snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MiniBatchSparsePCA(BaseTransformer):
71
64
  r"""Mini-batch Sparse Principal Components Analysis
72
65
  For more details on this class, see [sklearn.decomposition.MiniBatchSparsePCA]
@@ -284,12 +277,7 @@ class MiniBatchSparsePCA(BaseTransformer):
284
277
  )
285
278
  return selected_cols
286
279
 
287
- @telemetry.send_api_usage_telemetry(
288
- project=_PROJECT,
289
- subproject=_SUBPROJECT,
290
- custom_tags=dict([("autogen", True)]),
291
- )
292
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MiniBatchSparsePCA":
280
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MiniBatchSparsePCA":
293
281
  """Fit the model from data in X
294
282
  For more details on this function, see [sklearn.decomposition.MiniBatchSparsePCA.fit]
295
283
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchSparsePCA.html#sklearn.decomposition.MiniBatchSparsePCA.fit)
@@ -316,12 +304,14 @@ class MiniBatchSparsePCA(BaseTransformer):
316
304
 
317
305
  self._snowpark_cols = dataset.select(self.input_cols).columns
318
306
 
319
- # If we are already in a stored procedure, no need to kick off another one.
307
+ # If we are already in a stored procedure, no need to kick off another one.
320
308
  if SNOWML_SPROC_ENV in os.environ:
321
309
  statement_params = telemetry.get_function_usage_statement_params(
322
310
  project=_PROJECT,
323
311
  subproject=_SUBPROJECT,
324
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchSparsePCA.__class__.__name__),
312
+ function_name=telemetry.get_statement_params_full_func_name(
313
+ inspect.currentframe(), MiniBatchSparsePCA.__class__.__name__
314
+ ),
325
315
  api_calls=[Session.call],
326
316
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
327
317
  )
@@ -342,27 +332,24 @@ class MiniBatchSparsePCA(BaseTransformer):
342
332
  )
343
333
  self._sklearn_object = model_trainer.train()
344
334
  self._is_fitted = True
345
- self._get_model_signatures(dataset)
335
+ self._generate_model_signatures(dataset)
346
336
  return self
347
337
 
348
338
  def _batch_inference_validate_snowpark(
349
339
  self,
350
340
  dataset: DataFrame,
351
341
  inference_method: str,
352
- ) -> List[str]:
353
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
354
- return the available package that exists in the snowflake anaconda channel
342
+ ) -> None:
343
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
355
344
 
356
345
  Args:
357
346
  dataset: snowpark dataframe
358
347
  inference_method: the inference method such as predict, score...
359
-
348
+
360
349
  Raises:
361
350
  SnowflakeMLException: If the estimator is not fitted, raise error
362
351
  SnowflakeMLException: If the session is None, raise error
363
352
 
364
- Returns:
365
- A list of available package that exists in the snowflake anaconda channel
366
353
  """
367
354
  if not self._is_fitted:
368
355
  raise exceptions.SnowflakeMLException(
@@ -380,9 +367,7 @@ class MiniBatchSparsePCA(BaseTransformer):
380
367
  "Session must not specified for snowpark dataset."
381
368
  ),
382
369
  )
383
- # Validate that key package version in user workspace are supported in snowflake conda channel
384
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
385
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
370
+
386
371
 
387
372
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
388
373
  @telemetry.send_api_usage_telemetry(
@@ -416,7 +401,9 @@ class MiniBatchSparsePCA(BaseTransformer):
416
401
  # when it is classifier, infer the datatype from label columns
417
402
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
418
403
  # Batch inference takes a single expected output column type. Use the first columns type for now.
419
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
404
+ label_cols_signatures = [
405
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
406
+ ]
420
407
  if len(label_cols_signatures) == 0:
421
408
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
422
409
  raise exceptions.SnowflakeMLException(
@@ -424,25 +411,23 @@ class MiniBatchSparsePCA(BaseTransformer):
424
411
  original_exception=ValueError(error_str),
425
412
  )
426
413
 
427
- expected_type_inferred = convert_sp_to_sf_type(
428
- label_cols_signatures[0].as_snowpark_type()
429
- )
414
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
430
415
 
431
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
416
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
417
+ self._deps = self._get_dependencies()
418
+ assert isinstance(
419
+ dataset._session, Session
420
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
433
421
 
434
422
  transform_kwargs = dict(
435
- session = dataset._session,
436
- dependencies = self._deps,
437
- drop_input_cols = self._drop_input_cols,
438
- expected_output_cols_type = expected_type_inferred,
423
+ session=dataset._session,
424
+ dependencies=self._deps,
425
+ drop_input_cols=self._drop_input_cols,
426
+ expected_output_cols_type=expected_type_inferred,
439
427
  )
440
428
 
441
429
  elif isinstance(dataset, pd.DataFrame):
442
- transform_kwargs = dict(
443
- snowpark_input_cols = self._snowpark_cols,
444
- drop_input_cols = self._drop_input_cols
445
- )
430
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
446
431
 
447
432
  transform_handlers = ModelTransformerBuilder.build(
448
433
  dataset=dataset,
@@ -484,7 +469,7 @@ class MiniBatchSparsePCA(BaseTransformer):
484
469
  Transformed dataset.
485
470
  """
486
471
  super()._check_dataset_type(dataset)
487
- inference_method="transform"
472
+ inference_method = "transform"
488
473
 
489
474
  # This dictionary contains optional kwargs for batch inference. These kwargs
490
475
  # are specific to the type of dataset used.
@@ -514,24 +499,19 @@ class MiniBatchSparsePCA(BaseTransformer):
514
499
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
515
500
  expected_dtype = convert_sp_to_sf_type(output_types[0])
516
501
 
517
- self._deps = self._batch_inference_validate_snowpark(
518
- dataset=dataset,
519
- inference_method=inference_method,
520
- )
502
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
503
+ self._deps = self._get_dependencies()
521
504
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
522
505
 
523
506
  transform_kwargs = dict(
524
- session = dataset._session,
525
- dependencies = self._deps,
526
- drop_input_cols = self._drop_input_cols,
527
- expected_output_cols_type = expected_dtype,
507
+ session=dataset._session,
508
+ dependencies=self._deps,
509
+ drop_input_cols=self._drop_input_cols,
510
+ expected_output_cols_type=expected_dtype,
528
511
  )
529
512
 
530
513
  elif isinstance(dataset, pd.DataFrame):
531
- transform_kwargs = dict(
532
- snowpark_input_cols = self._snowpark_cols,
533
- drop_input_cols = self._drop_input_cols
534
- )
514
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
535
515
 
536
516
  transform_handlers = ModelTransformerBuilder.build(
537
517
  dataset=dataset,
@@ -550,7 +530,11 @@ class MiniBatchSparsePCA(BaseTransformer):
550
530
  return output_df
551
531
 
552
532
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
553
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
533
+ def fit_predict(
534
+ self,
535
+ dataset: Union[DataFrame, pd.DataFrame],
536
+ output_cols_prefix: str = "fit_predict_",
537
+ ) -> Union[DataFrame, pd.DataFrame]:
554
538
  """ Method not supported for this class.
555
539
 
556
540
 
@@ -575,22 +559,106 @@ class MiniBatchSparsePCA(BaseTransformer):
575
559
  )
576
560
  output_result, fitted_estimator = model_trainer.train_fit_predict(
577
561
  drop_input_cols=self._drop_input_cols,
578
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
562
+ expected_output_cols_list=(
563
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
564
+ ),
579
565
  )
580
566
  self._sklearn_object = fitted_estimator
581
567
  self._is_fitted = True
582
568
  return output_result
583
569
 
570
+
571
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
572
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
573
+ """ Fit to data, then transform it
574
+ For more details on this function, see [sklearn.decomposition.MiniBatchSparsePCA.fit_transform]
575
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchSparsePCA.html#sklearn.decomposition.MiniBatchSparsePCA.fit_transform)
576
+
577
+
578
+ Raises:
579
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
584
580
 
585
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
586
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
587
- """
581
+ Args:
582
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
583
+ Snowpark or Pandas DataFrame.
584
+ output_cols_prefix: Prefix for the response columns
588
585
  Returns:
589
586
  Transformed dataset.
590
587
  """
591
- self.fit(dataset)
592
- assert self._sklearn_object is not None
593
- return self._sklearn_object.embedding_
588
+ self._infer_input_output_cols(dataset)
589
+ super()._check_dataset_type(dataset)
590
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
591
+ estimator=self._sklearn_object,
592
+ dataset=dataset,
593
+ input_cols=self.input_cols,
594
+ label_cols=self.label_cols,
595
+ sample_weight_col=self.sample_weight_col,
596
+ autogenerated=self._autogenerated,
597
+ subproject=_SUBPROJECT,
598
+ )
599
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
600
+ drop_input_cols=self._drop_input_cols,
601
+ expected_output_cols_list=self.output_cols,
602
+ )
603
+ self._sklearn_object = fitted_estimator
604
+ self._is_fitted = True
605
+ return output_result
606
+
607
+
608
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
609
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
610
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
611
+ """
612
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
613
+ # The following condition is introduced for kneighbors methods, and not used in other methods
614
+ if output_cols:
615
+ output_cols = [
616
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
617
+ for c in output_cols
618
+ ]
619
+ elif getattr(self._sklearn_object, "classes_", None) is None:
620
+ output_cols = [output_cols_prefix]
621
+ elif self._sklearn_object is not None:
622
+ classes = self._sklearn_object.classes_
623
+ if isinstance(classes, numpy.ndarray):
624
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
625
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
626
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
627
+ output_cols = []
628
+ for i, cl in enumerate(classes):
629
+ # For binary classification, there is only one output column for each class
630
+ # ndarray as the two classes are complementary.
631
+ if len(cl) == 2:
632
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
633
+ else:
634
+ output_cols.extend([
635
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
636
+ ])
637
+ else:
638
+ output_cols = []
639
+
640
+ # Make sure column names are valid snowflake identifiers.
641
+ assert output_cols is not None # Make MyPy happy
642
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
643
+
644
+ return rv
645
+
646
+ def _align_expected_output_names(
647
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
648
+ ) -> List[str]:
649
+ # in case the inferred output column names dimension is different
650
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
651
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
652
+ output_df_columns = list(output_df_pd.columns)
653
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
654
+ if self.sample_weight_col:
655
+ output_df_columns_set -= set(self.sample_weight_col)
656
+ # if the dimension of inferred output column names is correct; use it
657
+ if len(expected_output_cols_list) == len(output_df_columns_set):
658
+ return expected_output_cols_list
659
+ # otherwise, use the sklearn estimator's output
660
+ else:
661
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
594
662
 
595
663
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
596
664
  @telemetry.send_api_usage_telemetry(
@@ -622,24 +690,26 @@ class MiniBatchSparsePCA(BaseTransformer):
622
690
  # are specific to the type of dataset used.
623
691
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
624
692
 
693
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
694
+
625
695
  if isinstance(dataset, DataFrame):
626
- self._deps = self._batch_inference_validate_snowpark(
627
- dataset=dataset,
628
- inference_method=inference_method,
629
- )
630
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
696
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
697
+ self._deps = self._get_dependencies()
698
+ assert isinstance(
699
+ dataset._session, Session
700
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
631
701
  transform_kwargs = dict(
632
702
  session=dataset._session,
633
703
  dependencies=self._deps,
634
- drop_input_cols = self._drop_input_cols,
704
+ drop_input_cols=self._drop_input_cols,
635
705
  expected_output_cols_type="float",
636
706
  )
707
+ expected_output_cols = self._align_expected_output_names(
708
+ inference_method, dataset, expected_output_cols, output_cols_prefix
709
+ )
637
710
 
638
711
  elif isinstance(dataset, pd.DataFrame):
639
- transform_kwargs = dict(
640
- snowpark_input_cols = self._snowpark_cols,
641
- drop_input_cols = self._drop_input_cols
642
- )
712
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
643
713
 
644
714
  transform_handlers = ModelTransformerBuilder.build(
645
715
  dataset=dataset,
@@ -651,7 +721,7 @@ class MiniBatchSparsePCA(BaseTransformer):
651
721
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
652
722
  inference_method=inference_method,
653
723
  input_cols=self.input_cols,
654
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
724
+ expected_output_cols=expected_output_cols,
655
725
  **transform_kwargs
656
726
  )
657
727
  return output_df
@@ -681,29 +751,30 @@ class MiniBatchSparsePCA(BaseTransformer):
681
751
  Output dataset with log probability of the sample for each class in the model.
682
752
  """
683
753
  super()._check_dataset_type(dataset)
684
- inference_method="predict_log_proba"
754
+ inference_method = "predict_log_proba"
755
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
685
756
 
686
757
  # This dictionary contains optional kwargs for batch inference. These kwargs
687
758
  # are specific to the type of dataset used.
688
759
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
689
760
 
690
761
  if isinstance(dataset, DataFrame):
691
- self._deps = self._batch_inference_validate_snowpark(
692
- dataset=dataset,
693
- inference_method=inference_method,
694
- )
695
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
762
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
763
+ self._deps = self._get_dependencies()
764
+ assert isinstance(
765
+ dataset._session, Session
766
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
696
767
  transform_kwargs = dict(
697
768
  session=dataset._session,
698
769
  dependencies=self._deps,
699
- drop_input_cols = self._drop_input_cols,
770
+ drop_input_cols=self._drop_input_cols,
700
771
  expected_output_cols_type="float",
701
772
  )
773
+ expected_output_cols = self._align_expected_output_names(
774
+ inference_method, dataset, expected_output_cols, output_cols_prefix
775
+ )
702
776
  elif isinstance(dataset, pd.DataFrame):
703
- transform_kwargs = dict(
704
- snowpark_input_cols = self._snowpark_cols,
705
- drop_input_cols = self._drop_input_cols
706
- )
777
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
707
778
 
708
779
  transform_handlers = ModelTransformerBuilder.build(
709
780
  dataset=dataset,
@@ -716,7 +787,7 @@ class MiniBatchSparsePCA(BaseTransformer):
716
787
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
717
788
  inference_method=inference_method,
718
789
  input_cols=self.input_cols,
719
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
790
+ expected_output_cols=expected_output_cols,
720
791
  **transform_kwargs
721
792
  )
722
793
  return output_df
@@ -742,30 +813,32 @@ class MiniBatchSparsePCA(BaseTransformer):
742
813
  Output dataset with results of the decision function for the samples in input dataset.
743
814
  """
744
815
  super()._check_dataset_type(dataset)
745
- inference_method="decision_function"
816
+ inference_method = "decision_function"
746
817
 
747
818
  # This dictionary contains optional kwargs for batch inference. These kwargs
748
819
  # are specific to the type of dataset used.
749
820
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
750
821
 
822
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
823
+
751
824
  if isinstance(dataset, DataFrame):
752
- self._deps = self._batch_inference_validate_snowpark(
753
- dataset=dataset,
754
- inference_method=inference_method,
755
- )
756
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
825
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
826
+ self._deps = self._get_dependencies()
827
+ assert isinstance(
828
+ dataset._session, Session
829
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
757
830
  transform_kwargs = dict(
758
831
  session=dataset._session,
759
832
  dependencies=self._deps,
760
- drop_input_cols = self._drop_input_cols,
833
+ drop_input_cols=self._drop_input_cols,
761
834
  expected_output_cols_type="float",
762
835
  )
836
+ expected_output_cols = self._align_expected_output_names(
837
+ inference_method, dataset, expected_output_cols, output_cols_prefix
838
+ )
763
839
 
764
840
  elif isinstance(dataset, pd.DataFrame):
765
- transform_kwargs = dict(
766
- snowpark_input_cols = self._snowpark_cols,
767
- drop_input_cols = self._drop_input_cols
768
- )
841
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
769
842
 
770
843
  transform_handlers = ModelTransformerBuilder.build(
771
844
  dataset=dataset,
@@ -778,7 +851,7 @@ class MiniBatchSparsePCA(BaseTransformer):
778
851
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
779
852
  inference_method=inference_method,
780
853
  input_cols=self.input_cols,
781
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
854
+ expected_output_cols=expected_output_cols,
782
855
  **transform_kwargs
783
856
  )
784
857
  return output_df
@@ -807,17 +880,17 @@ class MiniBatchSparsePCA(BaseTransformer):
807
880
  Output dataset with probability of the sample for each class in the model.
808
881
  """
809
882
  super()._check_dataset_type(dataset)
810
- inference_method="score_samples"
883
+ inference_method = "score_samples"
811
884
 
812
885
  # This dictionary contains optional kwargs for batch inference. These kwargs
813
886
  # are specific to the type of dataset used.
814
887
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
815
888
 
889
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
890
+
816
891
  if isinstance(dataset, DataFrame):
817
- self._deps = self._batch_inference_validate_snowpark(
818
- dataset=dataset,
819
- inference_method=inference_method,
820
- )
892
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
893
+ self._deps = self._get_dependencies()
821
894
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
822
895
  transform_kwargs = dict(
823
896
  session=dataset._session,
@@ -825,6 +898,9 @@ class MiniBatchSparsePCA(BaseTransformer):
825
898
  drop_input_cols = self._drop_input_cols,
826
899
  expected_output_cols_type="float",
827
900
  )
901
+ expected_output_cols = self._align_expected_output_names(
902
+ inference_method, dataset, expected_output_cols, output_cols_prefix
903
+ )
828
904
 
829
905
  elif isinstance(dataset, pd.DataFrame):
830
906
  transform_kwargs = dict(
@@ -843,7 +919,7 @@ class MiniBatchSparsePCA(BaseTransformer):
843
919
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
844
920
  inference_method=inference_method,
845
921
  input_cols=self.input_cols,
846
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
922
+ expected_output_cols=expected_output_cols,
847
923
  **transform_kwargs
848
924
  )
849
925
  return output_df
@@ -876,17 +952,15 @@ class MiniBatchSparsePCA(BaseTransformer):
876
952
  transform_kwargs: ScoreKwargsTypedDict = dict()
877
953
 
878
954
  if isinstance(dataset, DataFrame):
879
- self._deps = self._batch_inference_validate_snowpark(
880
- dataset=dataset,
881
- inference_method="score",
882
- )
955
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
956
+ self._deps = self._get_dependencies()
883
957
  selected_cols = self._get_active_columns()
884
958
  if len(selected_cols) > 0:
885
959
  dataset = dataset.select(selected_cols)
886
960
  assert isinstance(dataset._session, Session) # keep mypy happy
887
961
  transform_kwargs = dict(
888
962
  session=dataset._session,
889
- dependencies=["snowflake-snowpark-python"] + self._deps,
963
+ dependencies=self._deps,
890
964
  score_sproc_imports=['sklearn'],
891
965
  )
892
966
  elif isinstance(dataset, pd.DataFrame):
@@ -951,11 +1025,8 @@ class MiniBatchSparsePCA(BaseTransformer):
951
1025
 
952
1026
  if isinstance(dataset, DataFrame):
953
1027
 
954
- self._deps = self._batch_inference_validate_snowpark(
955
- dataset=dataset,
956
- inference_method=inference_method,
957
-
958
- )
1028
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1029
+ self._deps = self._get_dependencies()
959
1030
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
960
1031
  transform_kwargs = dict(
961
1032
  session = dataset._session,
@@ -988,50 +1059,84 @@ class MiniBatchSparsePCA(BaseTransformer):
988
1059
  )
989
1060
  return output_df
990
1061
 
1062
+
1063
+
1064
+ def to_sklearn(self) -> Any:
1065
+ """Get sklearn.decomposition.MiniBatchSparsePCA object.
1066
+ """
1067
+ if self._sklearn_object is None:
1068
+ self._sklearn_object = self._create_sklearn_object()
1069
+ return self._sklearn_object
1070
+
1071
+ def to_xgboost(self) -> Any:
1072
+ raise exceptions.SnowflakeMLException(
1073
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1074
+ original_exception=AttributeError(
1075
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1076
+ "to_xgboost()",
1077
+ "to_sklearn()"
1078
+ )
1079
+ ),
1080
+ )
991
1081
 
992
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1082
+ def to_lightgbm(self) -> Any:
1083
+ raise exceptions.SnowflakeMLException(
1084
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1085
+ original_exception=AttributeError(
1086
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1087
+ "to_lightgbm()",
1088
+ "to_sklearn()"
1089
+ )
1090
+ ),
1091
+ )
1092
+
1093
+ def _get_dependencies(self) -> List[str]:
1094
+ return self._deps
1095
+
1096
+
1097
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
993
1098
  self._model_signature_dict = dict()
994
1099
 
995
1100
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
996
1101
 
997
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1102
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
998
1103
  outputs: List[BaseFeatureSpec] = []
999
1104
  if hasattr(self, "predict"):
1000
1105
  # keep mypy happy
1001
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1106
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1002
1107
  # For classifier, the type of predict is the same as the type of label
1003
- if self._sklearn_object._estimator_type == 'classifier':
1004
- # label columns is the desired type for output
1108
+ if self._sklearn_object._estimator_type == "classifier":
1109
+ # label columns is the desired type for output
1005
1110
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1006
1111
  # rename the output columns
1007
1112
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1113
+ self._model_signature_dict["predict"] = ModelSignature(
1114
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1115
+ )
1011
1116
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1012
1117
  # For outlier models, returns -1 for outliers and 1 for inliers.
1013
- # Clusterer returns int64 cluster labels.
1118
+ # Clusterer returns int64 cluster labels.
1014
1119
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1015
1120
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1019
-
1121
+ self._model_signature_dict["predict"] = ModelSignature(
1122
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1123
+ )
1124
+
1020
1125
  # For regressor, the type of predict is float64
1021
- elif self._sklearn_object._estimator_type == 'regressor':
1126
+ elif self._sklearn_object._estimator_type == "regressor":
1022
1127
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1026
-
1128
+ self._model_signature_dict["predict"] = ModelSignature(
1129
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1130
+ )
1131
+
1027
1132
  for prob_func in PROB_FUNCTIONS:
1028
1133
  if hasattr(self, prob_func):
1029
1134
  output_cols_prefix: str = f"{prob_func}_"
1030
1135
  output_column_names = self._get_output_column_names(output_cols_prefix)
1031
1136
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1032
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1033
- ([] if self._drop_input_cols else inputs)
1034
- + outputs)
1137
+ self._model_signature_dict[prob_func] = ModelSignature(
1138
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1139
+ )
1035
1140
 
1036
1141
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1037
1142
  items = list(self._model_signature_dict.items())
@@ -1044,10 +1149,10 @@ class MiniBatchSparsePCA(BaseTransformer):
1044
1149
  """Returns model signature of current class.
1045
1150
 
1046
1151
  Raises:
1047
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1152
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1048
1153
 
1049
1154
  Returns:
1050
- Dict[str, ModelSignature]: each method and its input output signature
1155
+ Dict with each method and its input output signature
1051
1156
  """
1052
1157
  if self._model_signature_dict is None:
1053
1158
  raise exceptions.SnowflakeMLException(
@@ -1055,35 +1160,3 @@ class MiniBatchSparsePCA(BaseTransformer):
1055
1160
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1056
1161
  )
1057
1162
  return self._model_signature_dict
1058
-
1059
- def to_sklearn(self) -> Any:
1060
- """Get sklearn.decomposition.MiniBatchSparsePCA object.
1061
- """
1062
- if self._sklearn_object is None:
1063
- self._sklearn_object = self._create_sklearn_object()
1064
- return self._sklearn_object
1065
-
1066
- def to_xgboost(self) -> Any:
1067
- raise exceptions.SnowflakeMLException(
1068
- error_code=error_codes.METHOD_NOT_ALLOWED,
1069
- original_exception=AttributeError(
1070
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
- "to_xgboost()",
1072
- "to_sklearn()"
1073
- )
1074
- ),
1075
- )
1076
-
1077
- def to_lightgbm(self) -> Any:
1078
- raise exceptions.SnowflakeMLException(
1079
- error_code=error_codes.METHOD_NOT_ALLOWED,
1080
- original_exception=AttributeError(
1081
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
- "to_lightgbm()",
1083
- "to_sklearn()"
1084
- )
1085
- ),
1086
- )
1087
-
1088
- def _get_dependencies(self) -> List[str]:
1089
- return self._deps