875
+ inference_method, dataset, expected_output_cols, output_cols_prefix
876
+ )
803
877
 
804
878
  elif isinstance(dataset, pd.DataFrame):
805
879
  transform_kwargs = dict(
@@ -818,7 +892,7 @@ class SpectralBiclustering(BaseTransformer):
818
892
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
819
893
  inference_method=inference_method,
820
894
  input_cols=self.input_cols,
821
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
895
+ expected_output_cols=expected_output_cols,
822
896
  **transform_kwargs
823
897
  )
824
898
  return output_df
@@ -851,17 +925,15 @@ class SpectralBiclustering(BaseTransformer):
851
925
  transform_kwargs: ScoreKwargsTypedDict = dict()
852
926
 
853
927
  if isinstance(dataset, DataFrame):
854
- self._deps = self._batch_inference_validate_snowpark(
855
- dataset=dataset,
856
- inference_method="score",
857
- )
928
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
929
+ self._deps = self._get_dependencies()
858
930
  selected_cols = self._get_active_columns()
859
931
  if len(selected_cols) > 0:
860
932
  dataset = dataset.select(selected_cols)
861
933
  assert isinstance(dataset._session, Session) # keep mypy happy
862
934
  transform_kwargs = dict(
863
935
  session=dataset._session,
864
- dependencies=["snowflake-snowpark-python"] + self._deps,
936
+ dependencies=self._deps,
865
937
  score_sproc_imports=['sklearn'],
866
938
  )
867
939
  elif isinstance(dataset, pd.DataFrame):
@@ -926,11 +998,8 @@ class SpectralBiclustering(BaseTransformer):
926
998
 
927
999
  if isinstance(dataset, DataFrame):
928
1000
 
929
- self._deps = self._batch_inference_validate_snowpark(
930
- dataset=dataset,
931
- inference_method=inference_method,
932
-
933
- )
1001
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1002
+ self._deps = self._get_dependencies()
934
1003
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
935
1004
  transform_kwargs = dict(
936
1005
  session = dataset._session,
@@ -963,50 +1032,84 @@ class SpectralBiclustering(BaseTransformer):
963
1032
  )
964
1033
  return output_df
965
1034
 
1035
+
1036
+
1037
+ def to_sklearn(self) -> Any:
1038
+ """Get sklearn.cluster.SpectralBiclustering object.
1039
+ """
1040
+ if self._sklearn_object is None:
1041
+ self._sklearn_object = self._create_sklearn_object()
1042
+ return self._sklearn_object
1043
+
1044
+ def to_xgboost(self) -> Any:
1045
+ raise exceptions.SnowflakeMLException(
1046
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1047
+ original_exception=AttributeError(
1048
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1049
+ "to_xgboost()",
1050
+ "to_sklearn()"
1051
+ )
1052
+ ),
1053
+ )
1054
+
1055
+ def to_lightgbm(self) -> Any:
1056
+ raise exceptions.SnowflakeMLException(
1057
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1058
+ original_exception=AttributeError(
1059
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1060
+ "to_lightgbm()",
1061
+ "to_sklearn()"
1062
+ )
1063
+ ),
1064
+ )
1065
+
1066
+ def _get_dependencies(self) -> List[str]:
1067
+ return self._deps
1068
+
966
1069
 
967
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1070
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
968
1071
  self._model_signature_dict = dict()
969
1072
 
970
1073
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
971
1074
 
972
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1075
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
973
1076
  outputs: List[BaseFeatureSpec] = []
974
1077
  if hasattr(self, "predict"):
975
1078
  # keep mypy happy
976
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1079
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
977
1080
  # For classifier, the type of predict is the same as the type of label
978
- if self._sklearn_object._estimator_type == 'classifier':
979
- # label columns is the desired type for output
1081
+ if self._sklearn_object._estimator_type == "classifier":
1082
+ # label columns is the desired type for output
980
1083
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
981
1084
  # rename the output columns
982
1085
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
1086
+ self._model_signature_dict["predict"] = ModelSignature(
1087
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1088
+ )
986
1089
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
987
1090
  # For outlier models, returns -1 for outliers and 1 for inliers.
988
- # Clusterer returns int64 cluster labels.
1091
+ # Clusterer returns int64 cluster labels.
989
1092
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
990
1093
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1094
+ self._model_signature_dict["predict"] = ModelSignature(
1095
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1096
+ )
1097
+
995
1098
  # For regressor, the type of predict is float64
996
- elif self._sklearn_object._estimator_type == 'regressor':
1099
+ elif self._sklearn_object._estimator_type == "regressor":
997
1100
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
998
- self._model_signature_dict["predict"] = ModelSignature(inputs,
999
- ([] if self._drop_input_cols else inputs)
1000
- + outputs)
1001
-
1101
+ self._model_signature_dict["predict"] = ModelSignature(
1102
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1103
+ )
1104
+
1002
1105
  for prob_func in PROB_FUNCTIONS:
1003
1106
  if hasattr(self, prob_func):
1004
1107
  output_cols_prefix: str = f"{prob_func}_"
1005
1108
  output_column_names = self._get_output_column_names(output_cols_prefix)
1006
1109
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1007
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1110
+ self._model_signature_dict[prob_func] = ModelSignature(
1111
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1112
+ )
1010
1113
 
1011
1114
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1012
1115
  items = list(self._model_signature_dict.items())
@@ -1019,10 +1122,10 @@ class SpectralBiclustering(BaseTransformer):
1019
1122
  """Returns model signature of current class.
1020
1123
 
1021
1124
  Raises:
1022
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1125
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1023
1126
 
1024
1127
  Returns:
1025
- Dict[str, ModelSignature]: each method and its input output signature
1128
+ Dict with each method and its input output signature
1026
1129
  """
1027
1130
  if self._model_signature_dict is None:
1028
1131
  raise exceptions.SnowflakeMLException(
@@ -1030,35 +1133,3 @@ class SpectralBiclustering(BaseTransformer):
1030
1133
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1031
1134
  )
1032
1135
  return self._model_signature_dict
1033
-
1034
- def to_sklearn(self) -> Any:
1035
- """Get sklearn.cluster.SpectralBiclustering object.
1036
- """
1037
- if self._sklearn_object is None:
1038
- self._sklearn_object = self._create_sklearn_object()
1039
- return self._sklearn_object
1040
-
1041
- def to_xgboost(self) -> Any:
1042
- raise exceptions.SnowflakeMLException(
1043
- error_code=error_codes.METHOD_NOT_ALLOWED,
1044
- original_exception=AttributeError(
1045
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1046
- "to_xgboost()",
1047
- "to_sklearn()"
1048
- )
1049
- ),
1050
- )
1051
-
1052
- def to_lightgbm(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_lightgbm()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def _get_dependencies(self) -> List[str]:
1064
- return self._deps